ON CERTAIN MULTIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS DEFINED BY USING A DIFFERENTIAL OPERATOR

M. K. Aouf

Abstract. In this paper, we introduce the subclass \(S_j(n, p, q, \alpha) \) of analytic and \(p \)-valent functions with negative coefficients defined by new operator \(D_n^p \). In this paper we give some properties of functions in the class \(S_j(n, p, q, \alpha) \) and obtain numerous sharp results including (for example) coefficient estimates, distortion theorem, radii of close-to-convexity, starlikeness and convexity and modified Hadamard products of functions belonging to the class \(S_j(n, p, q, \alpha) \). Finally, several applications involving an integral operator and certain fractional calculus operators are also considered.

1. Introduction

Let \(T(j, p) \) denote the class of functions of the form

\[
f(z) = z^p - \sum_{k=j+p}^{\infty} a_k z^k \quad (a_k \geq 0; \ p, j \in \mathbb{N} = \{1, 2, \ldots \}),
\]

which are analytic and \(p \)-valent in the open unit disc \(U = \{z : |z| < 1\} \). A function \(f(z) \in T(j, p) \) is said to be \(p \)-valently starlike of order \(\alpha \) if it satisfies the inequality

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha \quad (z \in U; \ 0 \leq \alpha < p; \ p \in \mathbb{N}).
\]

We denote by \(T^*_j(p, \alpha) \) the class of all \(p \)-valently starlike functions of order \(\alpha \). Also a function \(f(z) \in T(j, p) \) is said to be \(p \)-valently convex of order \(\alpha \) if it satisfies the inequality

\[
\text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \alpha \quad (z \in U; \ 0 \leq \alpha < p; \ p \in \mathbb{N}).
\]

2010 AMS Subject Classification: 30C45.

Keywords and phrases: Multivalent functions; differential operator; modified-Hadamard product; fractional calculus.
We denote by \(C_j(p, \alpha) \) the class of all \(p \)-valently convex functions of order \(\alpha \). We note that (see for example Duren [5] and Goodman [6])

\[
f(z) \in C_j(p, \alpha) \iff \frac{zf'(z)}{p} \in T^*_j(p, \alpha) \quad (0 \leq \alpha < p; \ p \in N).
\] (1.4)

The classes \(T^*_j(p, \alpha) \) and \(C_j(p, \alpha) \) were studied by Owa [12].

For each \(f(z) \in T(j, p) \), we have (see [3])

\[
f^{(q)}(z) = \frac{p!}{(p-q)!} z^{p-q} - \sum_{k=0}^\infty \frac{k^n}{k!(k+q)!} a_k z^{k-q} \quad (q \in N_0 = N \cup \{0\}; \ p > q).
\] (1.5)

For a function \(f(z) \) in \(T(j, p) \), we define

\[
D^0_p f^{(q)}(z) = f^{(q)}(z),
\]

\[
D^1_p f^{(q)}(z) = Df^{(q)}(z) = \frac{z}{(p-q)} (f^{(q)}(z))^\prime = \frac{z}{(p-q)} f^{(1+q)}(z)
\]

\[
= \frac{p!}{(p-q)!} z^{p-q} - \sum_{k=0}^\infty \frac{k^n}{k!(k+q)!} \left(\frac{k-q}{p-q} \right) a_k z^{k-q},
\]

\[
D^2_p f^{(q)}(z) = D(D^1_p f^{(q)}(z))
\]

\[
= \frac{p!}{(p-q)!} z^{p-q} - \sum_{k=0}^\infty \frac{k^n}{k!(k+q)!} \left(\frac{k-q}{p-q} \right)^2 a_k z^{k-q},
\]

and

\[
D^n_p f^{(q)}(z) = D(D^{n-1}_p f^{(q)}(z)) \quad (n \in N)
\]

\[
= \frac{p!}{(p-q)!} z^{p-q} - \sum_{k=0}^\infty \frac{k^n}{k!(k+q)!} \left(\frac{k-q}{p-q} \right)^n a_k z^{k-q}
\]

\[
(p, j \in N; \ q \in N_0; \ p > q).
\] (1.8)

We note that, by taking \(q = 0 \) and \(p = 1 \), the differential operator \(D^0_1 = D^1 \) was introduced by Salagean [13].

With the help of the differential operator \(D^n_p \), we say that a function \(f(z) \) belonging to \(T(j, p) \) is in the class \(S_j(n, p, q, \alpha) \) if and only if

\[
\text{Re} \left\{ \frac{z(D^p_{p} f^{(q)}(z))^\prime}{D^p_{p} f^{(q)}(z)} \right\} > \alpha \quad (p \in N; \ q, n \in N_0)
\] (1.9)

for some \(\alpha (0 \leq \alpha < p-q, p > q) \) and for all \(z \in U \).

