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Summary
Fragile X syndrome (FXS) is the leading known
monogenetic cause of autism spectrum disorder
(ASD) and inherited form of intellectual disability
(ID). As the major and growing public health
problem worldwide, ASD is purely behaviorally
defined whereas FXS is a medical/genetic disorder
characterized by ID and ASD in males and
learning and behavioral/emotional problems (social
anxiety, attention network) in both genders. FXS
is caused by a mutation in the Fragile X Mental
Retardation 1 gene (FMR1) that leads to the epi-
genetic silencing of the gene and absence of its en-
coded protein, the fragile X mental retardation
protein (FMRP). FMRP selectively targets ap-
proximately 4% of the transcribed mRNAs in
the brain. Namely, to date, 842 such target
mRNAs in mammalian brains have been identified
and many of them converge on the same pathway
as nonsyndromic ASD. Thus, FXS is the most
studied ‘disorder of synapse’ model for syndromic
ASD in the field of neuroscience. There are
currently no effective treatments for either FXS
or ASD. 

In this review article, we discuss recent progress
and future directions in translating breakthrough
preclinical findings that reveal potential therapeutic
targets into clinical trials for humans with FXS of
potential relevance for ASD. To date, a total of
20 double-blinded, randomized, placebo-controlled
clinical trials in FXS have been identified through
the FDA ClinicalTrial.gov website. The majority
of these trials were completed between 2008−2015.
These mostly phase II trials in adults and adolescents
tested 13 compounds and have primarily targeted
excitatory/inhibitory imbalance theory of FXS
and ASD, namely a reversal of social/behavioral
symptoms that are part of the core FXS phenotype
but not the core synaptic dysfunction in FXS.
Despite much progress in the field propelled by
the preclinical advances, these clinical studies illu-
strate the gaps and challenges of translating
therapies from animal models to humans with
FXS and ASD (‘building a bridge and walking on
it’). Specifically, recent challenges in the clinical
trials demonstrate the need to study for longer
period of time (6−12 months), prepubertal age
group(s), develop more objective clinical outcome
measures (i.e., clinician-based, relevant learning
paradigms, and desired biomarkers), and longer
placebo run-ins to minimize the placebo impact
for both FXS and ASD. Ultimately, a truly satis-
factory FXS, and ASD, therapy may likely involve
a combination of drugs (and learning paradigms),
each targeting a different aspect of the core
synaptic, cognitive and behavioral impairments
in FXS. 

Key words: Fragile X syndrome, autism, mo-
nogenetic



INTRODUCTION

Fragile X Mental Retardation 1: One
gene, three different phenotypes. Extraor-
dinary progress has been made in illumi-
nating the molecular pathogenesis and
defining neurobehavioral features of fragile
X syndrome (FXS) since the discovery of
the Fragile X Mental Retardation 1
(FMR1) gene in 1991 (reviewed in Budi-
mirovic & Subramanian, 2015) [1]. Lo-
cated on the Xq27.3 chromosome (Fig.
1), the FMR1 gene normally has 30−45
CCG nucleotide triplets along the first
exon of the (5' UTR) regulatory region. 

Two types of genetic mutations that
expand the number of CCG 'triplet'
repeats cause clinical phenotypes under
the umbrella of FX-associated disorders

(FXD): full-mutation (FM, >200 triplets)
when FXS occurs, the focus of this review,
and not permutation (PM, 55−200 triplets).
In between 45−54 CGG repeats is a ‘gray
or intermediate’ zone, which has not been
studied enough. In a few cases, deletions
[2] of FMR1 have been reported to be
the cause of FXS. The prevalence rate of
the FM is up to 1 in 2500 males [3, 4],
whereas the PM is around 10 times more
common (1 in 130 females and 1 in 250
males; reviewed in Tassone et al., 2012)
[5]. The PM is not associated with FXS
but with a “carrier” status (1 million in
the USA and 20 million worldwide). De-
pending on the number of AGG repeats
(‘speed bumps’ between the CGGs, in
red Figure 1), the FMR1 PM allele can
be unstable and expands into the FM
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Figure 1 One gene, many markers. An expansion of the number of CGG nucleotide repeats in
the FMR1 gene gives the appearance that the X chromosome can easily break (red oval). This
region is responsible for FXS and other FXDs due to effects of the CGG repeats, AGG
interruptions, and (hyper)methylation. Courtesy of Gary Latham, PhD, Asuragen Inc.



(up to 50% chance in a mother PM
carrier passing to her male offspring).
For example, the presence of 2 AGG re-
peats increases such a risk of PM expansion
into FM by as much as 3−4 times in
carriers with 60−80 CGG repeats. [6].
The clinical presentation of the carrier
PM can range from minimal-moderate
clinical phenotypes (e.g., mild cognitive/be-
havioral) to severe such as FX-POI (fragile
X-associated ovarian insufficiency) [7]
and FX-TAS (fragile X-associated tremor
syndrome) in some adults [8]. 

