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ASCENT, DESCENT, QUASI-NILPOTENT PART AND
ANALYTIC CORE OF OPERATORS

Abstract. This paper concerns a localized version of the single valued extension property
of a bounded operator T E L(X), where X is a Banach space, at a point AO E C. We shall relate
this property to the ascent and the descent of AoI - T, as well as to some spectral subspaces as
the quasi-nilpotent part and the analytic core of AoI - T. We shall also describe all these notions
in the setting of an abstract shift condition, and in particular for weighted right shift operators
on £p(N), where 1 <:: p < oc .

1. The single-valued extension property

One of basic properties in local spectral theory is the so-called single valued
extension property for bounded operators on Banach spaces. This property is
enjoyed by several classes of operators as the decomposable operators, as well as
other classes of operators; we refer to the excellent monograph by Laursen and
Neumann [16] for a modern treatment of the theory of decomposable operators.

In this paper we shall consider the following local version of this property,
introduced by Finch [13] and studied later by several authors [18, 19, 26, 1, 2, 3,
5,6].

DEFINITION 1.1. Let X be a complex Banach space and T E L(X). The op
erator T is said to have the single valued extension property at AD E C (abbreviated
SVEP at AD), if for every open disc lDJAo centered at AD, the only analytic function
f: lDJAo --+ X which satisfies the equation

is the function f == o.
(AI - T)f(A) = 0 (1)
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An operator T E L (X) is said to have the SVEP i f T has the SVEP at every
point >. E C.

T he SVEP ofT E L(X) may be also de fined as follows: Let U be an open subs et
of It and let H (U, X ) deno te the space of X-value d functi ons on U equipp ed with
t he to pology of uniform convergence on compact su bsets of U. Then H (U,X ) is a
Frechet space and every T E L(X) induces a cont inuous mapping Tv on H (U,X),
defined by

Tu (f)(') ' ~ (AI - T )f(>.) foe all f E H (U,X ). (2)

The operator T E L(X) has the SVEP precisely when Tv is injectiv e.

The SVEP may be charact erized by mea ns of some typical t ools origina t ing
from t he local spectral theory. Recall that , for a bounded operator T E L (X ),
t he local resolven t set of T at the point x E X , is defined as t he union of a ll open
subsets U of C such t hat there exist s an analytic funct ion f : U -e- X which satisfies

(AI - T) f(:I ) ~ x foe all x E U . (3)

The local spectrum aT(x) of T at x is the set defined by aT(x) := C \ PT(x ) ami
obviously aT (x) <; a (1'), where a (1' ) denotes the spec t ru m of T .

Clearly, any analytic funct ion which ver ifies (3) on this union is a local exten
sion of t he analytic func tion R (A,T )x := (AI - T) - lx defined on t he resolvent set
peT) of T . Genera lly, t he analytic solut ions of (3) arc not uniquely determined . It
is clear from the definit ion that , if T has the SVE P at AO' thon the analytic solution
of (3) is un iquely det ermined in an open disc center ed at >'0 .

For every subset F of C , let us denote by X T(F ) t he analytic spectral subspace
uf T associated with 0 :

XT (F) ,={x E X, UT(X ) <;; Fj.

For an arbitrary operator T E L (X ) and a closed subset F of C , the 910cal spectral
subspace XT(F) is defined as t he set of all x E X for which t here exists an analytic
function f : C\F -e- X which sa t isfies the identity (>.I - T )f (>' ) = x for a ll >. E C\F .
Note t hat T has SVEP if and only if XT (F) = XT(F ) for all dosed sets F <; C,
sec P roposit ion 3.3 .2 of [16].

T he SV EP, as well as the SVEP at a point AD E C , may be characterized in a
very simple way:

T UEORE),l 1.2. Let T E L(X) . X a B anach space. Then

(i) T has the S VEP at Ao if and only if kcr (AoI - T) n X T (0) = {OJ [I.
Theorem 1.9};

{ii} T has th e S VEP if and on ly if X T (0) = {OJ, and th is is the case if and
only if XT (0) is closed; see [16. Proposition 1.2.16}.

