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Introduction

Sepsis is defined as a suspected or proven infection in
the systemic inflammatory response syndrome (SIRS) 1.
From the beginning of a systemic infection and over sepsis
peaks of immune-mediators characteristic of SIRS and for
the compensatory anti-inflammatory response syndrome
(CARS) may be seen in sequence or in parallel 2 that en-
lighten the reason why broad investigation of inflammatory
biomarkers during the last decade, including members of
cytokine network versus sepsis outcome or patient survival
did not satisfactorily pass the validation tests.

Inflammation biomarkers

Inflammation biomarkers were not more efficient than
standard clinical parameters in the intensive care patients. Pier-
rakos and Vincent 3 displayed the results of a total of 3,370
studies that assessed 178 different biomarkers in sepsis, among
them apoptotic related biomarkers and sepsis outcome. A rela-
tion between inflammation control and programmed cell death
(PCD) – apoptosis type I both of immunocytes and parenchy-
mal cells in sepsis development and regulation has been recog-
nized. There are numerous examples of the dualism in activity
of a stimulus in cell fate. Several proinflammatory cytokines
(TNF, IL-6, IL-18) may trigger apoptosis through several
caspases activation rather than inflammation stimulation. Con-
versely, caspases, as classical mediators of cell death may trig-
ger apoptosis pathway or upregulate some (proinflammatory)
cytokines that in turn induce cell survival and proliferation.
Oligomerization of cell surface death receptor Fas, a member of
TNF receptor family, by their cognate ligands results in forma-
tion of death-inducing signaling complex (DISC), additionally

including adapter protein Fas associated death domain receptor
(FADD) and caspase-8. The death domain (DD) in FADD in-
teracts with DD in the cytoplasmic tail of the Fas, while the
death effector domain (DED) in FADD binds to a DED within
the prodomain of caspase-8. This promotes the autocatalytic
activation of caspase-8, which then cleaves downstream effec-
tor caspases that eventually will induce TUNEL+ DNA frag-
mentation in apoptosis 4. Caspases may signalize the pathway
of antigen activation of immunocytes, when another adapter
molecule named FLICE inhibitory protein (FLIP), which is the
Fas inhibitory protein, be incorporated into the DISC. In that
case caspase-8 may promote lymphocyte activation and prolif-
eration 5, 6. Cells have given alternative splicing of the flip gene
with the possibility for the FLIPs short protein and the FLIPl
long protein production. The FLIPl contains two DED domains
and caspase-8 like p20 and p10 domains without enzymatic ac-
tivity, so that the accumulation of FLIPl in DISC prevents re-
cruitment of caspase-8 7. Newton and Strasser 4 proposed that
FLIPl may act as a scaffold protein; and gathering of high
amount of FLIPl and FLIPs to Fas may inhibit apoptosis, low
level of FLIPl facilitates apoptosis, enabling FADD to assist in
caspase-8 activation. Caspase-1 may activate caspase-3 and
triggers cascade activation of enzymes that will lead to DNA
fragmentation. Caspase-1 may purposely induce synthesis of
IL-1 beta and IL-18 cytokines in activated monocytes in sepsis.
IL-18 is a factor of potent IFN gamma induction in Th1 lym-
phocytes, regarding it stimulates them together with IL-12 to
clonal expansion, promoting inflammation. TNF not only in-
duces apoptosis by activating caspase-8 and -10, but can also
inhibit apoptosis signaling through NF-kappa B stimulation,
which induces the expression of IAP, an inhibitor of caspases-
3, -7 and -9. In patients in septic shock serum caspase-1 is sig-
nificantly increased 8 that may be the biomarker of dramatically
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amplified apoptosis, regarding the finding that an early apop-
totic marker anexin V binding was also importantly higher than
in control animals 9. It would seem that widespread TUNEL+
apoptosis of immunocytes may be deleterious during sepsis.

Mitochondrial function

Adrie et al. 10 have shown failing mitochondrial function
in circulating monocytes from 18 patients with severe sepsis.
Opening of permeability transition pores in the mitochondrial
inner membrane is followed by the change in mitochondrial
transmembranes potential. The subsequent release of mito-
chondrial intermembrane proteins (cytochrome c, apoptosis-
inducing factor -AIF) into the cytosol may activate caspases 11.
However, mitochondrial membrane alterations may also lead
to ATP synthesis arrest with subsequent cell necrosis 12. T
lymphocyte mitochondrial alterations have also been described
in septic mice 13. Fas dead receptors may transmit proapoptotic
signal into the cell, after oligomerization with soluble Fas lig-
ands (sFasL), while soluble Fas (sFas) inhibits it with sFasL
binding outside the cell. Doughty et al. 14 have shown that se-
vere pediatric sepsis with poor survival is coincided with the
rise of sFas blood levels in correlation with IL-6 and IL-10.
sFasL does not increase. Pursuant to these results, the link of
apoptosis prevention with sFas and systemic inflammation in
severe sepsis with multiple organ failure syndrome (MOFS)
has been proposed. The same has been noted in adult patients,
as well 15. Nevertheless, other investigators have shown that
the increased sFas, which correlates with nitric oxide and cir-
culating nitrates, does not suggest reduced apoptosis of blood
mononuclear cells (MNC). On the contrary, a completely dif-
ferent expression of Fas and FasL on blood MNC has been
noted suggesting high apoptosis rate of MNC in severe sepsis.
Thus, correlations of raised blood IL-6 and TNF alpha with
sFas level in these patients may be a reliable prognostic
marker of poorer survival, but it does not imply infrequent
lymphocyte and monocyte apoptosis. Instead, apoptosis is in-
creased in sepsis 16.