The FM and PM mutations give rise
to two distinct clinical presentations and
at different ages caused by two different
pathogenic mechanisms (epigenetic silen-
cing and mRNA-related sequestration to-
xicity, respectively). Specifically, FXS is a
neurodevelopmental disorder caused by
the loss of the Fragile X Mental Retarda-
tion Protein (FMRP) [9] that manifests
at very early ages in boys whereas the
PM generates an increased risk for ne-
urodegenerative conditions that clinically
manifests in the 40−50s. To expand on
the aforementioned, on one hand, the
FM leads to epigenetic (hypermethylation)
silencing (“shut down”) of the FMR1
gene (Fig. 1), which results in the loss of
its encoded protein (no FMRP) and clini-
cally manifest as the most common cause
of inherited form of intellectual disability
(ID), and the leading known monogenetic
cause of autism spectrum disorder (ASD)
[10]. On the other hand, individuals with
the PM present with a spectrum of un-
folding genetic and clinical phenotypes
[11], the best defined are early menopause
due to ovarian failure (FX-POI) [7] (Sher-
man et al., 2014), and intention tremor,
cerebellar ataxia, neuropathy and cognitive
decline (FX-TAS) [8]. Clinically, FX-TAS
occurs at ages 50−60 years in approxi-

mately 40−50% of male carriers and
16% of female carriers with an average
age of onset at 62 years [8, 12]. Around
20% of females may develop FXPOI
that manifest with early signs of menopause
in the 30s. The American College of Me-
dical Genetics and Genomics has recom-
mended diagnostic testing for fragile X
in symptomatic persons, women with
ovarian dysfunction, and persons with
tremor/ataxia syndrome. Importantly, un-
like FXS that is caused by the loss of
FMRP, FX-TAS is caused by FMR1
mRNA-related sequestration that accu-
mulates and becomes toxic to the cell [8,
13−14], which involves Sam68, DROSHA
and DGCR8 [15,16]. 

FMR1 molecular diagnosis and new
PCR technologies. Since the discovery of
the FMR1 gene in 1991, great advances
have been made in the field of molecular
diagnosis for FXS as well. Replacing cy-
togenetic analysis in the early 1990, mo-
lecular diagnostic testing of the FMR1
mutation has historically been conducted
by both Southern blot analysis and poly-
merase chain reaction (PCR) using genomic
DNA. Advances in molecular methods
have enabled the assessment of the degree
of CGG expansion and promoter met-
hylation as an aid in the diagnosis of
FXS (reviewed in Tassone et al., 2015)
[17]. Products under the AmplideX® and
Xpansion Interpreter® FMR1 methylation
status (mPCR) brands by Asuragen offer
a very successful suite (Fig. 2). The mPCR
advanced method allows the quantification
of the spectrum of methylation characte-
ristics in patients with FMR1 expansions
[18]. This is important as mosaicism is
well documented in FXS and this hetero-
geneity can confound molecular [18] and
clinical interpretations [14]. Furthermore,
by quantifying FMRP (qFMRP) − the
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functional endpoint of FMR1 gene ex-
pression − a more comprehensive under-
standing of FXS biology may help improve
the diagnosis, prognosis, and treatment
options for affected individuals. To de-
monstrate the potential of the qFMRP
assay, Asuragen recently collaborated
with the LaFauci and colleagues [19],
who methodologically advanced an effort
in the field of using dried blood spots
(DBS) aimed to reliably quantify FMRP
[19]. It is noteworthy that after they
screened 2000 individuals of all ages,
they found that qFMRP test can identify
PM females with low FMRP (methylated).
This example demonstrates that to un-

derstand the complexity of the FXS and
FMR1 gene, values of not only the DNA
(genetic) and the methylation status (epi-
genetic) are needed but also the encoded
protein (FMRP). Intriguingly, the assays
that recently analyzed fresh DBS in 2,000
anonymous newborns revealed as much
as 7-fold higher levels of FMRP compared
to fresh DBS in normal adults affected
by FXS [20]. Reason(s) and significance
of this apparent noteworthy differences
are unknown. The assay is also an effective
screening tool for aged DBS stored for
up to four years in males and potentially
females affected by FXS. 
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Figure 2. Workflow for amplification and detection of FMR1 amplicons using AmplideX®
three-primer FMR1 PCR. Input gDNA is amplified by two gene-specific primers (forward
[Fwd] and reverse [Rev]) and a CGG repeat primer in a single tube. After amplification, the
products, which include the full-length amplicon that completely encompasses the triplet repeat
region and a multiplicity of CGG repeat primed products, are resolved by CE. The resulting
electropherogram supports quantification of the number of CGG repeats, determination of the
allele zygosity, and the sequence context of any AGG spacer elements. 
Courtesy of Gary Latham, Ph.D., Asuragen Inc



It is noteworthy that while the fragile
X testing is currently not included in ne-
wborn screening (NBS) panels in the
United States, the aforementioned progress
in the FMR1 molecular diagnosis and
new PCR technologies are expected to
facilitate such effort [21]. 

NEUROBEHAVIORAL 
FEATURES IN FXS

Clinical Presentation: It is not surprising
that FXS is a global neuropsychiatric di-
sorder given abnormalities in multiple
neurotransmitter receptors and signaling
pathways. Hence, neurobehavioral features
of FXS consist of a wide range of variable
cognitive and language impairments as
well as associated neurobehavioral pro-
blems (i.e., attention difficulties, hype-
ractivity, anxiety, and autistic features)
[14, 10]. Together, they constitute the
major medical and educational concerns
for patients with FXS. Because FXS is an
X-linked condition, males are typically
more frequently and severely affected,
whereas females show substantial phe-
notypic variability because of variable X
inactivation (i.e., some cells are able to
produce FMRP). For example, ASD is
almost exclusively a clinical problem in
males who are typically more affected,
and only 25% of females with FXS meet
the criteria for ID; most have learning di-
sabilities (i.e., math) and milder behavioral
problems. Impaired executive function is
particularly noticeable in females due to
their better overall cognitive function.
Expressive language is typically more af-
fected than receptive language in individuals
with uncomplicated FXS (i.e., no ASD).
At present, the average age of FXS genetic
diagnosis is at 35 to 37 months [22]. At
birth, there are no apparent physical fea-

tures in FXS, in contrast to some other
genetic disorders (i.e., Down syndrome).
Therefore, FXS is often “detected” after
atypical behaviors and delays in skill
acquisition begin to emerge [23, 24]. As
noted above, recent advances in under-
standing of the mutations of the FMR1
gene have enabled not only a model for
neurodegeneration, but also more widely
recognized the model for ASD [10, 25].