We note that, by specializing the parameters \(j, p, n, q \) and \(\alpha \), we obtain the following subclasses studied by various authors:

(i) \(S_j(0, p, q, \alpha) = S_j(p, q, \alpha) \) and \(S_j(1, p, q, \alpha) = C_j(p, q, \alpha) \) (Chen et al. [3]);

(ii) \(S_j(n, 1, 0, \alpha) = P(j, \alpha, n) \) \((j \in N; \ n \in N_0; \ 0 \leq \alpha < 1) \) (Aouf and Srivastava [1]).
On certain multivalent functions defined by a differential operator

(iii) $S_1(n, 1, 0, \alpha) = T(n, \alpha) \ (n \in N_0; \ 0 \leq \alpha < 1)$ (Hur and Oh [7]);

(iv) $S_j(0, p, 0, \alpha) = \left\{ \begin{array}{ll}
T_j(p, \alpha) & (p, j \in N; \ 0 \leq \alpha < p), \\
T_{\alpha}(p, j) & (Yamakawa [20])
\end{array} \right.$

(v) $S_j(1, p, 0, \alpha) = \left\{ \begin{array}{ll}
C_j(p, \alpha) & (Owa [12]), \\
CT_{\alpha}(p, j) & (Yamakawa [20])
\end{array} \right.$ (p, j \in N; \ 0 \leq \alpha < p).

(vi) $S_1(0, p, 0, \alpha) = T^*(p, \alpha)$ and $S_1(1, p, 0, \alpha) = C(p, \alpha)$ (Owa [11] and Salagean et al. [14]);

(vii) $S_j(0, 1, 0, \alpha) = T_{\alpha}(j)$ and $S_j(1, 1, 0, \alpha) = C_{\alpha}(j)$ (Srivastava et al. [19])

(viii) $S_j(n, p, 0, \alpha) = S_j(n, p, \alpha)$ (p, j \in N; \ n \in N_0; \ 0 \leq \alpha < p), where $S_j(n, p, \alpha)$ represents the class of functions $f(z) \in T(j, p)$ satisfying the inequality

$$\text{Re} \left\{ \frac{z(D_p^nf(z))'}{D_p^nf(z)} \right\} > \alpha \quad (z \in U). \quad (1.10)$$

In our present paper, we shall make use of the familiar integral operator $J_{c,p}$ defined by (cf. [2], [8] and [9]; see also [18])

$$(J_{c,p}f)(z) = \frac{c + p}{z^c} \int_0^z t^{c-1} f(t) \, dt \quad (1.11)$$

($f \in T(j, p); \ c > -p; \ p \in N$) as well as the fractional calculus operator D_{z}^{μ} for which it is well known that (see for details [10] and [16]; see also Section 5 below)

$$D_{z}^{\mu}\{z^{\rho}\} = \frac{\Gamma(\rho+1)}{\Gamma(\rho+1-\mu)} z^{\rho-\mu} \quad (\rho > -1; \ \mu \in R) \quad (1.12)$$

in terms of Gamma functions.

2. Coefficient estimates

THEOREM 1. Let the function $f(z)$ be defined by (1.1). Then $f(z) \in S_j(n, p, q, \alpha)$ if and only if

$$\sum_{k=j+p}^{\infty} \left(\frac{k-q}{p-q} \right)^n (k-q-\alpha) \delta(k, q) a_k \leq (p-q-\alpha) \delta(p, q) \quad (2.1)$$

(0 \leq \alpha < p-q; \ p, j \in N; \ q, n \in N_0; \ p > q) where

$$\delta(p, q) = \frac{p!}{(p-q)!} = \left\{ \begin{array}{ll}
p(p-1) \cdots (p-q+1), & q \neq 0, \\
1, & q = 0.
\end{array} \right. \quad (2.2)$$
Proof. Assume that inequality (2.1) holds true. Then we find that

$$ \left| z \left(D^n_p f^{(q)}(z) \right)' \right| - (p - q) \leq \frac{\sum_{k=j+p}^{\infty} (k - p) \left(\frac{k - q}{p - q} \right)^n \delta(k, q) a_k |z|^{k-p} \delta(p, q) - \sum_{k=j+p}^{\infty} \left(\frac{k - q}{p - q} \right)^n \delta(k, q) a_k |z|^{k-p} \delta(p, q) - \sum_{k=j+p}^{\infty} \left(\frac{k - q}{p - q} \right)^n \delta(k, q) a_k}{\sum_{k=j+p}^{\infty} \left(\frac{k - q}{p - q} \right)^n \delta(k, q) a_k} \leq p - q - \alpha. $$

This shows that the values of the function

$$ \Phi(z) = \frac{z \left(D^n_p f^{(q)}(z) \right)'}{D^n_p f^{(q)}(z)} \quad (2.3) $$

lie in a circle which is centered at \(w = (p - q) \) and whose radius is \((p - q - \alpha) \). Hence \(f(z) \) satisfies the condition (1.9).

