HIKERHOMOCISTINEMIA - FAKTOR RIZIKA OKLUZIVNIH VASKULARNIH BOLESTI

HYPERHOMOCYSTEINEMIA - RISK FACTOR FOR DEVELOPMENT OF OCCLUSIVE VASCULAR DISEASES

Mirjana MILOŠEVIĆ-TOŠIĆ i Jela BOROTA

Sažetak - Pored činjenice da okluzivna vaskularna oboljenja zauzimaju prvo mesto lista bolesti od kojih oboleva savremeni čovek, još većim se poznati svi faktori rizika koji utiču na njihov nastanak. Homocisteinemija veća od 15,0 μmol/l priznata je poslednjih godina kao faktor rizika za nastanak okluzivnih vaskularnih bolesti. Podatak da je povećanje koncentracije homocisteina za samo 1,7 μmol/l iznad normalnih vrednosti udruženo sa 3,4 puta većim rizikom za nastanak infarkta miokarda, kao i činjenica da hiperhomocisteinemija ima veliki prognoščni značaj za ove pacijente zbog slope mortaliteta koja je kod tih pacijenata hiperhomocisteinemijom daleko veća, to potvrđuje. U radu je dat prikaz uzroka koji dovode do hiperhomocisteinemije, kako genetskih, tako i nutritivnih, kao i pregled rezultata kliničkih i epidemioloških studija.

Ključne reči: Hiperhomocisteinemija + etiologija + epidemiologija; Faktori rizika; Kardiovaskularne bolesti + etiologija

Okluzivna vaskularna oboljenja su na prvom mjestu liste bolesti od kojih oboleva savremeni čovek. Kardiovaskularna oboljenja (KVB), cerebrovaskularna i oboljenja perifernih arterija predstavljaju, u većini zemalja, velike zdravstvene probleme, ne samo zbog prirode same bolesti, nego i zbog uticaja koje imaju na čoveka i društvenu zajednicu u pogledu lečenja, rehabilitacije, privremene ili trajne nesposobnosti za rad. Nažalost, prema podacima Svetske zdravstvene organizacije, Jugoslavija spada medu zemlje sa najvišim stopama mortaliteta od ishemijske bolesti srca u Evropi, dok je Novi Sad sa 378 umrlih na 100.000 stanovnika, što je daleko više od jugoslovenskog proseka (186/100000) uvršćen u gradove sa izuzetno visokim mortalitetom od ove bolesti [1].

I pored toga postoji više faktora rizika koji dovode do KVB (pušenje, hiperholesterolzija, povećan sistolno-diastolni krvni pritisak, psiho stres, fizička neaktivnost), nije moguće u svim slučajevima u potpunosti objasniti njihov nastanak. Zbog toga se poslednjih godina postavlja pitanje pokušaja otkrivanja rizika homocisteine, kao mogućem faktoru rizika za nastanak vaskularnih okluzivnih oboljenja. Važnost poznavanja mesta, uloge, kao i razumijevanje povećanih koncentracije ove amino-kiseline u patogenezi KVB je veća jer je korekcija homocisteinemije moguća jednostavnom suplementacionom dijetom uz dodatak vitamina B12, B6 i folne kiseline. Time se otvara mogućnost relativno jednostave, efikasne i bezopasne terapije.

Šta je homocistein?

Homocistein je nebelančevinska aminokiselina sa sumporom koja nastaje u toku metabolizma metionina, esencijalne aminokiseline. Naravno se na raskrsnici puta transulfuratoracije kojom se metionin prevodi u cistein, a puta remetilacije kojom se homocistein ponovo pretvara u metionin (shema 1).

Homocistein se u plazmi nalazi u nekoliko oblika. Najveći deo, oko 70%, vezan je za proteine plazme, a ona i za albumin perenje preko cisteina, dok je preostali, slobodni homocistein, zbog velike reaktivnosti svoje tišine grupe podložen autooksidaciji i formiranju disulfidnih veza između dve molekule (homocistein) ili sa drugim molekulama (homocistein-cistein-disulfid). Slobodni, redukovani oblik homocisteina čini samo 1% ukupnog homocisteina plazme (tabela 1).