T he bas ic role of SVEP arises in local spectral theory, since ever y decompos
able operator enjoys this proper ty. R ecall t hat a bounded operator T E L(X) is
sa id to have the B ishop 's pl'Operty (13) if for every open set U t he opera tor Tv
defined in (2) is inject ive and has closed range, while T E L( X) is sa id to have the
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decomposition property (6) if X = A'T(U) + A'T(V) for every open cover {U, V} of
c.. The decomposability of T E L(X) may be defined in several ways, for instance
as the union of the property ($) and the property (6), see [16, Theorem 2.5.19].
Note that the property ($) implies that T has SVEP, while the property (6) implies
SVEP for T*, see [16, Theorem 2.5.19]. The class of decomposable operators con
tains, for instance, all normal operators on Hilbert spaces, all spectral operators,
all operators with a non-analytic functional calculus and any operator with a to
tally disconnected spectrum, [16]. Examples of non-decomposable operators which
have the SVEP may be found among the class of all multipliers of a commutative
semi-prime Banach algebra, [16, Proposition 4.2.1]

We shall now introduce two important subspaces in local spectral theory and
in Fredholm theory:

DEFINITION 1.3. Let X be a Banach space and T E L(X). The analytic core
of T is the set K(T) of all x E X such that there exists a sequence (un) C X and
6> 0 for which:

(a) x = Uo, and TUn+l = Un for every n E N.

(b) Ilunll ~ 6nllxll for every n E N.

It easily follows, from the definition, that K(T) is a linear subspace of X and
that T(K(T)) = K(T). In general, K(T) is not closed and K(T) ~ TOC(X), where
TOC(X) := n~=l Tn(X) is the hyperrange ofT. Furthermore, ifT is quasi-nilpotent
then K(T) = {O}, see [18].

DEFINITION 1.4. Let T E L(X), X a Banach space. The quasi-nilpotent part
of T is the set

Ho(T) := {x EX: lim IITnx11 1
/
n = O}.

n-+oc

Also Ho(T) is a linear subspace of X, generally not closed. Furthermore,
N°C(T) ~ Ho(T), where N°C(T) := n~=l ker Tn is the hyperkernel of T, and T is
quasi-nilpotent if and only if Ho(T) = X, [27, Theorem 1.5].

The systematic investigation of the spaces K(T) and Ho(T) was initiated by
Mbekhta [18], after an earlier work of Vrbova [27]. In particular, these authors
established the following local spectral characterizations of K(T) and Ho(T).

THEOREM 1.5. For a bounded operator T E L(X), X a Banach space we have

(i) K(AoI - T) = XT(C \ {Ao}).

(ii) HO(AoI - T) = A'T({Ao}), so, ifT has SVEP, HO(AoI - T) = XT({Ao}).

Note that, for every Ao E C, the following inclusions hold:

X T (0) < XT(C \ {Ao}) = K(AoI - T) < (AoI - T)OC(X) (4)

and
ker (AoI - T) ~ NOC(AoI - T) ~ HO(AoI - T) ~ XT({Ao}). (5)

Two important notions in Fredholm theory are those of the ascent and the
descent of an operator. The ascent of an operator T is the smallest non-negative
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integer p := pry) such that kcr TV = kcr T P+l. If such integer does not exist
we put p(T) := 00. T he descent of an operator T is the smallest non-negative
int eger q := q(T) such t hat T'l( X) = T q...· , and if such int eger does not exist
we put q(T ) := 00 . It is well-known t hat, if p(T ) a mi q(T ) arc both fini te , t hen
pry) = q(T ), [14, P rop osit ion 38.3J..Furthermore, if >'0 belongs to the spect ru m
a(T), t hen 0 < p(>'o I - T) = q(Ao l - T) < co if and only if Ao is a p ole of the
resolvent R(A,T) := ().. I - T) -l , [14, P roposition 50.23]. Obviously, in this case >'0
is a n isolate d po int of a(T ).

Recall that T E L(X) , X is sa id to be semi-Fredholm if T( X) is closed and at
leas t one of the t wo defects a(T) := dim ker T or N T ) := co dim T(X ) is fin it e.

DEFI :-; ITIO~ 1.6. Au operator T E L(X ), X a Banach space, is sa id to be
semi-reqular if T(X) is closed and ker T ~ T OC (X ).

An operator T E L (X) is said to admit a generalized K ato decomposition,
abbreviated GKD, if there exists a pai r of T -invar ian t d 08Cd subs peces (M ,N)
such that X = Ai $ 1\ ', the rest rict ion T IAt is semi-regular and T IN is quasi
nilpotent .