Conversely, assume that the function \(f(z) \) is in the class \(S_j(n, p, q, \alpha) \). Then we have

$$ \text{Re} \left\{ \frac{z \left(D^n_p f^{(q)}(z) \right)'}{D^n_p f^{(q)}(z)} \right\} = \text{Re} \left\{ \frac{(p - q)\delta(p, q) - \sum_{k=j+p}^{\infty} \left(\frac{k - q}{p - q} \right)^n \delta(k, q) a_k z^{k-p}}{\delta(p, q) - \sum_{k=j+p}^{\infty} \left(\frac{k - q}{p - q} \right)^n \delta(k, q) a_k z^{k-p}} \right\} > \alpha, \quad (2.4) $$

for some \(\alpha \) (0 \(\leq \alpha < p - q) \), \(p, j \in N \), \(q, n \in N_0 \), \(p > q \) and \(z \in U \). Choose values of \(z \) on the real axis so that \(\Phi(z) \) given by (2.3) is real. Upon clearing the denominator in (2.4) and letting \(z \to 1^- \) through real values, we can see that

$$ (p - q)\delta(p, q) - \sum_{k=j+p}^{\infty} \left(\frac{k - q}{p - q} \right)^n \delta(k, q) a_k \geq \alpha \left\{ \delta(p, q) - \sum_{k=j+p}^{\infty} \left(\frac{k - q}{p - q} \right)^n \delta(k, q) a_k \right\}. \quad (2.5) $$

Thus we have the inequality (2.1). \(\blacksquare \)

Corollary 1. Let the function \(f(z) \) defined by (1.1) be in the class \(S_j(n, p, q, \alpha) \). Then

$$ a_k \leq \frac{(p - q - \alpha)\delta(p, q)}{\left(\frac{k - q}{p - q} \right)^n \delta(k, q)} \quad (k \geq j + p; \ p, j \in N; \ q, n \in N_0; \ p > q). \quad (2.6) $$
The result is sharp for the function \(f(z) \) given by
\[
f(z) = z^p - \frac{(p - q - \alpha)\delta(p, q)}{(k - q)^n(k - q - \alpha)\delta(k, q)} z^k
\]
(\(k \geq j + p; \ p, j \in N; \ q, n \in N_0; \ p > q \)).

Remark 1. (i) Putting \(n = 0 \) in Theorem 1, we obtain the result obtained by Chen et al. [3, Theorem 1].

(ii) Putting \(n = 1 \) in Theorem 1, we obtain the result obtained by Chen et al. [3, Theorem 2].

3. Distortion theorem

Theorem 3. If the function \(f(z) \) defined by (1.1) is in the class \(S_j(n, p, q, \alpha) \), then
\[
\left\{ \frac{p!}{(p - m)!} - \frac{(p - q - \alpha)\delta(p, q)(j + p - q)!}{(j + p - q - \alpha)\delta(j + p, q)!} \right\} |z|^m \leq |f^{(m)}(z)| \leq \left\{ \frac{p!}{(p - m)!} + \frac{(p - q - \alpha)\delta(p, q)(j + p - q)!}{(j + p - q - \alpha)\delta(j + p, q)!} \right\} |z|^m
\]
(\(z \in U; \ 0 \leq \alpha < p - q; \ p, j \in N; \ q, n, m \in N_0; \ p > \max\{q, m\} \)). The result is sharp for the function \(f(z) \) given by
\[
f(z) = z^p - \frac{(p - q - \alpha)\delta(p, q)}{(j + p - q - \alpha)\delta(j + p, q)} z^{j + p}
\]
(\(p, j \in N; \ q, n \in N_0; \ p > q \)).

Proof. In view of Theorem 1, we have
\[
\frac{(j + p - q - \alpha)\delta(j + p, q)}{(p - q - \alpha)\delta(p, q)} \sum_{k=j+p}^{\infty} k!a_k \leq \sum_{k=j+p}^{\infty} \frac{(k - q - \alpha)\delta(k, q)}{(p - q - \alpha)\delta(p, q)} a_k \leq 1
\]
which readily yields
\[
\sum_{k=j+p}^{\infty} k!a_k \leq \frac{(p - q - \alpha)\delta(p, q)(j + p - q)!}{(j + p - q - \alpha)\delta(j + p, q)}.
\]
(3.3)

Now, by differentiating both sides of (1.1) \(m \) times, we have
\[
f^{(m)}(z) = \frac{p!}{(p - m)!} z^{p - m} - \sum_{k=j+p}^{\infty} \frac{k!}{(k - m)!} a_k z^{k - m}
\]
(3.4)

(\(k \geq j + p; \ p, j \in N; \ q, m \in N_0; \ p > \max\{q, m\} \)) and Theorem 2 follows from (3.3) and (3.4).
Remark 2. (i) Putting \(n = 0 \) in Theorem 2, we obtain the result obtained by Chen et al. [3, Theorem 7].