Konzentracija homocisteina plazme varira sa uzastom. Pre puberteta, kod oba pola iznosi oko 5 μmol/l, da bi kod odraslih iznosila do 15 μmol/l. Vrednosti od 16 do 30 μmol/l smatraju se lako povišenim, od 31 do 100 μmol/l srednje povišenim a više od 100 μmol/l izrazito povišenim [2]. U trudnoći koncentracija homocisteina se smanjuje skoro na pola da bi se vratila u prethodne vrednosti 2-3 dana po porođaj. Iako se pod hiperhomocisteinemijom smatraju vrednosti koncentracije homocisteina veće od 15 μmol/l, koncentracije iznad 9 μmol/l označavaju dodatnom rizikon.
Tokom vremena su se akumulirala brojna saznanja koja su konačno rezultirala u definisanju jasne veze između povišenih koncentracija homocisteina plazme, bez obzira kog stepena, i okluzivnih aterosklerotičnih vaskularnih oboljenja koronarnih, cerebralnih i perifernih krvnih sudova, tako da je hiperhomocisteinemija uvršćena među faktore rizika za nastanak kardiovaskularnih bolesti [4, 5, 6]. Osnovu za formiranje ovakvog stava predstavlja 11 prospektivnih i više od 60 retrospektivnih studija koje su obuhvatile veliki broj pacijenata [7].

Povišena koncentracija homocisteina plazme utvrđena je kod 30% pacijenata sa kardiovaskularnim oboljenjima, kod 42,0% pacijenata sa cerebralnim vaskularnim oboljenjima i kod 28% pacijenata sa perifernim vaskularnim oboljenjima [8]. Dve velike prospektivne studije u okviru kojih je uzorak krvi uzet pre nego što je dijagnostikovano kardiovaskularno oboljenje, ukazale su takođe na značaj povišene koncentracije ove aminokiseline [9, 10]. Rezultati studije rađene na populacije od 15.000 američkih lekara (Physician’s Health Study) ukazali su da je povećanje koncentracije homocisteina za samo 1,7 μmol/l iznad normalnih vrednosti udruženo sa 3,4 puta većim rizikom za nastanak infarkta miokarda [11]. Osim toga, izgleda da se rizik značajno povećava sa povišenom koncentracijom homocisteina, tako da se u jednoj studiji navodi da se sa svakim 0,1 μmol/l rizik za nastanak oboljenja koronarnih arterija povećava za 6% kod muškaraca i za 8% u ženskoj populaciji [12]. Studija Selhuba i saradnika 1995. godine je ukazala na povećan rizik za razvitak stenoze krvnih arterija kod pacijenata sa koncentracijom homocisteina većom od 11,4 μmol/l [13]. Zbirno analizirani rezultati retrospektivnih studija koje su uključile 27 radova pokazali su da je povišena koncentracija homocisteina nezavisn faktor rizika oboljenja koronarnih, cerebralnih i perifernih arterija, nezavisno od populacije na koju su se ispitivanih nadograđeni [14]. Povišene vrednosti homocisteina plazme imaju i veliki prognostički značaj za pacijente. Studija u kojoj su pacijenti sa angiografskim dokumentovanim oboljenjem koronarnih arterija prečeni tokom 5 godina utvrdila je veliku povezanost između nivoa homocisteina plazme i mortaliteta ovih pacijenata. U grupi pacijenata čiji je nivo homocisteina bio ispod 9 μmol/l umro je 3,8% bolesnika dok je taj procenat kod pacijenata sa vrednostima homocisteina iznad 15 μmol/l bio daleko veći i iznosi je 24,7% [15, 16].

Ispitivanja pacijenata sa cerebralnim iznutima utvrdila su da je hiperhomocisteinemija zastupljena kod 20% pacijenata, ali i veći broj lezija karakterističnih za cerebralnu microangiopatiju i multiple infarkte nego kod pacijenata kod kojih su vrednosti homocisteina bile u granicama referentnih [17]. Ispitivanja u okviru Framingtskog studije na 1947 pacijenata starijeg uzrasta, koji su præćeni preko 10 godina utvrdila su povećan rizik za nastanak iznutla kod pacijenata sa hiperhomocisteinemijom, koji se
povećavalo se porastom koncentracije homocisteina [18]. Ispitivanja pacijentkinja sa anemnom inzulta (ispitivanja vršena 30 do 87 dana posle inzulta) uzrasta od 15 do 44 godine utvrdila su povećan rizik za razvitak bolesti već kod koncentracije homocisteina od 7,3 μmol/l [19].

Udržanost hiperhomocisteinemije sa razvitkom rekurentnih venskih tromboza prisutna je kod 25% pacijenata i povećava se dva do tri puta rizik za razvitak istih [20]. Koncentracija homocisteina kod ovih pacijenata utiče i na broj venskih tromboza [21,22]. Okluzije centralne vene retina utruđene su u 20 do 35% slučajeva sa hiperhomocisteinemijom [23,24] koja predstavlja i jedan od faktora rizika za razvitak restenose posle koronarne angiplastike [25,26]. Hiperhomocisteinemija kod bolesnika sa renalnom insuficijencijom može biti razlog povećanog rizika od vaskularnih oboljenja kod ovih pacijenata [27,28,29,30]. Incidenca miokardijalnog infarkta i cebrovascularnog insulta veća je 5 do 10 puta kod pacijenata na dijaliži nego u opštoj populaciji.