Immune response

Non-survivors have shown increased number of periph-
eral monocytes with depolarized mitochondria prone to apop-
tosis. During the first days of sepsis anti-apoptotic Bcl-2
monocyte expression decreases ex vivo 10. Apoptosis of mono-
cytes manages complex immunomodulation in sepsis, and this
may compromise host defense against microbes. Namely,
stimulation of Th1 or Th2 rules out each other’s response.
Lymphocytes may exchange their roles and acquire or renew
characteristics of either Th1 or Th2 cells, after antigen
(re)stimulation and depending on the cytokine and co-
stimulatory molecules from monocytes and dendritic cells, as
professional antigen-presenting cells (APC), or under the in-
fluence of surrounding accessible cytokines. Mature dendritic
cell may provide signals positive for the production of Th1 and
other signals negative for the production of Th2 cells, follow-
ing TLR activation on dendritic cell 17, 18. Signals from APC
influence whether the tolarogen or an active immune response

would occur in lymphocytes to a particular antigen. Dendritic
cell uptake of apoptotic cells in the absence of maturation sig-
nals induces tolerance 19. Namely, type of lymphocytes death
triggered by the pathogen is one of the leading mechanisms to
define the immune response for inflammation or immune sup-
pression in the development of sepsis. Macrophages and den-
dritic cells that phagocyte necrotic cells start inflammation by
stimulation of mainly Th1 cell response, while macrophages
and dendritic cells after phagocyting apoptotic cells stimulate
preferentially the Th2 response. One has to bear in mind that
necrotic debris may stimulate TLR and innate immunity, while
apoptotic cells avoid TLR signaling and do not initiate innate
immune response, which is in turn essential for adaptive im-
mune response to microbes, consequently both would be si-
lenced. Under certain conditions, proinflammatory cytokines
may induce apoptosis of immunocytes, as it has been already
explained for IL-18 20. Apoptosis may not potentiate synergis-
tic stimulation between innate and adaptive pro-inflammatory
response. This will support Th2 cell prevalence. Th2 anti-
inflammatory cytokines may suppress and extinguish further
function of antigen-presenting cells or induce their apoptosis.
All these events lead to the so-called 'inflammatory immune
suppression', and finally to anergy that happens in (lethal) sep-
sis 20. The net result is a severely compromised innate and
adaptive immune system with poorly functional “exhausted”
CD8 and anergic CD4 T cells. Post mortem immuno-
histologic findings in septic patients reveal vast apoptosis of
immune system cells, particularly B and CD4+ lymphocytes,
as well as follicular dendritic cells 21, 22. The finding of “waste
spleen” is conspicuous, while natural killer (NK) cells and
CD8+ lymphocytes are spared. This also implies systemic
immune suppression when the immune cells die, instead of
expected clonal expansion. Lymphocytopenia is evidenced.
Also, massive apoptosis of intestinal epithelial cells and vas-
cular endothelial cells is noted. It is present also in the kidneys,
heart and liver. Apoptosis of non-immune cells also may in-
duce hyporeactivity of monocytes or other APC following
uptake of apoptotic bodies. Prevention of lymphocyte apopto-
sis in an experimental model of sepsis improves animal sur-
vival 22–25. Intervention to suppress apoptosis with rIL-7 treat-
ment may have influence on better severe sepsis outcome;
however it is still an experimental effort 26.