(ii) Putting \(n = 1 \) in Theorem 2, we obtain the result obtained by Chen et al. [3, Theorem 8].

4. Radii of close-to-convexity, starlikeness and convexity

Theorem 3. Let the function \(f(z) \) defined by (1.1) be in the class \(S_j(n, p, q, \alpha) \). Then

(i) \(f(z) \) is \(p \)-valently close-to-convex of order \(\varphi \) \((0 \leq \varphi < p) \) in \(|z| < r_1 \), where

\[
 r_1 = \inf_k \left\{ \left(\frac{k-q}{p-q} \right)^n(k-q-\alpha)\delta(k, q) \left(\frac{p-\varphi}{k} \right)^{\frac{1}{p}} \right\}^{\frac{1}{k-p}} \quad (4.1)
\]

\((k \geq j + p; \, p, j \in \mathbb{N}; \, q, n \in \mathbb{N}_0; \, p > q) \).

(ii) \(f(z) \) is \(p \)-valently starlike of order \(\varphi \) \((0 \leq \varphi < p) \) in \(|z| < r_2 \), where

\[
 r_2 = \inf_k \left\{ \left(\frac{k-q}{p-q} \right)^n(k-q-\alpha)\delta(k, q) \left(\frac{p-\varphi}{k-\varphi} \right)^{\frac{1}{p}} \right\}^{\frac{1}{k-p}} \quad (4.2)
\]

\((k \geq j + p; \, p, j \in \mathbb{N}; \, q, n \in \mathbb{N}_0; \, p > q) \).

(iii) \(f(z) \) is \(p \)-valently convex of order \(\varphi \) \((0 \leq \varphi < p) \) in \(|z| < r_3 \), where

\[
 r_3 = \inf_k \left\{ \left(\frac{k-q}{p-q} \right)^n(k-q-\alpha)\delta(k, q) \left(\frac{p-\varphi}{k(k-\varphi)} \right)^{\frac{1}{p}} \right\}^{\frac{1}{k-p}} \quad (4.3)
\]

\((k \geq j + p; \, p, j \in \mathbb{N}; \, q, n \in \mathbb{N}_0; \, p > q) \). Each of these results is sharp for the function \(f(z) \) given by (2.7).

Proof. It is sufficient to show that

\[
 \left| \frac{f'(z)}{z^{p-1}} - p \right| \leq p - \varphi \quad (|z| < r_1; \, 0 \leq \varphi < p; \, p \in \mathbb{N}) \quad (4.4)
\]

\[
 \left| \frac{zf'(z)}{f(z)} - p \right| \leq p - \varphi \quad (|z| < r_2; \, 0 \leq \varphi < p; \, p \in \mathbb{N}) \quad (4.5)
\]

and that

\[
 \left| 1 + \frac{zf''(z)}{f'(z)} - p \right| \leq p - \varphi \quad (|z| < r_3; \, 0 \leq \varphi < p; \, p \in \mathbb{N}) \quad (4.6)
\]

for a function \(f(z) \in S_j(n, p, q, \alpha) \), where \(r_1, r_2 \) and \(r_3 \) are defined by (4.1), (4.2) and (4.3), respectively. The details involved are fairly straightforward and may be omitted. ■
5. Modified Hadamard products

For the functions

\[f_\nu(z) = z^p - \sum_{k=j+p}^{\infty} a_{k,\nu} z^k \quad (a_{k,\nu} \geq 0; \ \nu = 1, 2) \]

we denote by \((f_1 \ast f_2)(z)\) the modified Hadamard product (or convolution) of the functions \(f_1(z)\) and \(f_2(z)\), where

\[(f_1 \ast f_2)(z) = z^p - \sum_{k=j+p}^{\infty} a_{k,1} \cdot a_{k,2} z^k. \]

Theorem 4. Let the functions \(f_\nu(z)\) \((\nu = 1, 2)\) defined by (5.1) be in the class \(S_j(n, p, q, \alpha)\). Then \((f_1 \ast f_2)(z) \in S_j(n, p, q, \gamma)\), where

\[\gamma = (p - q) - \frac{j(p - q - \alpha)^2 \delta(p, q)}{(\frac{j^2 + p - q}{p - q})^n (j + p - q - \alpha)^2 \delta(j + p, q) - (p - q - \alpha)^2 \delta(p, q)}. \]

The result is sharp for the functions \(f_\nu(z)\) \((\nu = 1, 2)\) given by

\[f_\nu(z) = z^p - \frac{(p - q - \alpha)^2 \delta(p, q)}{(\frac{j^2 + p - q}{p - q})^n (j + p - q - \alpha)^2 \delta(j + p, q)} z^{j+p} \]

\((p, j \in N; \ q, n \in N_0; \ p > q; \ \nu = 1, 2)\).