Uzroci hiperhomocisteinemije

Iz češće normalnog metabolizma metionina (she ma 1) može se vidi da se homocistein nalazi na raskrsnici pute transfusurrecije i pute remetilacije ove amino-kiseline ponovo u metionin. Baš da ovaj dva puta, usled genetski uslovljenih poremećaja enzima uključenih u biohemijske reakcije, iđe uzroci hiperhomocisteinemije.

Deficit ili smanjena aktivnost cistationin beta sintetaze (CBS), zatim enzima uključenih u proces remetilacije - N5,10-metilentetrahidrofolat reduktaza (MTHFR), N5-metiltetrahidrofolat transferaza (MTHFT) ili metionin sintetaza i beta homocistein metiltransferaza (BHMT), osnovni su, genetski uslovljeni uzroci hiperhomocisteinemije. Osim ovih, nedostatak vitamina B6, B12 i folina kiseline, značajnih kofaktora u navedenim biohemijskim procesima takođe može dovesti do povećanja koncentracije homocisteina plazme. Primena izvesnih farmakoloških supstanci, kao što su metotrexat, 6-azauridin, hidrazid nikotinske kiseline, mogla bi se svrstati u grupu farmakološki uslovljenih hiper homocisteinemije. Značajno mesto imaju i renalno uslovljene hiperhomocisteinemije.

Genetski uzroci hiperhomocisteinemije

Prvi utvrđeni uzrok povišenih koncentracija homocisteina bio je nedostatak ili smanjenje aktivnosti CBS, otkriven kod pacijenata sa klasnom homocisteinurijom - urodenim autozomnom recessivnim oboljenjem [31,32]. CBS katalizuje, uz piridoksalfosfat, kondenzaciju serina i homocisteina u cistation na putu transfusurrecije metionina. Ovo oboljevo se, u odnosu na promene na krvnim sudovima, karakteriše prematurnom aterosklerozom i trombozom nađenom kod velikog broja pacijenata čak i u

uzrastu od 7,5 nedelja [33,34]. Ovakvo rano pojavljivanje aterosklerozičnih promena javlja se samo u homozigotnoj, nego i u heterozigotnoj CBS deficienciji. Heterozigotne oseobe imaju smanjenu aktivnost enzima CBS, nižu od 50% srednje kontrolne vrednosti, sa posledičnom srednjim izraženom hiperhomocisteinemijom. Heterozigotnost za ovaj deficit ima značaj za jer je njena incidenca vrlo velika i kreće se od 1:70 do 1:300 [35,36] u normalnoj populaciji.

Gen za CBS se nalazi na 21 hromozomu u sputnom regionu trake 21q22.3. Najčešća mutacija je uslovljena tranzicijom G199A u eksonu 8, što dovodi do zamene glicina 307 sa serinom (G307S) u enzimskom proteiniu. Osim ove, česte su i mutacije I278T; G111A; G494A; C770T u eksonu 7.

Jedan od oblika hiperhomocisteinemije je uslovljen deficitom enzima MTHFR koji učestvuje u procesu remetilacije homocisteina u metionin, u reakciji redukcije N5,10-metilentetrahidrofolata u N5-metiltetrahidrofolat. Neadekvatna aktivnost MTHFR proističe iz termolabilne forme ovog enzima i nađena je u 17 do 20% slučajeva hiperhomocisteinemije kod pacijenata sa prematurnom vaskularnom bolešću [37,38,39]. Termolabilna varijanta enzima javlja se kod homozigotnih osoba i rezultira iz mutacije 677 C677T koja je nađena u 5% ukupne populacije [12]. Pored ove mutacije i drugi dodatni polimorfizmi na MTHFR lokusu, kao i polimorfizmi i homozigotnost drugih enzima čij je način stvaranja uslovljen hiperhomocisteinemije od velikog su značaj. Tu se pre svega misli na metiltetrahidrof olatomocistein transferazu i na enzime koji učestvuje u metabolismu folata, kao i konverzijama vi timina B12 u folat i adenosil-3-fovat.