All important case is obtained if we assume in the delinit ion above that T IN is
nilpotent . Tn t his case T is said to be of Kalo lyp e, [17]. If N is finite -dimensional
t hen T is sa id to be ess entially semi-regular, see Hakocevic [24] or Miiller [22J.
Obviously, any semi-regular operator is of Kato type. Kate t hat if T is of Kato
type t hen r=(X) = K (T) and K (T) is closed , sec [2, Theorem 2.3 and Theorem
2.4]. Au important class of operators of Kato type if; given by the class of all sem i
Fredholm operators , see west [29J. Furthermore, t aking JH = {O} an d N = X, we
sec that every quasi-nilpotent operator is of Kate type.

Tn t he sequel by Al l. we shall denote the annihilator of the subset JH ~ X ;
and by 1.N t he pre-annihilator of the subset N ~ X *.

TUEOREM 1.7. F01' a bounded operatorT E L (X ) , where X is a Banach space,
the fo llowing implicatio ns hold:

(i ) Ho(J\of - T ) closed * Hop.of - T ) n K (>"of - T) closed * Ho(>"of 
T) n K (>'of - T) = {a} => T }w,s S VEP at >'0.

(ii ) X = H (>'oI - T ) + K (>'oI - T) => T* nos S VEP at >'0'
Moreover, if >'01 - T is of K alo type , then all these impliculioflS are equiva

lences .

Proof. Without 10s..<; of generality, we may consider ..\0 = o.
(i) Assume t hat Ho(T ) is closed and let T denote the rest rict ion of T to the

Banach space Ho(T ). Obviously, Ho(T ) = Hoff ), so that T is quasi -n ilpotent and
hence K (T ) = {O}. It is easy to see that Ho(T) n K (T ) = K (T ). This shows
t he first implication. T he second implica t ion of (i) if; an immediate consequence of
T heorem 1.5. Indeed , we have

kcr (AoJ - T) n X T (0) ~ HoP,.J - T ) n [« AOJ - T),

so, if t he las t int ersect ion is {O}, then T has the SVEP at >'0, by Theorem 1.2.
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(ii) From [17, Proposition 1.8] we know that Ho(T) r;;;1.. K(T*) and hence
K(T*) < Ho(T)l... We also have Ho(T*) < K(T)l... Indeed, let cp E Ho(T*) and
consider an arbitrary element x E K(T). According to the definition of K(T),
there is a sequence (un) C X, and a 0 > 0, such that Uo = x, TUn+l = Un and
Ilunll :S onllxll for every n E N. Clearly, Tnun = x for every n E N. Consequently,

Icp(x)1 = Icp(Tnun)1 = I(T*ncp)(un)1 :S IlunllllT*ncpll :S onIIT*ncpll,

and hence Icp (x) I'; :S 0 II T?" cp II'; for every n EN. The last term converges to 0 as
n ---+ 00, since cp E Ho(T*), and from this it follows that cp(x) = 0, i.e. cp E K(T)l...
Finally, if X = Ho(T) + K(T) then {O} = Ho(T)l.. n K(T)l.. :2 Ho(T*) n K(T*),
thus, by part (i), T* has the SVEP at O.

For the last assertion see Theorem 2.6 of [3] .•

An example, given in [5], of a bilateral right shift T defined in the Hilbert space
L 2 (w), where W := (Wn)nEZ is a suitable weight sequence, shows that the SVEP at
a point AO does not, in general, implies that HO(AOI - T) n K(AOI - T) = {O}.

Also the finiteness of the ascent and the descent has important consequences
on the SVEP. In fact we have the following implications.

THEOREM 1.8. For a bounded operator T on a Banach space X the following
implications hold:

(i) p(AoI -T) < oc => N°C(AoI -T)n(AoI -T)OC(X) = {O} => T has SVEP atAo.

(ii) q(AoI -T) < oc => X = N°C(AoI -T)+(AoI -T)OC(X) => T* has SVEP at Ao.
Moreover, if AoI - T is of Kato type, then all these implications are equiva

lences.

Proof (i) There is no loss of generality in assuming Ao = O.

Let p := p(T) < 00. Then N°c (T) = ker TP and hence, by [14, Proposition
38.1], N°C(T) n TP(X) = {O}. From TOC(X) < TP(X) we obtain that N°C(T) n
TOC(X) = {O}. The second implication is a consequence of Theorem 1.2, since,
from the inclusions (4), we obtain that

ker Tn X T (0) < N°C(T) n TOC(X) = {O}.

(ii) Also here we may assume that Ao = O. Let q := q(T) < 00. Then
TOC(X) = Tq(X) and X = Tn(X) + ker T" for every n E N, by [14, Proposition
38.2]. From this it easily follows that X = NOC(T)+TOC(X), so the first implication
of (ii) is proved.