Proof. Employing the technique used earlier by Schild and Silverman [15], we need to find the largest \(\gamma\) such that

\[\sum_{k=j+p}^{\infty} \frac{(k-q-\gamma)^n (p-q-\gamma)^{\delta(k, q)}}{(p-q-\gamma)^{\delta(p, q)}} a_{k,1} \cdot a_{k,2} \leq 1 \]

\((f_\nu(z) \in S_j(n, p, q, \alpha), \ \nu = 1, 2)\). Since \(f_\nu(z) \in S_j(n, p, q, \alpha)\) \((\nu = 1, 2)\), we readily see that

\[\sum_{k=j+p}^{\infty} \frac{(k-q-\gamma)^n (p-q-\gamma)^{\delta(k, q)}}{(p-q-\gamma)^{\delta(p, q)}} a_{k,\nu} \leq 1 \quad (\nu = 1, 2). \]

Therefore, by the Cauchy-Schwarz inequality, we obtain

\[\sum_{k=j+p}^{\infty} \frac{(k-q-\gamma)^n (k-q-\gamma)^{\delta(k, q)}}{(p-q-\gamma)^{\delta(p, q)}} \sqrt{a_{k,1} \cdot a_{k,2}} \leq 1. \]

Thus we only need to show that

\[\frac{(k-q-\gamma)}{(p-q-\gamma)} a_{k,1} \cdot a_{k,2} \leq \frac{(k-q-\alpha)}{(p-q-\alpha)} \sqrt{a_{k,1} \cdot a_{k,2}} \]

\((k \geq j+p; \ p, j \in N)\), or, equivalently, that

\[\sqrt{a_{k,1} \cdot a_{k,2}} \leq \frac{(p-q-\gamma)(k-q-\alpha)}{(p-q-\alpha)(k-q-\gamma)} \]

(5.9)
\((k \geq j + p; \ p, j \in \mathbb{N})\). Hence, in the light of inequality (5.7), it is sufficient to prove that
\[
\frac{(p - q - \alpha)\delta(p, q)}{(\frac{k - q}{p - q})^n(k - q - \alpha)\delta(k, q)} \leq \frac{(p - q - \gamma)(k - q - \alpha)}{(p - q - \alpha)(k - q - \gamma)}
\]
(5.10)

\((k \geq j + p; \ p, j \in \mathbb{N})\). It follows from (5.10) that
\[
\gamma \leq (p - q) - \frac{(k - p)(p - q - \alpha)^2\delta(p, q)}{(\frac{k - q}{p - q})^n(k - q - \alpha)^2\delta(k, q) - (p - q - \alpha)^2\delta(p, q)}
\]
(5.11)

\((k \geq j + p; \ p, j \in \mathbb{N})\).

Now, defining the function \(G(k)\) by
\[
G(k) = (p - q) - \frac{(k - p)(p - q - \alpha)^2\delta(p, q)}{(\frac{k - q}{p - q})^n(k - q - \alpha)^2\delta(k, q) - (p - q - \alpha)^2\delta(p, q)}
\]
(5.12)

\((k \geq j + p; \ p, j \in \mathbb{N})\), we see that \(G(k)\) is an increasing function of \(k\). Therefore, we conclude that
\[
\gamma \leq G(j + p) = (p - q) - \frac{j(p - q - \alpha)^2\delta(p, q)}{(\frac{j + p - q}{p - q})^n(j + p - q - \alpha)^2\delta(j + p, q) - (p - q - \alpha)^2\delta(p, q)}
\]
(5.13)

which evidently completes the proof of Theorem 4. \(\blacksquare\)

Putting \(n = 0\) and \(n = 1\) in Theorem 4, we obtain

Corollary 2. Let the functions \(f_\nu(z)\) \((\nu = 1, 2)\) defined by (5.1) be in the class \(S_j(p, q, \alpha)\). Then \((f_1 \oplus f_2)(z) \in S_j(p, q, \gamma)\), where
\[
\gamma = (p - q) - \frac{j(p - q - \alpha)^2\delta(p, q)}{(j + p - q - \alpha)^2\delta(j + p, q) - (p - q - \alpha)^2\delta(p, q)}.
\]
(5.14)

The result is sharp.