FXS as the model of ASD, from clinical
management to biology. Characterized
by early-onset impairments in social-com-
munication and other impairments, ASD
is a neurodevelopmental disorder that
has become an enormous and growing
public health [26] and economic [27]
problem. Whereas FXS is a genetic dia-
gnosis, ASD and autism are both broad
terms for a set of complex disorders of
brain development that are behaviorally-
defined according to the Diagnostic and
Statistical Manual of Mental Disorders
(DSM). The recent fifth edition of DSM
(DSM-5) [28] has generated a single “um-
brella” diagnosis of ASD and also conso-
lidated diagnostic criteria. Since ASD is a
very heterogeneous group of disorders of
mostly unknown etiologies (idiopathic),
treatments targeting the core deficits in
ASD are also lacking. Despite an early
controversy, it is now clear that ASD in
FXS accounts for up to 6% of all cases
of ASD [14]. Moreover, two out of three
boys with FXS meet criteria for a diagnosis
of the syndromic ASD (refers to ASD in
FXS) [10] so that FXS has been extensively
studied as the best-understood monogenetic
cause of it. Together, as FXS is very ho-
mogeneous (expansion type of mutation
in 99%), it has become the most mea-
ningful genetic model of the syndromic
ASD that offers hope to translate neuro-
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biological breakthroughs into rational
ASD therapy [14]. 

Clinically, there are significant over-
laps between ASD and FXS. Clinical
complexity in FXS manifests with a
wide array of impairments in skills in
individuals with FXS (i.e., ID-features
of syndromic ASD, such as deficits in
social interaction and communication
(e.g., eye contact, peer relationships,
social withdrawal-SW) [10], and re-
stricted and repetitive behaviors [10,14].
There is also evidence of existence of ne-
urobehavioral subgroups in FXS based
on whether individuals meet criteria for
ASD [29, 30], including subgroups based
on severity of SW set of behaviors as a
unifying factor of ASD and anxiety [31].
Indeed, the FMR1 FM (FXS) confers an
especially high risk for anxiety disorders
compared to general ID [32, 33] (Fig. 3).

Budimirovic and colleagues (2006)
has shown that deficits in adaptive socia-
lization is the only significant predictor
of ASD in FXS and that delay in the
adaptive socialization skills and degrees
of SW the two primary determinants of
the severity of ASD diagnosis in boys

with FXS [31, 33]. The most severe ASD
phenotype is linked to both impaired
adaptive socialization and prominent SW
[31, 33]. 

Biological overlaps between ASD and
FXS. There is not only a clinical overlap
between FXS and ASD [10], but also a
substantial overlap in the molecular pat-
hology of the two disorders [34]. As de-
tailed in a Fragile X Clinical and Research
Consortium expert’s consensus document,
it may be helpful to think of ASD as a
“cloud” which represents a final common
pathway of abnormal patterns of brain
wiring [35]. The cloud contains a common
set of behavioral characteristics that are
core DSM-5 features of ASD: social-com-
munication and interaction deficits and
restricted and repetitive patterns of be-
haviors. Individuals with ASD in FXS re-
present a spot in the cloud where an in-
dividual meets criteria for ASD with
higher social anxiety, hyperarousal, and
other FXS-related differences [35]. In
terms of base for the molecular pathology
of the two disorders, FMRP interacts
with about 4% of total mammalian brain
mRNAs [36] and regulates protein synt-
hesis of many important proteins involved
in dendritic brain synapses and signaling
pathways that are associated with ASD
in FXS [37−39], and with idiopathic ASD
[40, 41]. To date, FMRP is an RNA bin-
ding protein with 842 target mRNAs in
mammalian brain. Demonstrating that
synaptic, transcriptional and chromatin
genes are disrupted in idiopathic ASD,
De Rubeis and colleagues [42] conducted
a large exome sequencing study and
found significant enrichment for genes
encoding messenger RNAs targeted by
two neuronal RNA-binding proteins:
FMRP (34 targets [37], of which 11 are
corroborated by an independent data set
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Figure 3. Fragile X handshake



[40]), and RBFOX(RBFOX1/2/3)
(P50.0024, 20 targets, of which 12 overlap
with FMRP [42]). The authors conclude
that de novo mutations in ASD, ID and
schizophrenia (Sch) cluster to synaptic
genes such as FMR1. Since the deficits in
FMRP seem to be the critical unifying
factor linked at a molecular and synaptic
level to dysfunction in brain pathways
that lead to behavioral symptoms of ASD,
therefore, current research is focused on
identifying shared pathways and common
therapeutic targets among patients with
causal genetic defects of ASD in FXS
[43]. 