Nalivitivni uzroci hiperhomocisteinemije

Za normalan metabolizam homocisteina neophodni su i folna kiseline, vitamini B6 (kofaktor za metionin sintetazu-MTHFT) i B6 (kofaktor za CBS) koji učestvuju kao kofaktori u biohemijskim reakcijama vezanim za ovu amino-kiselinu (schema 1). Utvrđeno je da se stabilna i u granicama referentnih vrednosti koncentracija homocisteina plazme postiže tek ukoliko je dnevni unos folata 400 μg ili veći. Vrlo često to nije slučaj, tako da je, po istraživanjima Selhuba i saradnika, nedovoljan unos folata potrebnog za održavanje homocisteina u granicama referentnih vrednosti utvrđen kod 40% populacije [40]. Šezdeset do sedamena hiper homocisteinemije u ispitivanjoj populaciji bilo je uduženo sa značajnim unesitelnim vrednostima jer jedan od vitamina kofaktora (unos ispod 64% od propisanog a koncentracija ispod 70%) donje granične vrednosti. Ispitivanja pacijenata sa koronarnom bolešću (angio grafski dokumentovanoj stenozi od 70% najmanje jedne epikardijalne koronarne arterije) uduženoj sa hiperhomocisteinemijom, ukazalo je na visoko signifikantnu negativu korelaciju između sva
vitamina B grupe i koncentracije homocisteina [41]. Ispitivanja drugih autora, rađena bilo na zdravoj populaciji ili na pacijentima sa kardiovaskularnim oboljenjima, potvrdila su ovu pojavu [42,43].

Značaj vitamina B grupe, kada je hiperhomocisteinemija u pitanju, proizlazi i iz činjenice da se sa povećanim unosom folne kiseline, piridoksina i betaina može sniziti koncentracija homocisteina plazme [44-49]. Dnevni unos folata od 650 μg snižava koncentraciju homocisteina za oko 42%. Time se etvena mogućnost relativno jednostavne, efikasne i bezopasne terapije kojom se koncentracija homocisteina kao faktora rizika dovodi u granice referentnih vrednosti.

Farmakološki uzroci hiperhomocisteinemija

Primena lekova antagonisti folne kiseline (methotrexat, fentoin, karbamazepini) koji blokiraju aktivnost dehidrofolat reduktaze i proces metilacije, dovodi do povećanja koncentracije homocisteina. Za fentoin, antikonvulsivni lek, utvrđeno je da snižava koncentraciju folata i na taj način dovodi do hiperhomocisteinemije. Na ovaj način se objašnjava i nešto veća incidencija kongenitalnih anomalija beba koje su in utero bile izložene ovom leku. Antagonisti vitamina B6 takođe utiču na koncentraciju homocisteina. Tu spadaju teofilin, azaribin i oralni kontraceptivi - estrogeni. Terapija sa oralnim antihipertenzivama biguanidima takođe dovodi do veće koncentracije homocisteina. Metformin dovodi do povećanja od 7,2% posle 12 nedelja primene, a do 13,8% posle 40 nedelja primene [50]. Davanje NO kao anestetika dovodi do inaktivacije metionin sintetaze i smanjene remetilacije homocisteina [51], a samim tim i do povećanja koncentracije homocisteina.

Renalni uzroci hiperhomocisteinemija


Summary

Introduction
Oclusive vascular diseases take the first places on lists of diseases in general population today. In spite of this, all risk factors which contribute to development of these diseases are not yet known. Recent studies have shown that homocysteine plays a critical role in it and is established as a new risk factor.

What is homocysteine?
Homocysteine is a sulfur containing amino acid formed in the metabolism of methionine. Reference values of homocysteine in circulation and different forms in plasma are described.

Hyperhomocysteinemia - a risk factor
Homocysteine was associated with atherosclerosis and occlusive vascular disease in 1960s for the first time. Since then, many studies - prospective and retrospective, have confirmed the role of hyperhomocysteinemia as a risk factor in 42% of patients with cerebrovascular disease, 28% with peripheral vascular and 30% with coronary artery disease. The Physician's Health Study, a prospective study in which 15.000 male physicians took part, revealed that increase in homocysteine concentration of 1.7 µmol/l above normal values was associated by threefold higher risk for myocardial infarction. The risk for carotid artery stenosis also increases with elevation of homocysteine concentration. Hyperhomocysteinemia is associated with poor prognosis in patients with angiographically established coronary disease. Stroke, venous thromboembolism, and atherosclerosis in chronic renal failure are some of the complications of hyperhomocysteinemia.
Causes of hyperhomocysteinemia

Hyperhomocysteinemia has numerous genetic and nongenetic etiologic factors. Cystathionine synthase deficiency, methylenetetrahydrofolate reductase deficiency and defects in the synthesis of cobalamine cofactors are genetically determined. Nutritional factors such as B12, folate or B6 vitamin deficiency, cofactors in homocysteine metabolism, lead to hyperhomocysteinemia.

Mechanisms of homocysteine action

Atherogenic propensity of homocysteine is related to endothelial dysfunction, blood thrombocyte aggregation, changes in factors of coagulation. Oxidative stress is involved, but the exact mechanism is still unknown.

Conclusion

Hyperhomocysteinemia is established as an important risk factor for occlusive vascular diseases. Reduction in homocysteine concentration can be achieved by supplementation of B group vitamins, cofactors in homocysteine metabolism. Is it going to be effective in reducing cardiovascular risks remains to be seen.

Key words: Hyperhomocysteinemia + etiology + epidemiology, Risk Factors, Cardiovascular Diseases + etiology