Remark 3. We note that the result obtained by Chen et al. [3, Theorem 5] is not correct. The correct result is given by (5.14).

Corollary 3. Let the functions \(f_\nu(z)(\nu = 1, 2)\) defined by (5.1) be in the class \(C_j(p, q, \alpha)\). Then \((f_1 \oplus f_2)(z) \in C_j(p, q, \gamma)\), where
\[
\gamma = (p - q) - \frac{j(p - q - \alpha)^2\delta(p, q + 1)}{(j + p - q - \alpha)^2\delta(j + p, q + 1) - (p - q - \alpha)^2\delta(p, q + 1)}.
\]
(5.15)

The result is sharp.

Remark 4. We note that the result obtained by Chen et al. [3, Theorem 6] is not correct. The correct result is given by (5.15).

Using arguments similar to those in the proof of Theorem 4, we obtain the following results.
Theorem 5. Let the functions $f_1(z)$, resp. $f_2(z)$ defined by (5.1) be in the class $S_j(n,p,q,\alpha)$, resp. $S_j(n,p,q,\tau)$. Then $(f_1 \circ f_2)(z) \in S_j(n,p,q,\zeta)$, where
\[
\zeta = (p - q) - \frac{j(p - q - \alpha)(p - q - \tau) \delta(p, q)}{(j + p - q - \omega)(j + p - q - \omega) \delta(p, q) - \Omega \delta(p, q)},
\]
where \[
\Omega = (p - q - \alpha)(p - q - \tau).
\]
The result is the best possible for the functions
\[
f_1(z) = z^p - \frac{(p - q - \alpha) \delta(p, q)}{(j + p - q - \omega) \delta(p, q)} z^{j + p} \quad (p, j \in N; q, n \in N_0; p > q)
\]
(5.18)
\[
f_2(z) = z^p - \frac{(p - q - \tau) \delta(p, q)}{(j + p - q - \omega) \delta(p, q)} z^{j + p} \quad (p, j \in N; q, n \in N_0; p > q).
\]
(5.19)

Theorem 6. Let the functions $f_\nu(z)$ ($\nu = 1, 2$) defined by (5.1) be in the class $S_j(n,p,q,\alpha)$. Then the function
\[
h(z) = z^p - \sum_{k=j+p}^{\infty} (a_{k,1}^2 + a_{k,2}^2) z^k
\]
(5.20)
belongs to the class $S_j(n,p,q,\xi)$, where
\[
\xi = (p - q) - \frac{2j(p - q - \alpha)^2 \delta(p, q)}{(j + p - q - \omega)^2 \delta(p, q) - 2(p - q - \omega)^2 \delta(p, q)}.
\]
(5.21)
The result is the sharp for the functions $f_\nu(z)$ ($\nu = 1, 2$) defined by (5.4).

6. Applications of fractional calculus

Various operators of fractional calculus (that is, fractional integral and fractional derivatives) have been studied in the literature rather extensively (cf., e.g., [4], [10], [17] and [18]; see also the various references cited therein). For our present investigation, we recall the following definitions.

Definition 1. The fractional integral of order μ is defined, for a function $f(z)$, by
\[
D_z^{-\mu} f(z) = \frac{1}{\Gamma(\mu)} \int_0^z \frac{f(\zeta)}{(z - \zeta)^{1-\mu}} d\zeta \quad (\mu > 0),
\]
(6.1)
where the function $f(z)$ is analytic in a simply-connected domain of the complex z-plane containing the origin and the multiplicity of $(z - \zeta)^{-1}$ is removed by requiring $\log(z - \zeta)$ to be real when $z - \zeta > 0$.

Definition 2. The fractional derivative of order μ is defined, for a function $f(z)$, by
\[
D_z^{\mu} f(z) = \frac{1}{\Gamma(1-\mu)} \int_0^z \frac{f(\zeta)}{(z - \zeta)^{\mu}} d\zeta \quad (0 \leq \mu < 1),
\]
(6.2)
where the function $f(z)$ is constrained, and the multiplicity of $(z - \zeta)^{-\mu}$ is removed, as in Definition 1.
Definition 3. Under the hypotheses of Definition 2, the fractional derivative of order \(n + \mu \) is defined, for a function \(f(z) \), by

\[
D_z^{n+\mu} f(z) = \frac{d^n}{dz^n} \{ D_z^\mu f(z) \} \quad (0 \leq \mu < 1; \ n \in \mathbb{N}_0).
\]

(6.3)

In this section, we shall investigate the growth and distortion properties of functions in the class \(S_j(n,p,q,\alpha) \), involving the operators \(J_{c,p} \) and \(D_z^\mu \). In order to derive our results, we need the following lemma given by Chen et al. [4].