Sepsis in patients with kidney disease

The site of prime infection, such as urosepsis seems to
be also important for specific immune system modulations
including apoptosis rate of monocytes, as APC, and a bio-
marker behavior in the progression to severe sepsis. In the
field of acute pyelonephritis the expression of HLA-DR on
monocytes, the rate of apoptosis of monocytes and the rate of
apoptosis of NK cells decreased first 24 h of severe urosep-
sis/septic chock calculating in 42 patients, 9.3% with chronic
renal failure (CRF), quite different from abdominal sepsis
with decreasing CD8 count and apoptosis score 27. In patients
with kidney disease at least two additional factors potentially
influence the sepsis course and outcome. These are the na-
ture of underlying kidney dieses and the chronic renal fail-
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ure. All these factors should be calculated to decide what a
biomarker does say to us about the sepsis state and sepsis se-
verity. In patients with CRF sepsis may be prolonged with
predominant immunosupression reaction from the beginning
of the sepsis. CRF is a state of chronic inflammation with
remarkably deregulated monocyte function. The co-
stimulation impairment for T and B lymphocytes acts to-
gether with monocyte aberrant cytokine secretion. Mono-
cytes release more proinflammatory cytokines, and blood
levels of TNF alpha, IL-1 beta, IL-6, IL-12 and IL-18 are
progressively increased 28–30. However, some lymphokines
secreted by activated T cells, e.g. IFN gamma, are missing
hypothetically due to poor lymphocyte function. Quite the
opposite, when exposed to signals from normal APC (mono-
cyte), isolated T and B cells from the blood of CRF or ure-
mic patients are directed to function normally 31. Blood cells
of these patients stimulated by Staphylococcus epidermidis
in culture realize significantly lower IFN-gamma synthesis
than cells of healthy subjects 32. It has been concluded that
the link between innate and adaptive immunity is impaired in
patients with CRF, resembling endotoxin tolerance.

Increased rate of monocyte and Th1 lymphocyte apop-
tosis in CRF is another important disorder affecting the im-
mune response dysfunction in sepsis in these patients.
Plasma of CRF patients has increased the pro-apoptotic po-
tential to U937 monocytes in culture, correlating with TNF
plasma levels and independently of IL-1, IL-2 or IL-10 33, 34.
In CRF patients, inflammatory cytokine IL-18 may also par-
ticipate in increased apoptosis rate of Th1, monocytes or pa-
renchymal cells, via Fas system 35.

Sepsis in patients with Balkan endemic
nepharopathy and associated upper-urothelial
carcinoma

Especially intriguing is the occurrence of post-operation
sepsis in the patients with Balkan endemic nephropathy (BEN)
and associated upper urothelial carcinoma (UEM), which is
highly prevalent malignancy in endemic areas 36, 37. BEN is
slowly progressive tubulointerstitial disease, now regarded as
toxic (possibly aristolochic acid) nephropathy. Low pro-
inflammatory immune response may explain almost acellular
foci of interstitial fibrosis that surround progressive tubule at-
rophy. Savin et al. 38 discovered considerable tubule cell
apoptosis in BEN that is greatly important in disease develop-

ment and one may describe pathogenesis of BEN as a human
apoptotic model of kidney injury 39. In addition, half of BEN
patients may develop CRF, which additionally manages
apoptosis increase in sepsis. Petkovic 40 originally displayed
endemic appearance of upper-UEM in Serbia, and noticed an
extraordinary favorable outcome of these patients after neph-
roureterectomy, for even 20 years, and a 5-year survival rate
was 72% for the conservative kidney operation in the Urology
Clinic, Clinical Centre of Serbia, Belgrade. The same survival
trend has been shown by a more detailed epidemiological in-
vestigation of the endemic village Petka in Serbia by Radova-
novi  et al. 36. Later on, Petroni  et al. 37 suggested slow
growth of these tumors in BEN patients on hemodialysis; a
new or recurring urothelial carcinoma has been evidenced in
20% of patients for 5–12 years, and that indirectly imply a
long survival of patients from BEN regions.

Pyelonephritis is common in patients with BEN and
urothelial carcinoma, practically the same as in the patients
with upper-UEM outside endemic regions. It is rational ex-
pecting greater incidence of postsurgical (uro)sepsis in BEN
patients with upper-UEM and worse outcome of BEN pa-
tients in sepsis in the setting of chronic exposure to environ-
mental toxin attacks that induce apoptotic injury of the kid-
ney, as well. Surprisingly, by our pilot study sepsis following
surgical removal of the kidney similarly occurred in patients
with BEN from affected households, as in upper-UEM pa-
tients without BEN outside endemic regions (27.3% and
30%, respectively), regardless more advanced azotemia de-
tected in BEN patients in sepsis (p = 0.008). Furthermore,
analysis of the patient survival vs. sepsis after total
nephrouterectomy due to upper-UEM (n = 37) denied an in-
fluence of added deleterious factors – BEN or chronic renal
insufficiency in poor outcome, excepting unfavorable long-
lasting effect on chronic hemodialysis, and great apoptosis in
tumor before sepsis in BEN patients 41. A possible explana-
tion is that TUNEL+ apoptosis (PCD type I) is not the only
apoptotic form in BEN, as concomitant autophagy (PCD
type II) may play a protective role against toxic (kidney) in-
jury in these patients, at least on glomerular cells.

It would be of interest to analyze the influence of those
“chronic” apoptosis attacks of renal tubular cells, such as in
BEN, and sepsis outcome initiated from different localization
of primary infection, outside the urinary tract that may open
a new approach to patients with particular tumor origin and
sepsis 42.
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