In order to show the second implication of (ii), we first note that, if X =
N°C(T) + TOC(X), then N°C(T)l.. n TOC(X)l.. = {O}. Now, let us consider an
element x * E ker T* n X T* (0). Clearly,

x* E ker T* r;;; ker (T*)n = ker (T n)* = Tn (X) 1.. r;;; Tn(X)l..,

for every n E N and therefore x* E TOC(X)l... On the other hand, from O"T*(X*) = 0
we obtain, by Theorem 1.5, that

x* E K(T*) r;;; (T*)n(x*) = (Tn)*(X*) r;;; (ker Tn)l..
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for every n E N. From this it follows that x* E N°c (T).l.. and therefore x* E

N°C(T).l.. n TOC(X).l.., which implies that x* = O. Again, from Theorem 1.2 we
conclude that T* has the SVEP at O.

For a proof of the last assertion see Corollary 2.7 of [2] .•

Hence each one of the two conditions p(AoI - T) < oc or HO(AoI - T) closed
implies the SVEP at AO. The next two examples show that in general these two
conditions are independent.

EXAMPLE 1.9. Let T : g2(N) ---+ g2(N) be defined by

Tx := (X2 ..... x n .... ). where x = (Xl.··· . xn.···).2' . n .. . . .

It is easily seen that IITkl1 = (k~l)!' from which it follows that T is quasi-nilpotent

and therefore Ho(T) = g2(N). Obviously, p(T) = 00.

EXAMPLE1.10. In [3] it has been given an example of a direct sum of unilateral
weighted shifts for which p(T) = 0 and Ho(T) is not closed. The following simpler
example is taken from [10]. Let 1 :S p < oc be given and denote by W = (Wn)nEN
a bounded sequence of positive real numbers. Let us consider the corresponding
weighted unilateral right shift T on gP (N), defined by

°C

Tx:= L wnxnen+l for all X = (Xn)nEN E gP(N),
n=l

where (en) stands for the canonical basis of gP(N). This operator has SVEP, since
T has no eigenvalues and hence p(AI - T) = 0 for all A E c..

A routine calculation shows that the norm of T" is given by

IITnl1 = SUp(Wk" ,wk+n-d for all n E N.
kEN

Suppose now that (Wn)nEN is defined by

W
n

:= {O if n is a square of an integer

1 otherwise

It is easily seen that IITn II = 1 for all n E N, so that T is not quasi-nilpotent.
This excludes that Ho(T) is closed, see next Theorem 2.7. It is easy to see that
K(T) = {O}. Therefore, this example shows that the implication Ho(T) closed =?

K(T) n Ho(T) = {O}, noted in Theorem 1.7, cannot in general be reversed.

From Theorem 1.8 it follows that the finite ascent property for an operator
T E L(X) defined as:

p(AI - T) < oc for every A E ce
implies that T has SVEP. There are many examples of operators for which the
condition p(AI - T) < oc holds for every A E c.. For instance, every multiplier of a
semi-prime Banach algebra verifies this property, see [16, p. 406], and in particular
every convolution operator on a group algebra L l (G), where G is a locally compact
Abelian group. Other examples of operators of this type are the generalized scalar
operators, see [28], as well as several other classes of operators studied in [15]. As
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noted by Barnes [10], a class of operators which have this ascent property is given
by the class P(X) of all bounded operators on a Banach space X which satisfy
a polynomial growth condition, where T E L(X) is said to satisfy a polynomial
growth condition, if there exists a K > 0, a is > 0 for which

Ilexp(i>'T)II :S K(1 + 1>.1 8) for all x E R

The finite descent property for an operator T E L(X) is defined as:

q(>.I - T) < oc for every>. E c..
This property is obviously satisfied by every operator for which every spectral point
is a pole of the resolvent.

THEOREM 1.11. Let T E L(X), where X is a Banach space. Then T has
the finite descent property precisely when u(T) is finite set of poles of the resolvent
R(>', T).

Proof. Clearly, if u(T) is finite set of poles of R(>., T) then q(>.I - T) < oc
for every>. E c.. Conversely, suppose that q(>.I - T) < oc for all >. E c.. Then
q(>.I - T) < oc for all >. E ou(T), ou(T) the boundary of u(T). Since T ha SVEP
at every>. E ou(T) then the condition q(>.I- T) < oc entails that every>. E ou(T)
is a pole of R(>', T), see Corollary 1 of [25]. Clearly, this implies that u(T) = ou(T),
so that the spectrum u(T) is a finite set of poles of R(>., T) .•

Therefore, the finite descent property implies that both T and T* have SVEP
(actually we have more, T is decomposable since it has finite spectrum). It should
be noted that the proof of Theorem 1.11 shows that the finite descent property is
equivalent to the apparently weaker condition q(>.I - T) < oc for all >. E ou(T).