Lemma 1. [4] Let the function \(f(z) \) be defined by (1.1). Then

\[
D_z^\mu \{(J_{c,p}f)(z)\} = \frac{\Gamma(p+1)}{\Gamma(p+1-\mu)} z^{p-\mu} - \sum_{k=j+p}^{\infty} \frac{(c+p)\Gamma(p+1)}{(c+k-\mu)\Gamma(p+1-\mu)} a_k z^{k-\mu}
\]

(6.4)

(\(\mu \in \mathbb{R}; \ c > -p; \ p, j \in \mathbb{N} \)) and

\[
J_{c,p}(D_z^\mu \{f(z)\}) = \frac{(c+p)\Gamma(p+1)}{(c+p-\mu)\Gamma(p+1-\mu)} z^{p-\mu} - \sum_{k=j+p}^{\infty} \frac{(c+p)\Gamma(k+1)}{(c+k-\mu)\Gamma(k+1-\mu)} a_k z^{k-\mu}
\]

(6.5)

(\(\mu \in \mathbb{R}; \ c > -p; \ p, j \in \mathbb{N} \)), provided that no zeros appear in the denominators in (6.4) and (6.5).

Theorem 7. Let the function \(f(z) \) defined by (1.1) be in the class \(S_j(n,p,q,\alpha) \). Then

\[
|D_z^{-\mu} \{(J_{c,p}f)(z)\}| \geq \left\{ \frac{\Gamma(p+1)}{\Gamma(p+1+\mu)} - \frac{(c+p)\Gamma(j+p+1)(p-q-\alpha)\delta(p,q)}{(c+j+p)\Gamma(j+p+1+\mu)(\frac{p-q}{p-q})^n(j+p-q-\alpha)\delta(j+p,q)} |z|^j \right\} |z|^{p+\mu} \]

(6.6)

(\(z \in U; \ 0 \leq \alpha < p-q; \ \mu > 0; \ c > -p; \ p, j \in \mathbb{N}; \ q, n \in \mathbb{N}_0; \ p > q \)) and

\[
|D_z^{-\mu} \{(J_{c,p}f)(z)\}| \leq \left\{ \frac{\Gamma(p+1)}{\Gamma(p+1+\mu)} + \frac{(c+p)\Gamma(j+p+1)(p-q-\alpha)\delta(p,q)}{(c+j+p)\Gamma(j+p+1+\mu)(\frac{p-q}{p-q})^n(j+p-q-\alpha)\delta(j+p,q)} |z|^j \right\} |z|^{p+\mu}
\]

(6.7)

(\(z \in U; \ 0 \leq \alpha < p-q; \ \mu > 0; \ c > -p; \ p, j \in \mathbb{N}; \ q, n \in \mathbb{N}_0; \ p > q \)). Each of the assertions (6.6) and (6.7) is sharp.

Proof. In view of Theorem 1, we have

\[
\frac{(\frac{p-q}{p-q})^n(j+p-q-\alpha)\delta(j+p,q)}{(p-q-\alpha)\delta(p,q)} \sum_{k=j+p}^{\infty} a_k \leq \sum_{k=j+p}^{\infty} \frac{(\frac{k-q}{p-q})^n(k-q-\alpha)\delta(k,q)}{(p-q-\alpha)\delta(p,q)} a_k \leq 1,
\]

(6.8)
which readily yields

$$\sum_{k=j+p}^{\infty} a_k \leq \frac{(p-q-\alpha)\delta(p,q)}{(j+p-q-\alpha)\delta(j+p,q)}.$$ \hfill (6.9)

Consider the function $F(z)$ defined in U by

$$F(z) = \frac{\Gamma(p+1+\mu)}{\Gamma(p+1)} z^{-\mu} D_{-z}^{-\mu} \{ (J_{c,p} f)(z) \}$$

$$= z^p - \sum_{k=j+p}^{\infty} \frac{(c+p)\Gamma(k+1+\mu)\Gamma(p+1+\mu)}{(c+k)\Gamma(k+1+\mu)\Gamma(p+1)} a_k z^k$$

$$= z^p - \sum_{k=j+p}^{\infty} \Phi(k) a_k z^k \quad (z \in U)$$

where

$$\Phi(k) = \frac{(c+p)\Gamma(k+1)\Gamma(p+1+\mu)}{(c+k)\Gamma(k+1+\mu)\Gamma(p+1)} \quad (k \geq j+p; \; p, j \in \mathbb{N}; \; \mu > 0).$$ \hfill (6.10)