NEUROBIOLOGICAL FEATURES
AND TARGETED 

TREATMENTS IN FRAGILE X
SYNDROME

Neurobiological preclinical findings.
Silencing of the FMR1 gene leads to
FMRP loss ("brake”), up-regulated me-
tabotropic glutamate receptor 5 (mGluR5)
and down-regulated GABA signaling [38,
44], which results in “runaway” translation
of important synaptic proteins, and sub-
sequently disrupting many neuronal si-
gnaling pathways. Other molecular path-
ways that are altered by FMRP loss
include up-regulated mTOR signaling
[44, 45] and down-regulated is dopami-
nergic systems [46]. Based on these ne-
urobiological findings, research in the
field of FXS throughout the past decade
has displayed an enormous growth in
terms of the study of new-targeted phar-
macologic treatments [47]. The effort has
focused on identifying agents that restore
the aforementioned excitatory/inhibitory
balance in the FXS brain based on the
‘mGluR5 theory,’ in which disruptions
in mGluR5 signaling are thought to un-

derlie a dendritic pathology [44] and
clinical presentations of FXS [14]. Namely,
the ‘gold-standard’ rescue of the dendritic
pathology in FXS has been demonstrated
in the Fmr1-knockout mouse that largely
centered on the use of mGluR5 antagonists
[48, 49] and GABA-B agonists [50]. These
studies of mGluR5 antagonists further
support the mGluR5 theory [44]. 

FMRP regulates local protein synthesis
at the synapse including modulation of
synaptic plasticity [51]. The values of
FMRP correlate inversely with CGG
repeat number in the PM (decrease with
increased number of CGG repeats starting
roughly after ~120 triplets [52] due to a
deficit in translational efficiency [53].
FMRP is widely expressed throughout
the embryonic brain development and its
expression levels increase during neuronal
differentiation [54]. Developmentally,
FMRP is detected in microglia and oligo-
dendrocytes while expression persists in
mature atrocities and neurons. Thus, this
is an ubiquitously expressed RNA-binding
protein that is mostly expressed in the
brain. FMRP is important for mRNA
transport, mRNA stabilization and tran-
slation regulation of mRNA into protein
at the synapse [55]. Within neurons,
FMRP is expressed in the soma, dendrites,
and spines [56]. Three RNA binding re-
gions, two hnRNP K-homology KH do-
mains and an RGG (arginine-glycine-gly-
cine) box, allow FMRP to bind to the
broad range of mRNAs in a selective
manner [57] and transport mRNAs bound
in the nucleus to the cytoplasm [58, 59].
As FMRP suppresses translation of its
mRNA targets [60, 61], its loss leads to
an “excess” of dendritic protein synthesis
and increased density of dendritic spines
[34, 62−65]. Unfolding evidence also
show that the absence of FMRP in the
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cortical neurogenesis [54] results in alte-
rations of cortical neuronal differentiation
and migration mediated at least in part
via brain derived neurotrophic factor
(BDNF) signaling. Importantly, alterations
of BDNF/TrkB signaling caused by the
absence of FMRP result in distinctive
cellular and behavioral responses to fluo-
xetine in adult FXS mice [66], which re-
quires further studies for identification
of possible new treatment strategies. Furt-
hermore, in the absence of FMRP, an in-
crease in Rac1-GTPase-dependent NA-
DPH-oxidase signaling leads to an excess
of free radical production, which overtime
produces oxidative stress that is a crucial
factor in disrupting neuron, atrocity and
microglia communication [67, 68]. To-
gether, the FMR1 gene FM typically alters
the course of brain development, cognition,
and behavior throughout life [1]. 

In addition to the potential therapeutic
avenue of restoring excitatory/inhibitory
balance in FXS, other molecular systems
in FXS that carry such therapeutic potential
are BDNF [69] and secreted amyloid pre-
cursor protein alpha (sAPP ) [70]. BDNF
is a protein that supports the maintenance
of neurogenesis and synapses, and FMRP
plays a role in BDNF-induced synaptic
plasticity [71]. FMRP is known to repress
the translation of APP RNA, and APP  in
plasma is known to be elevated in FXS
[72, 73]. 

Potential role of FMRP in major mental
illness. As eluded in the above, a set of un-
folding evidence points toward a broader
implication of FMRP role outside FXS
and ASD, as abnormally low FMRP levels
have also been linked to non-FXS disorders
in those with a normal FMR1 genotype
(i.e., major depression (MDD) and bipolar
disorder (BD) [74, 75] and schizophrenia
[76]. Altered expression of four downstream

targets of FMRP-mGluR5 signaling in
brains of subjects with autism: homer 1,
APP, ras-related C3 botulinum toxin sub-
strate 1 (RAC1), and striatal-enriched pro-
tein tyrosine phosphatase (STEP) have
been shown by Fatemi and colleagues
[77]. Recently, the same group [78] inve-
stigated the expression of the same four
proteins in lateral cerebella of subjects
with Sch, BD, and MDD and in frontal
cortex of subjects with Sch and BD.
Together, their results provide further evi-
dence that proteins involved in the FMRP-
mGluR5 signaling pathway are altered in
Sch and mood disorders. These findings
support the potential use of the qFMRP
test for much broader clinical applications
other than just fragile X disorders [19]. 

TARGETED TREATMENTS IN
FRAGILE X SYNDROME

A wide range of social deficits and ma-
ladaptive behaviors is common in individuals
with FXS. These deficits cause enormous
impairments in day-to-day function of
these individuals and their family members
[14]. FXS-nonspecific psychotropic drugs
are often used to target different symptom
clusters, but these medications have yielded
only partial benefits [14]. The aforemen-
tioned FXS-specific targeted treatments
that modify molecular substrates of the
disease present as a potential solution to
modify core social-communication and
behaviors in FXS with ASD [79]. Table 1
depicts to-date controlled clinical trial
studies in humans with FXS that used the
most stringent controlled methodology
(double-blind, randomized, placebo-con-
trolled). 