Theorem 1.7 suggests in a very natural way the following concept, introduced
in [3]:

DEFINITION 1.12. A bounded operator T E L(X), X a Banach space, is said
to have property (Q) if H 0 (AI - T) is closed for every >. E c..

Clearly, every quasi-nilpotent operator has property (Q), since Ho(>'I - T) =

{O} for all x#- 0 and Ho(T) = X. More generally,

u(T) finite =? T has property (Q). (6)

Indeed, if >. E u(T) is isolated then Ho(>'I - T) coincides with the range of the
spectral projection associated with the singleton set {>'}, see [14, Proposition 49.1].
In particular, the implication

T has finite descent property =? T has property (Q). (7)

holds. Since every multiplier of a semi-simple Banach algebra has property (Q), see
Theorem 1.8 of [3], we see that any multiplier with a non-finite spectrum provides
an example of operator which has property (Q), but not satisfies the finite descent
property.

Recall that a bounded operator T E L(X), X a Banach space, is said to have
Dunford's property (0), shortly property (C), if the analytic subspace XT(O) is



64 P. Aieo n<'l , M. T . Biondi

closed for every closed subset n ~ C . It should be noted that proper ty (19) implies
property (e ), sec [16, P roposit ion 1.2.19] and it t urns out, by part (ii ) of T heorem
1.2, that property (e ) implies that T has SVE P.

All obvious consequence of part (ii) of T heorem 1.5 is that if T has prop er ty
(e) t hen HoP,] - T ) = X T ({>.. }) is closed for every ). E C, so that the following
implica t ions hold :

T has proper ty (e) ::::} T has proper ty (Q) :::> T has SVE P. (8)

Note that neither of the imp licat ions (8) may he reversed in general. A first
counter-example, of a n operator which has SVEP hut not pr oper ty (Q) is given by
t he operator T defined in Example 1.10, sec also next T heorem 2.7. An example
of an operator which shows that t he first implicati on is not reversed in general,
may be found a mong t he convolution operators 1;, of group algebras L I(G), since
t hese opera tors have property (Q), sec [31 , while may have not prop er ty (C), sec
Theorem 4.1Ul and T heorem 4. 1.12 of [16].

2. An abst r act sh ift condition

In this sect ion we shall consider ope rators T E L(X) on a Ban ach space X
for which T OC (X) = {O} . T his condition may be viewed, in a certain sense , as
an abstract shift cond ition, since it is satisfied by every weight ed right shift T on
(,P(N). Clearly, the condition TOC(X) = {a} ent ails that T is lion-surj ect ive and
hence 0 E aCT ). Moreover , this condition also implies that K (T ) = {O}, since K (T)
is a subset of TOC(X) , but the quasi-nilpotent Volt err a opera tor V on the Banach
space X := C[o, 11, defined by

(V Il(t),~ l' f (··)ds for all f E q o,11and t E [0,11,

shows t hat, in general, t he converse is not true. Indeed , V is quasi-nilpotent and
hence K (V ) = {O}, while

V~ (X) ~ {f E C~ [O, I] ' f (n)(o) ~ 0 n E Z+ j,

thus V OC (X ) is not closed and, consequentl y, st r ictly larger than J( V) = {O}.
It is eas ily seen that the condit ion T OC (X) = {o} has some other imp ortant

consequ ences, for instance:

T~(X) ~ {oj =} p(>.I - T) ~ 0 for all " .. O.

and
q('/ - T) ~ 00 for a ll ,\ E arT) \ {OJ. (9)

Indeed , ker ixt : T) = {O} for all O::f:. xE C , since ker ixt : T) ~ TOC(X) for all
>. ::f:. O. This implies that q(..\! - T) = 00 for al l ..\ E aCT) \ {O} otherw ise, if were
q(Al - T ) < 00, then q(..\! - T) = p(..\ ! - T) = 0 and hence .\ ¢. aCT), which is
impossible.

For an operator T E L(X) , let

k(T) , ~ inf { IITxll ' x E X and IIxll ~ 1j
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be the lower bound of T and define

i(T) := limk(Tn)l/n = supk(Tn)l/n.
nEN

65

Clearly, if r(T) is the spectral radius of T E L(X) then i(T) :S r(T). In the sequel
by D(O, i(T)) we shall denote the closed disc centered at 0 and radius i(T).