Since $\Phi(k)$ is a decreasing function of k when $\mu > 0$, we get

$$0 < \Phi(k) \leq \Phi(j+p) = \frac{(c+p)\Gamma(j+p+1)\Gamma(p+1+\mu)}{(c+j+p)\Gamma(j+p+1+\mu)\Gamma(p+1)}$$ \hfill (6.11)

$(c > -p; \; p, j \in \mathbb{N}; \; \mu > 0)$. Thus, by using (6.9) and (6.11), we deduce that

$$|F(z)| \geq |z|^p - \Phi(j+p) |z|^{j+p} \sum_{k=j+p}^{\infty} a_k \geq |z|^p -$$

$$\frac{(c+p)\Gamma(j+p+1)\Gamma(p+1+\mu)(p-q-\alpha)\delta(p,q)}{(c+j+p)\Gamma(j+p+1+\mu)\Gamma(p+1)(\frac{j+p-q}{p-q})^n(j+p-q-\alpha)\delta(j+p,q)} |z|^{j+p}$$

$(z \in U)$ and

$$|F(z)| \leq |z|^p + \Phi(j+p) |z|^{j+p} \sum_{k=j+p}^{\infty} a_k \leq |z|^p +$$

$$\frac{(c+p)\Gamma(j+p+1)(p-q-\alpha)\delta(p,q)}{(c+j+p)\Gamma(j+p+1+\mu)\Gamma(p+1)(\frac{j+p-q}{p-q})^n(j+p-q-\alpha)\delta(j+p,q)} |z|^{j+p}$$

$(z \in U)$, which yield the inequalities (6.6) and (6.7) of Theorem 7. The equalities in (6.6) and (6.7) are attained for the function $f(z)$ given by

$$D_{-z}^{-\mu} \{ (J_{c,p} f)(z) \} = \left\{ \begin{array}{l}
\frac{\Gamma(p+1+\mu)}{\Gamma(p+1)} - \\
\frac{(c+p)\Gamma(j+p+1)(p-q-\alpha)\delta(p,q)}{(c+j+p)\Gamma(j+p+1+\mu)\Gamma(p+1)(\frac{j+p-q}{p-q})^n(j+p-q-\alpha)\delta(j+p,q)} z^j
\end{array} \right\} z^{p+\mu}$$ \hfill (6.12)

or, equivalently, by

$$(J_{c,p} f)(z) = z^p - \frac{(c+p)(p-q-\alpha)\delta(p,q)}{(c+j+p)(\frac{j+p-q}{p-q})^n(j+p-q-\alpha)\delta(j+p,q)} z^{j+p}.$$ \hfill (6.13)

Thus we complete the proof of Theorem 7.
Using arguments similar to those in the proof of Theorem 7, we obtain the following result.

Theorem 8. Let the function \(f(z) \) defined by (1.1) be in the class \(S_j(n, p, q, \alpha) \). Then

\[
|D^p_z \{(J_{c,p}f)(z)\}| \geq \left\{ \frac{\Gamma(p + 1)}{\Gamma(p + 1 - \mu)} - \frac{(c + p)\Gamma(j + p + 1)(p - q - \alpha)\delta(p, q)}{(c + j + p)\Gamma(j + p + 1 - \mu)(\frac{zp - q}{p - q})^n(j + p - q - \alpha)\delta(j + p, q)} |z|^j \right\} |z|^{p-\mu}
\]

(1.14)

\[
|D^p_z \{(J_{c,p}f)(z)\}| \leq \left\{ \frac{\Gamma(p + 1)}{\Gamma(p + 1 - \mu)} + \frac{(c + p)\Gamma(j + p + 1)(p - q - \alpha)\delta(p, q)}{(c + j + p)\Gamma(j + p + 1 - \mu)(\frac{zp - q}{p - q})^n(j + p - q - \alpha)\delta(j + p, q)} |z|^j \right\} |z|^{p-\mu}
\]

(1.15)

\((z \in U; \quad 0 \leq \alpha < p - q; \quad 0 \leq \mu < 1; \quad c > -p; \quad p, j \in N; \quad q, n \in N_0; \quad p > q)\) and

Each of the assertions (1.14), and (1.15) is sharp.

Remark 5. Putting \(n = 0 \) and \(n = 1 \) in Theorem 7 and Theorem 8, we obtain the corresponding results for the classes \(S_j(p, q, \alpha) \) and \(C_j(p, q, \alpha) \), respectively.

References

On certain multivalent functions defined by a differential operator

(received 11.10.2008)

Faculty of Science, Mansoura University, Mansoura 35516, Egypt

E-mail: mkaouf127@yahoo.com