To date, total 20 such studies (13 com-
pounds) in FXS, and the first study in FX-
TAS [80], have been identified through
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the Food and Drug Administration (FDA)
www.ClinicalTrial.gov and Medline/Pub-
Med searches. The vast majority of these
clinical trial studies have been completed
between 2008−2015 and more than half
of them have published their data to date.
As expected, the vast majority of these
studies (16/20, 80%) has targeted excita-
tory/inhibitory imbalance in FXS through
either mGluR5 antagonists (mavoglurant-
AFQ056 and basimglurant-RO4917523)
or GABA agonists (Arbaclofen-GABA-B
agonist and Ganaxolone-GABA-A agonist),
which accounted for 11/20 (55%) studies.
Reflecting that 15/20 (75%) of these studies
were phase II, they have studied adults
and adolescents, and only less than half of
them (6/20, 30%) have studied children.
It is noteworthy that reversals of social/be-
havioral symptoms that are part of the

core FXS phenotype have been measured
but not the core synaptic plasticity in FXS.
Additional 3 compounds studied that also
targeted glutamatergic system were either
GABA/Glutamate ‘normalizers’ (acampro-
sate and riluzole) or targeted NMDA re-
ceptors (NNZ-2566, trofinetide). The rest
of the reported studies studied a down-
stream target of FMRP such as MMP-9
(1), serotonergic (1) and cholinergic (1)
systems, and a social brain neuropeptide
(1). Of note, a Phase 2 trial of a highly se-
lective extrasynaptic GABA-A agonist
(SEGA) (Gaboxadol or OV101) in FXS is
pending. 

These results indicate challenges in
translating the preclinical success story
into humans with FXS. Independent lines
of preclinical evidence showed that modi-
fication of the FMRP-deficit driven dysre-
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gulation of mGluR5 and GABA receptors
reversed the underlying pathophysiology
of FXS. However, recent targeted treatment
studies propelled by preclinical findings
have shown inconsistent, and, in light of
the promise in initial pre-clinical stages,
disappointing results. Specifically, multiple
negative modulators of the mGluR5 receptor
have been in trials for FXS. For example,
phase IIb/III clinical trials studying social
and other behaviors in individuals with
ASD in FXS using a subtype-selective
mGluR5 inhibitors (basimglurant and ma-
voglurant) have shown no therapeutic be-
nefits in FXS patients for unknown reasons
[81]. While preliminary molecular cha-
racterization of epigenetic (full-methylation)
patterns of ASD in FXS in the Phase II
trials [82] has suggested that methylation
status may constitute a treatment-sensitive
biomarker for predicting response to a
mGluR5 inhibitor [83, 84], this finding
was not replicated in two large phase III
trials of mavoglurant [85]. Neither of these
studies, as reported by Berry-Kravis and
colleagues [85], reached the primary efficacy
end point of improvement on behavioral
symptoms measured by the Aberrant Be-
havior Checklist-Community edition using
the FXS-specific algorithm (ABC-CFX) after
12 weeks of treatment with mavoglurant.
These studies with mavoglurant also indi-
cated that the methylation state of the
FMR1 promoter was also not able to
predict drug efficacy. The authors [85]
concluded that the preclinical results suggest
that future clinical trials might beneficially
explore initiating treatment in a younger
population with longer treatment duration
and longer placebo run-ins and identifying
new markers to better assess behavioral
and cognitive benefits. Data from basim-
glurant IIa/b studies of adult, adolescents
and children (Roche) are not in public do-
main. 

To expand on these clinical studies of
mGluR5 antagonists in FXS, initially, 2-
Methyl-6-phenylethynyl pyridine hydroch-
loride (MPEP) was developed. However,
MPEP was found not to be well tolerated
in humans, and thus other mGluR5 anta-
gonists had to be developed, such as feno-
bam and mavoglurant (AFQ056). Fenobam
single-dose was found to be safe in a small
pilot trial of adults with FXS. The trial
showed improvements in hyperactivity
and anxiety, and in prepulse inhibition
[86]. As noted earlier, this work is important
to delineate neurobiological phenotypes
within FXS but can be only demonstrated
through double-blind, randomized, place-
bo-controlled studies. Yet, these clinical
trials have also highlighted challenges such
as the populations heterogeneity, the lack
of specific and sensitive outcome measures
capturing the full range of improvements
of patients with FXS, and a lack of reliable
biomarkers that can track whether a specific
mechanism is responsive to a new drug
within relatively short period of time, and
whether the biomarker response correlates
with clinical improvement [87, 83]. 

As for GABAergic dysfunction, GABA-
B agonist arbaclofen reversed many ab-
normal phenotypes in animal models of
FXS [50], presumably by lowering presy-
naptic glutamate release, resulting in re-
duction of group mGluR5s signaling. The
major progress has then enabled a phase
II double-blind placebo-controlled crossover
clinical study in which arbaclofen showed
improvement over placebo in the social
withdrawal problem behaviors efficacy
scores. Specifically, in a “lower sociability”
subgroup (n=27), arbaflofen significantly
reduced ABC-CFX Social Avoidance and
Vineland Socialization scales (42% re-
sponders vs. 7% placebo as defined by
CGI-Improvement 1 or 2 and ABC-SW
subscale reduced for at least 25%) [88].
However, neither younger nor older FXS
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or ASD patients in a large phase III 8-
week placebo-controlled trial reached the
primary efficacy end point of improvement
on behavioral symptoms measured by the
ABC-CFX [89]. While, there was no signi-
ficant effect of arbaclofen over placebo
for any measure in the older group and in
the idiopathic ASD group 12-week study,
in younger FXS subjects (ages 5−11 years),
the highest dose produced significant im-
provement over placebo on the ABC-CFX

Irritability subscale (p<0.05) and trends
toward benefit on the ABC-CFX and Hy-
peractivity subscales (p<0.1). Together,
while full analyses are pending, the youn-
ger group’s effects size for a subset of the
outcome measures showed encouraging
results for several important measures
(irritability, parental stress index, and
global functioning) [89]. 