THEOREM 2.1. If TOC(X) = {O} then T has SVEP. Moreover, the following
statements hold:

(i) O"T(X) is connected and

D(O,i(T))C;;;;O"T(X) forallO#-xEX. (10)

(ii) HO(AI - T) = {O} for all A #- {O}. Consequently, T has property (Q) if
and only if Ho(T) is closed.

(iii) Ifi(T) > 0, then T has property (Q).

(iv) Ifi(T) = r(T), then T has property (C).

Proof. The SVEP may be proved in several ways, for instance from Theorem
1.2, since ker (AI - T) n K(AI - T) = {O} for every A E c.. Moreover, the local
spectrum O"T(X) is connected, by Theorem 1 of [26]. The proof of the inclusion (10)
is proved in [16, Theorem 1.6.3]. To show the statement (ii) observe first that the
SVEP for T implies, by part (ii) of Theorem 1.5, that

HO(AI - T) = {x EX: O"T(X) C;;;; {A}} for all A E c..
Now, let A#-O and suppose that there is 0 #- x E HO(AI - T). Since T has SVEP,
by part (ii) of Theorem 1.2, we obtain that O"T (x) #- 0, so that O"T (x) = {A}, which
is impossible since 0 E O"T(X), by part (i). Therefore Ho(AI - T) = {O} for all
A#- o.

To prove (iii) it suffices to prove, by part (ii), that Ho(T) = {O}. Since,

Ho(T) = {x EX: O"T(X) C;;;; {On,

from the inclusion (10) we infer that the condition i(T) > 0 entails that each x#-O
cannot belong to Ho(T). Therefore, Ho(T) = {O}.

The assertion (iv) has been proved in Proposition 1.6.5 of [16]. We give the
simple proof for sake of completeness. Suppose now that i(T) = r(T). Then
D(O,r(T)) is contained in O"T(X) for all non-zero x E X, and hence

O"T(X) = D(O,r(T)) = O"(T) for all non-zero x E X.

This implies that XT(O) = X for every closed set 0 which contains D(O, r(T)),
while XT(O) = {O} otherwise. -

Let CTw(T) denote the Weyl spectrum, i.e. the complement of the set of all A E ce
for which AI - T is a Fredholm operator with index ind T := a(T) - (3(T) = O.
The Brouider spectrum O"b(T) is defined as the complement of all A E ce for which
Al - T E <I>(X) and p(AI - T) = q(AI - T) < 00. Note that O"w(T) C;;;; O"b(T) and
this inclusion is in general proper.
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THEOREM 2.2. Let T E L(X), X an infinite-dimensional Banach space, and
suppose that TOC(X) = {O}. Then u(T) is connected and

(11)

Proof. By Proposition 1.3.2 of [16] we have, since T has SVEP,

u(T) = usu(T) = U UT(X),
xEX

where usu(T) denotes the surjectivity spectrum ofT. Since the local spectra UT(X)
are connected then u(T) is connected. The equality (11) has been established in
[26]. We give here a simpler proof.

By Corollary 2.8 of [7], we have uw(T) = ub(T), since T has SVEP. We show
that ub(T) = u(T). The inclusion ub(T) ~ u(T) holds for all T E L(X), so it
remains to establish that u(T) ~ ub(T). Observe that, if the spectral point A E ce
is not isolated in u(T), then A E ub(T).

Suppose first that T is quasi-nilpotent. Then ub(T) = u(T) = {O}, since ub(T)
is non-empty whenever X is infinite-dimensional. Suppose that T is not quasi
nilpotent and let 0 #- A E u(T). Since u(T) is connected and 0 E u(T), then
neither 0 or A are isolated points in u(T). Hence u(T) ~ ub(T) .•

Let Pkt(T) denote the Kato type resolvent of T, defined as

Pkt(T) := {A E ce :AI - T is of Kato type}.

The set Pkt(T) is an open subset of ce, see [4], so it may be decomposed in maximal
connected open components.

The following two results generalize Theorem 2 of Schmoeger [26].

THEOREM 2.3. Suppose that T E L(X), where X is a Banach space, is of
Kato type. Let D denote the connected component of Pkt(T) which contains O.
Then TOC(X) = {O} if and only if p := p(T) < oc and

D ~ UT(X) for all x tI- ker TP. (12)

Furthermore, if TOC(X) = {O}, then T has property (Q).