The clinical trial studies in humans
have only managed to focus on reversing
social/behavioral symptoms that are part
of the core FXS phenotype. That is to say,
none of the aforementioned most recent
clinical studies have addressed the core
FXS plasticity deficit that would translate
to changes in cognitive and learning mea-
sures; to date, only one study published a
decade ago by Berry-Kravis and colleagues
(2006) [90] targeted cognition using CX516,
an AMPA activator. AMPA com pounds
are potential treatments acting within the
glutamate signaling pathway, which are
excessively internalized as a result of in-
creased mGlur5 signaling after the loss of
FMRP. While the study did not show effi-
cacy, it was used most likely at a subthera-
peutic dose, a conclusion that would be
supported by a suggestion of efficacy in
patients co-treated with antipsychotics that
are known to potentiate effects of CX516
[90]. Importantly, clinical observations
from long-term extension studies with
both arbaclofen and AFQ056 have sug-
gested there may be long-term cognitive

and functional benefits of these drugs that
were not captured by formal measures
employed in the trials [91]. 

Other studies from Table 1 show pro-
mise but await larger controlled clinical
trials. For example, a phase 2 pilot place-
bo-controlled crossover trial of minocycline
was carried out in children with FXS. The
effect of this antibiotic that inhibits over
expressed synaptic MMP-9 in FXS models
showed mild global clinical improvement
[92] and reduction of MMP-9 levels in
the blood of responders [93]. As MMP-9
is over expressed in FXS, new unfolding
compounds of relevance for reversing
MMP-9 also hold promise such as euka-
ryotic translation initiation factor 4E (eIF4E)
[94]. Acamprosate, currently FDA-approved
for alcohol withdrawal, with agonist pro-
perties at both GABA-A and GABA-B re-
ceptors (GABA/Glutamate ‘normalizer’)
has shown promise in an open-label trial
for hyperactivity and social functioning in
FXS [95]. Small phase 2 placebo-controlled
studies of acamprosate (the Merck Foun-
dation grant to Erickson) and Ganaxolone,
GABA-A agonist, in FXS are underway
[2016, cited January 15, 2016 available
from www.clinicaltrials.gov]. 

Next, as FMRP is believed to mediate
several receptor systems important for co-
gnitive function, studies utilizing in vivo
biochemical neuroimaging techniques in
FXS are beginning to emerge. Such initial
studies have identified disruption of the
cholinergic system as a potential neuroc-
hemical target for intervention as well as
serving as metrics for treatment efficacy
[96]. Determining the downstream effects
of FMRP deficiency on cholinergic receptor
systems in humans provides direction for
potential pharmacologic treatments for
cognitive dysfunction in FXS. While a
pilot open-label study of donepezil, an
acetylcholinesteraze inhibitor, showed a
promise [96], a 3-month double-blind,
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placebo-controlled, randomized study sho-
wed no significant difference in IQ or be-
havioral scales [97]. 

Metadoxine extended release (Alcobra)
has been studied as a treatment for ADHD
and is also being studied as a potential
treat ment in FXS in a Phase IIb clinical
study. Preliminary results from this 6-week
study found no statistical difference on its
primary measures compared to placebo
[98]. While the study found a small im-
provement on the Vineland Adaptive Be-
havior Scale Daily Living Skills subdomain,
these results need to be replicated. 

Preliminary findings from sertraline
treatment during six months for preschool
children with FXS at the MIND Institute
at UC Davis were associated with greater
benefits in (1) global functioning; (2) im-
provements in hyperactivity, impulsivity
and attentional behavioral issues; (3) mar-
ginal overall cognitive improvements and
(4) increased social participation in com-
munity and family life when compared to
placebo. A marginal treatment effect was
also observed in the Cognitive Domain
but no effects were observed on the outcome
domains of language and most measures
of Sensory Processing and ASD Symptoms
[99]. 

Trofinetide (NNZ-2566), which has a
unique mechanism of action very different
from any other molecule that has been
tested before in FXS, also holds a promise.
Trofinetide is a synthetic version of the in-
sulin-growth factor 1 (IGF-1), a naturally
occurring neurotrophic factor generated
in the liver that passes the blood-brain-
barrier. Trofinetide is expected to normalize
a number of biological processes in the
brain that are impacted in FXS. In December
of 2015, Neuren Pharmaceuticals has an-
nounced that their Phase 2 clinical trial of
trofinetide in FXS has successfully established
proof of concept. In addition to excellent
tolerability profile of trofinetide fixed-dose

70 mg/kg and 140 mg/kg daily, the high
dose demonstrated a consistent pattern of
clinical improvement across core symptoms
of FXS, observed in both clinician and ca-
regiver assessments.

Open label studies include (i) riluzole
(GABA/Glutamate ‘normalizer’) in a very
small 4-week study was not associated
with significant clinical improvement despite
uniform correction of peripheral ERK ac-
tivation [100]; (ii) lithium that in a 2-
month pilot open-label proof-of-concept
study in children and young adults with
FXS resulted in significant improvement
in behavioral scales, verbal memory, and
abnormal ERK phosphorylation rates in
lymphocytes [101]. This effect is supposedly
mediated by reduced excess mGluR-de-
pendent activation of translation by atte-
nuating GSK3  activity and possibly phosp-
hatidyl-inositol turnover, (iii) Lovastatin,
an inhibitor of Ras-ERK1/2, also showed
a promise in a 3-month small open label
study in humans with FXS [102]. 