Proof. Suppose that TOC(X) = {O}. Since T has SVEP then p(T) < 00, by
Theorem 1.8, and Ho(T) = ker TP, by Corollary 2.7 of [3]. The SVEP of T also
ensures, by Theorem 1.7, that Ho(AI -T) is closed for all A E D. Since the mapping

A E D f-+ Ho(AI - T) + K(AI - T) = Ho(AI - T) + K(AI - T)

is constant on D, see [20] or [8], we then have

ker TP = Ho(T) + K(T) = Ho(AI - T) + K(AI - T)

for all A E D. Now, by part (iii) of Theorem 2.1, Ho(AI - T) = {O} for all A#-O
and hence

ker TP = K(AI - T) = {x EX: A tI- UT(X)},
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for all A E D \ {O}. Thus, for x tj. ker TP we obtain D \ {O} ~ O"T(X) and, by part
(ii) of Theorem 2.1, 0 E O"T(X) for all x #- O. This implies that D ~ O"T(X) for all
x tj. ker TP.

Conversely, assume that p = p(T) < oc and D ~ O"T(X) for all x tj. ker TP.
The condition p := p(T) < oc entails that T has SVEP at 0 and, by Theorem
1.8, N°C(T) n TOC(X) = {O}. Assume that there exists 0 #- x E TOC(X). Then
x tj. N°C(T) = ker TP, thus 0 E O"T(X). On the other hand, since TOC(X) = K(T),
see Theorem 2.4 of [2], then x E K (T), so that 0 tj. O"T (x), by Theorem 1.5; a
contradiction. Therefore, T OC (X) = {O}.

To show the last assertion, observe that Ho(AI - T) = {O} for all A #- 0, while
the SVEP, by Theorem 1.7, implies that also Ho(T) is closed. _

It should be noted that the previous result extends, in a sense, Theorem 2.1.
In fact, if O"ap(T) denotes the approximate point spectrum of T, then

O"ap(T) ~ {A E c : i(T) < IAI < r(T)},

see Proposition 1.6.2 of [16]. Therefore the condition i(T) > 0 entails that T is
bounded below and hence is of Kato type.

THEOREM 2.4. Suppose that T E L(X) is of Kato type and TOC(X) = {O}.
If T is not quasi-nilpotent then T* does not have the SVEP. Moreover, T is not
decomposable.

Proof. We know that q(AoI - T) = oc for all 0 #- A E O"(T). Indeed, if for
some Ao E O"(T) \ {O} we have q(AoI - T) < 00. Let D be the component of
O"kt(T) containing O. Since O"(T) is connected and T is not quasi-nilpotent, then
D n (a(T) \ {O}) #- 0. Let J.t E D n (a(T) \ {O}). Since J.tI - T is of Kato type,
the condition q(J.tI - T) = oc entails that T* does not have the SVEP at J.t, see
Theorem 2.9 of [3].

The last assertion is clear, since the decomposability of T implies that T* is
decomposable and hence has SVEP, by Theorem 2.5.19 of [16]. _

The previous results apply to isometries, since i(T) = r(T) = 1 for every
isometry T E L(X). Note that for every isometry O"ap(T) is contained in the unit
circle, so that AI - T is bounded below and hence upper semi-Fredholm for every
IAI < 1, see Proposition 1.6.2 of [16]. Hence every isometry T has property (C),
by Theorem 2.1 (actually we have much more, T has property (/3), by Proposition
1.6.7 of [16]). In the case that an isometry T is non-invertible, for instance in the
case that TOC(X) = {O}, the spectrum is the entire closed unit disc, while O"ap(T)
is the unit circle. Furthermore, by Corollary 2.9 of [7], we have O"ap(T) = CTkt(T).

An isometry T E L(X) for which the condition TOC(X) = {O} is satisfied is said
to be a semi-shift. Proposition 1.6.8 of [16] shows that T is a semi-shift if and only if
T has fat local spectra, i.e. the equality O"T(X) = O"(T) holds for every x#- 0, see also
[23]. Examples of semi-shifts are the unilateral right shift operators of arbitrary
multiplicity on gP (N), as well as every right translation operator on LP([0, 00)), see
Section 1.6 of [16]. From Theorem 2.4 it follows that every semi-shift operator is
not decomposable.
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The following result has been established in [21]. We give an alternative proof.

(ii) T is decomposable;
(iv) T has property (;3);

THEOREM 2.5. If K(T) = {O}, the following assertions are equivalent:
(i) T is decomposable; (ii) T has property (6);
(iii) T is quasi-nilpotent; (iv) 0 is an isolated point of u(T);
(v) q(>'I - T) < oc for all >. #- o.

Proof. Clearly (i) =?- (ii). To establish the implication (ii) =?- (iii), we show
first that the surjectivity spectrum usu(T) is {O}. Suppose that>. #- 0 and choose
e > 0 such the closed disc D(>., c) does not contains O. Let U := lDJ(O, c/2) and
V := CC \ D(O,c), where lDJ(0,c/2) is the open disc centered at 0 and radius c/2 .
Clearly, {U, V} is an open cover of CC, so, taking into account that T has SVEP, the
property (6) implies that X = XT(D(O, s )) + XT(CC \ D(O, c)). From the inclusion
CC \ D (0, s )) <;;;; CC \ {O} we infer

XT(CC \ D(O, s )) < XT(CC \ {O}) = K(T) = {O},

so that X = XT(D(O,c)). On the other hand, by Proposition 1.2.16 of [16], we
know that

(p1- T)(XT(D(O, s )) = XT(D(O, s )) for alllJLI > c,

thus>' tj. usu(T). Hence, usu(T) = {O}. On the other hand the point spectrum
up(T) is contained in {O}, so that u(T) = up(T) U usu(T) = {O}.

Clearly, (iii) =?- (i), so the statements (i), (ii) and (iii) are equivalent. Obvi
ously, (iii) =?- (iv). We prove that (iv) =?- (iii). Suppose 0 isolated in u(T). Then
K(T) = ker P and Ho(T) = P(X), where P is the spectral projection associated
with the spectral set {O}. From K(T) = {O} we deduce that Ho(T) = X, so T is
quasi-nilpotent. It is evident that (iii) =?- (v). To show the opposite implication,
assume that T is not quasi-nilpotent. Then q(>'I - T) = oc for all 0 #- >. E u(T),
by (9), so the proof is complete. -

H is easy to see that, if TOC(X) = {O}, then

T has the finite descent condition ¢:} T is nilpotent.

In fact, if q := q(T) < 00, then TOC(X) = TP(X) = {O}, while the converse is
obvious.

EXAMPLE 2.6. In [16, p.89] an example is given of a right shift T on gP(N)
such that T has property (C), but not property (;3). Therefore, T also provides an
example of a shift which has property (Q), but not quasi-nilpotent.

However, the following result, established in [10], shows that the property (Q)
for a right shift T is equivalent to be T quasi-nilpotent in some special case.

THEOREM 2.7. Suppose that infinitely many weights W n are zero. Then for
the corresponding right shift T on gP (N), 1 :S p < 00, the following statements are
equivalent:
(i) T is quasi-nilpotent;
(iii) T has property (6);
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(v) T has property (C);
(vii) H o(T) is closed.

(vi) T has property (Q);

Proof. The equivalences (i) {::? (ii) {::? (iii) have been proved in Theorem
2.5. The implications (ii) => (iv) => (v) => (vi) are satisfied by every bounded
operator.

(vi) => (i) Suppose that Ho(T) is closed. Since Ten = wnen+l for all n E N,
if Wn = 0 then en E ker T ~ Ho(T). Suppose that Wn #- 0 and let k be the smallest
integer such that Wn+k = 0 . It is easy to check that

T k +2 - - 0en - WnWn+I ... Wn+k en+k+I - ,

so en E ker Tk+2 ~ Ho(T). This shows that Ho(T) = gP(N) and hence T is quasi
nilpotent. Therefore (vi) {::? (i). Since the equivalence (vi) {::? (vii) has been
proved in part (ii) of Theorem 2.1, the proof is complete.•

We conclude this paper by mentioning a characterization of property (Q),
established by Bourhim [10, Proposition 4.5]' in the case that the weighted right
shift T is injective. It is easily seen that, if (Wn)nEN is the weight sequence, then T
is injective if and only if none of the weights W n is zero; so that Theorem 2.7 does
not apply to this case.

THEOREM 2.8. Suppose that the right shift operator T on gP (N), for some
1 :S p < 00, is injective. Then the following statements are equivalent:

(i) T has property (Q);

(ii) Either T is quasi-nilpotent or d(T) := limn--+cx; sup(WI ... Wn)l/n > o.•

Observe that the quantity i(T) for a right shift operator T with weight (Wn)nEN
may be computed as

i(T) = lim inf (Wk··· Wk+n_I)l/n
n---+cx; kEN

and i(T) :S d(T), so, to prove the preceding theorem, we cannot apply the result
from Theorem 2.1.
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