As for the PM studies, the first place-
bo-controlled, double-blind, randomized
clinical drug trial in FXTAS was memantine
in which 1-year treatment had significant
effects on cued memory retrieval but not
executive function [80]. Yet this study also
demonstrated that well-designed cognitive
event-related brain potential (ERP)/EEG
studies tests might offer sensitive means to
detect intervention effects that may not be
evident in standard behavioral or clinical
assessments. In the line of the aforemen-
tioned positive role of GABA-ergic modu-
lation in FXS, Cao et al. 2012 [103] sug-
gested allopregnanolone, a positive mo-
dulator of GABAA receptors, as a candidate
therapeutic agent to ameliorate the abnormal
mGluR1/5 signaling in FMR1 PM ne-
urons.
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DISCUSSION

A significant progress in targeted treat-
ments in FXS reflects the major preclinical
breakthroughs [44] and shows promise in
humans medical targeted therapeutics [82,
88], namely agonists of GABA-B receptors
and antagonists of mGluR5 receptors.
Specifically, the FXS mouse model (the
FMR1 knockout) has shown that FXS
can be “cured” (reversal of the excess
protein synthesis) of the core phenotype
after using agonists of GABA-B receptors
[50] or mGluR5 antagonists [48]. To date,
a total of 20 double-blind, randomized,
placebo-controlled clinical trials in FXS
have tested 13 compounds primarily tar-
geting excitatory/inhibitory imbalance
theory of FXS and ASD. Despite much
progress in the field propelled by the prec-
linical advances, these clinical studies illu-
strate the gaps and challenges of translating
therapies from animal models to humans
with FXS and ASD (‘building a bridge
and walking on it’) and highlights the
need for new paradigms. For example,
the studies targeted a reversal of social/be-
havioral symptoms that are part of the
core FXS phenotype but not the core sy-
naptic plasticity in FXS.

The negative findings in the well-desi-
gned, properly powered studies serve as a
model. These studies can provide an op-
portunity to reflect on future clinical trial
design and implementation rather to conc-
lude that these trials prove that a treatment
is ineffective under all conditions or that
the presumed underlying pathophysiological
mechanisms are not valid [104]. Recent
studies support also that derangement of
the mGluR network may be responsible
for increased rates of ASD seen in cytoge-
netically distinct forms of syndromic ASD
]105]. Unfolding preclinical studies of

GABA-B agonist arbaclofen [106] that
measured in vivo regional rates of protein
synthesis [107] and advanced our under-
standing of interaction between the ar-
baclofen and FMRP suggest that the
GABA-B agonist, arbaclofen, has merit to
be further studied in also better designed
clinical trials. An effort is under way by
Fragile X Clinical and Research Consor-
tium’s group led by Dr Elizabeth Berry-
Kravis from Rush University in Chicago
to analyze Arbaclofen FXS Trials – Patient
Breakdown by Drug Response (drug re-
sponders and placebo nonresponders). Dr
Budimirovic and his group from Kennedy
Krieger Institute/Johns Hopkins have con-
tributed significantly to this effort. While
full analyses are pending, preliminary findings
showed that many areas of positive response
have not been well captured by the primarily
parent-based outcome measures; thus, we
are seeing only part of response. Arbaclofen
1 year (Vineland) data that showed change
in the FXS disease trajectory in terms of
participant adaptive skill has much relevance
given that longitudinal have shown  that
the acquisition of adaptive skills slows,
especially in male, as individuals with fragile
X syndrome age [108]. 

The gaps include a lack of models for
clinical trials in FXS. For example, there
were no significant moderate/large clinical
trials in FXS with any “standard” drug
before 2002, and there is no defined
measure of behavioral improvement, “gold
standard” outcome measure, or template
from any developmental disability about
measuring cognitive outcomes when at-
tempting to treat the underlying disorder
[87]. In order to improve the understanding
of FXS and ASD, future clinical trials
should take into account the study length,
timing of intervention, appropriate clinical
endpoints, use of a combination with psyc-
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hopharmacological interventions, patient
stratification into endophenotypic subgroups
within FXS though different models [83].
Further molecular-clinical studies are needed
to understand the full value of FMR1 as a
diagnostic and therapeutic marker. This is
possible only with innovative assays in the
FMR1 gene diagnostics [109, 110], as
well as other methodologies to further in-
vestigate other mediators of the dendritic
dysregulation in FXS by profiling at baseline
which persons with FXS may best respond
to a particular treatment [95]; both aim to
develop personalized medicine options for
this disorder. 

The compelling need for new paradigms.
Published descriptive studies of severity of
SW set of behaviors as a unifying factor of
ASD [31, 33] and/or anxiety [32], emerging
investigation of the biological basis of FXS
through imaging-behavioral [29], mole-
cular-behavioral using next generation
fragile X PCR that also allows fragile X
testing to be simple and more efficient
[35] are examples of such helpful models.
In parallel, an effort at identifying potential
molecular mediators of dentritic overgrowth
in FXS as new potential targets (sAPP
and BDNF) of treatment [70] are needed.
Integration of molecular and neurobiological
data in FXS with ASD (i.e., FMRP, CYFIP1,
mTOR, MMP-9), possibly eIF4E [94] and
it’s still unknown and/or adequately un-
derstood targets [43] will ultimately be
necessary. For example, CYFIP type 1 in-
termediate phenotype link between ASD
in FXS [111, 112] and subsets of idiopathic
ASD such as 15q11-13 duplication [113,
114] emerges as a compelling example of
the shared neurophysiology. Next, studies
of educational, behavioral, and therapeutic
interventions are also needed to generate
evidence on which to base recommendations
about supportive interventions and the si-

milarities and differences between those
recommendations for patients with FXS
and ASD. As PM is also associated with
ASD, further studies are clearly needed in
this area, especially given the 10-fold higher
frequency of PM vs. FM. The integration
of all these pieces of data is a major
challenge and will be better addressed
when additional data becomes available.
Overall, future clinical trials implementing
the aforementioned not only hold a hope
but a meaningful clinical and functional
progress in FXS and ASD, and improved
quality of life for affected individuals and
their families.

In conclusion, there are currently no
effective treatments for FXS. The negative
findings in the recent well-designed, properly
powered studies can serve as a model.
Specifically, recent challenges in the clinical
trials demonstrate the need to study for
longer period of time (6–12 months),
prebubertal age group(s), develop more
objective clinical outcome measures (i.e.,
clinician-based, relevant learning para-
digms, and desired biomarkers), and
longer placebo run-ins to minimize the
placebo impact for both FXS and ASD.
Ultimately, a truly satisfactory FXS, and
ASD, therapy may likely involve a com-
bination of drugs (and learning para-
digms), each targeting a different aspect
of the core synaptic, cognitive and beha-
vioral impairments in FXS. Combining
a learning paradigm with one drug is
realistic at this stage, which is a hard
enough study to design. While drug com-
binations algorithm is likely important
in the future, we’re clearly not ready to
do those trials. Therefore, using multiple
drugs together and a learning paradigm
is too much to suggest at this stage of
our understanding as we don’t have data
on what each individual drug does. 
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NEUROBIHEJVIORALNE
KARAKTERISTIKE 
I CILJANA TERAPIJA
FRAGILNOG X SINDROMA:
DANAŠNJE SPOZNAJE 
I BUDUĆA USMERENJA

Dejan B. Budimirović, Phan Q. Duy

Kenedi Kriger Institut, Džon Hopkins
Medicinske Institucije, Baltimor, SAD

Kratak sadržaj
Fragilni (krhki) deo X hromoyoma sindrom (FXS)
je vodeci poznat monogenetski uzrok autističkog
poremecaja spektra (ASD) i nasleđene forme inte-
lektualne zaostalosti u razvoju (ID). Kao glavni i
rastući javni zdravstveni problem u svetu, ASD je
definisan kao čisto bihevioralni premećaj, dok je
FXS medicinski / genetski poremecćaj koji je ka-
rakterističan po ID i ASD kod dečaka u učenju i
ponašanju / emocionalnim problemima (socijalne
anksioznosti, u rasponu pažnje) kod oba pola.
FXS je uzrokovan mutacijom Fragilnog X Men-
talnom Retardacijom 1 gena (FMR1) koji dovodi
do epigenetskog gašenja gena i odsustva njegovog
kodiranog proteina, Fragilnog X Mentalna Retar-
dacija Proteina (FMRP). FMRP selektivno reguliše
produkciju oko 4% transkribovane mRNK u
mozgu. Naime, do sada, 842 takvih ciljnih mRNK
u mozgu sisara su identifikovani i mnogi od njih
se ukrštaju na istom putu kao i izgleda bar neke
forme ASD. Tako je, FXS najviše proučavani "po-
remećaj u okviru sinapse" model za sidromski
(poznati uzrok) ASD u oblasti neuronauke, modela
za sindromsku ASD u oblasti neuronauke. Trenutno
ne postoje  ciljani lekovi  ni za FXS kao ni za ASD.
U ovom članku, govorimo o nedavnom napretku
i budućim pravcima u prevođenje vrlo značajnih
za neuronauku prekliničkih dostignuća radi otkri-
vanja potencijalnih terapeutskih meta u kliničkim
studijama za ljude sa FXS od potencijalnog značaja
za ASD. Do sada je ukupno 20 dvostruko slepih,
randomiziranih, placebo-kontrolisanih kliničkih
studija sa FXS identifikovano putem sajta FDU
ClinicalTrial.gov. Vecćina ovih ispitivanja su
završena između 2008−2015. To su uglavnom
faza II ispitivanja kod odraslih i adolescenata pri
kojima je testirano 13 lekova i uglavnom su bile
usmerene ka ekscitatornoj / inhibitornoj teoriji
disbalansa FXS i ASD. Napredak je da su sržni
simptomi socijalnog/behavioralnog ili ponašajnog
karaktera u FXS modifikovani ali ne i sržni, najviše
preokretima simptoma društvenih / ponašanja koji
su deo osnovnog FXS fenotipa, ali nisu suština si-
napsi disfunkcije kod FXS. Uprkos mnogim dosti-
gnućima u oblasti pokrenute velikih prekliničkim
napretkom, te kliničke studije ilustruju nedostatke
i izazove prevođenje terapije sa životinjskim mo-
delima na ljude sa FXS i ASD ( 'izgradnju mosta i
hod po njemu'). Naime, nedavno izazovi u kliničkim
ispitivanjima ukazuju na potrebu da ove kliničke
studije traju duži vremenski period (6−12 meseci),
u prepubertetskoj starosnoj grupi (s) ili grupama,
razviju objektivnije mere kliničkog ishoda (npr,
zasnovane na lekaru, relevantne paradigme učenja,
i željeni biomarkeri), i duže placebo  faze da bi se
sveo na minimum uticaj placeba za FXS i ASD.
Na kraju krajeva, zaista zadovoljavajuća FXS i
ASD terapija moraće da uključi kombinaciju lekova
(i odgovarajućih testova i učenja), koji ciljaju
različite aspekte tog sržnog nedostatka u okviru
sinapse, učenja, i ponašanja u FXS.

Ključne reči: fragilni X sindrom, autizam, mo-
nogenetski
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