УТИЦАЈ СТЕРЕОИДНИХ ГЉИВА НА РАЗЛАГАЊЕ ДРВЕТА ХРАСТА И МОГУЋНОСТ ЊЕГОВЕ ЗАШТИТЕ

Извођ: Набројане су четири стереоидне гљиве изазвале трудали храстовог дрвета и то: Stereum hirsutum, Chondrostereum purpureum, Stereum rugosum и Xylobolus frustulatus. Теренски опити приказане су у циљу утврђивања утицаја стереоидних гљива на дрво храстова (Quercus petraea) и дуњака (Quercus robur). Вештачке инфекције мицелом извршени су на здаравим дубоћим екземплијама. Почао је брживи процес инфекције кроз стаблко, врсте калузирања рана, појава симптома трудали, појава плодностних тела гљива и симптома ензима. Испитана је и могућност заштите трудали преносеном на бази кодум, беана и бора, доксфлуатаде и хлорфурифоса, бакарног нафтената, као и антисептицима пастом. Микроскопска анализа наводног храстовог дрвета извршена је коришћењем Scanning електронског микроскопа (SEM-а) и Light микроскопа са нормалним, флорефосома, поларизованим и УВ светлом, при чему су утврђене анатомске промене отделних елемента грађе дрвета под утицајем ензимних стереоидних гљива.

Кључне речи: Stereum hirsutum, Chondrostereum purpureum, Stereum rugosum, Xylobolus frustulatus, Quercus petraea, Quercus robur, биодеградација дрвета, заштита дрвета; анатомске промене, структурне промене

IMPACT OF STEROIDEO FUNGI ON DECOMPOSITION OF OAK WOOD AND POSSIBILITY OF ITS' PROTECTION

Abstract: Four steroide fungi, causes of decay of oak wood, have been investigated as follows: Stereum hirsutum, Chondrostereum purpureum, Stereum rugosum and Xylobolus frustulatus. The field tests have been undertaken in order to determine the influence of the steroide fungi on the wood of Scots oak (Quercus petraea) and Austrian oak (Quercus robur). Artificial inoculations with mycelia have been provoked in vital standing trees, as well as in laying trunks. The appearance of dying back symptoms, the rate of mycelia spread through the stem, speed of wound callusing and appearance of fruit bodies or decay symptoms, have been observed.

The protection possibility of trunks has been tested as well by using preservatives

чр Миленко Мирчић, др. филол. и професор, Шумарски факултет, Универзитета у Београду, Београд
Мирић М.

based on chromo-cupric boron salts, dichlorofluoramide and chlorinepyrophos, cupric naphthenates, as well as with antiseptic paste. Microscopically analysis of attacked oak wood has been performed by utilizing of scanning electron (SEM) and standard optical microscope providing normal, fluorescence, polarized and UV light, so that anatomical changes of the wood structure elements influenced by fungal activity have been noted.

Key words: Stereum hirsutum, Chondrostereum purpureum, Stereum rugosum, Xylobolus frutalatus, Quercus petraea, Quercus robur, wood biodeterioration, wood protection, anatomical changes, structural changes

1. УВОД

И поред проназла и интензивног увођења и коришћења нових материјала, дрво је, због својих карактеристика, још увек остало један од главних сировинских и конструкционих материјала (Hunt, Gattatt, 1967). Због специфичних својстава које други, вештачки материјали, не последују, дрво ће, сасвим сигурно, још дуго бити коришћено кроз широк јачак производа. Појамања ка вртлаштвима дрвом изгледа све већи приносак на шумски фонд (Петровић, 1987). Смањење шумског фонда у том смислу представља проблем који се преноше на поља пред помаранцу науку и праху, али најважније је најзад појава у целини. Наглам смањења шумског фонда доприноси и чињеници да је шума, као сложен екосистем, последњих деценија зазвани незгоду и одумирања, која у појединим регионима света попришта разорила природних катастрофа. Ова појава присутна је и у нашој земљи, а загађење животне средине изазвано експанзијом тзв. предњих технологија, глобалне промене климе на планети, градање штетних инсеката и појаве биљних болести, узрокују се слабљења биолошког имунитета биљних јединки и стабилности шумских фитоценоза.

Очеудење и унапређење шумског фонда зависи од одговора који на њеца треба да пружи на питања која се односе на узроке, ток и последице појаве сушења шуме. У том смислу, пропек сушења храстових шума представља последњих година теме деиграња у наше наше две најзначајније врсте: китњак Quercus petraea (Matt.) Liebl. и дужњак Quercus robur L. Класа морфолошка, генетичка, екологија и селекционе својства (Угриновић, 1950, Wagenführ, Scheiber, 1974), као и његова изразита природна отпорност према детрукторима биолошког порекла, сврставају га у породицу најплемениције врсте. У техничком смислу, храстовина је врло цењено дрво и има врло широку примену као, на пример, за производњу екскезационих напокове, градњу бродова, у
УТИЦАЈ СТЕРЕОИДНИХ ЉИВА НА РАЗЛАГАЊЕ ДРВЕТА ХРАСТА И МОГУЋНОСТ ГРАЂЕНИНАРСТВУ, ИНДУСТРИЈИ НАМЕШТАЈА, ПРОИЗВОДЊЕ ФУРИНА И ПАРКЕТА, КАО РУДНИЧКО ДРОВО, ЗА ЕКСТРАКЦИЈУ ТАНИНА, КАО ОГРЕВНО ДРОВО И ДРОВО ЗА ПОУГЛАВАЊЕ.

Значајно место у Србији има агрегат храста китњача (Брановић, 1991) у оквиру кога су врсте Q. petraea, Q. dalechampii и Q. polycarpa.

Ниске дрвна запремина по декарату од 65 м3, као и низак прираст од 1,79 м годишње, укazuju na veoma dolenje stanje hрастovih shuma kod nas.

Поменути микроорганизми кроз конкексију и сукацесију колонизирају храст, делујући тако на слабљење његове виталности или изазивајући сушњење неких његових делова или чињеничке биле. Према подацима из „Продавача домаћинс“ (Rev. of app. mycology, vol. 140) у храсту је забележено 11 врста гљива представника рода Stereum, али су вреле и измена интерпретацијама систематичара, неке од ових врста добиле нова систематска места у оквиру других родова, па и фамилија, док су ранија имена задржана као синоними.

33
Мирић М.

У научној литературни нема много података и резултата детаљнијих микроскопских анализи различитих зона храстова изложених дејству ових гљива (Мирић, 1994/5, Мирић, 2002). Способност колонизирања и начин разлагања појединих слемената грађе дрвета храстова, није јасно дефинисана. Ефекти развоја мицелија стероидних гљива на здрава дубећа стабла као и посечене тружеље храста дувањака и китњака готово да су неистражени. Могућност заштите трупаца од инфекције у периоду од сече до прераде на фогохима дрвеће индустрије од суштинског је значаја за примењивање максималног квалитетног и конзистентног иско- ришћења сировине.

Кроз одговоре на ова питања, на посредан начин би се, кроз уштеду сирови- не, омлање и утицала на шумски фон и заштитила и унапредила животне средине кроз све позитивне ефекте за екосистем у најширем смислу.

2. НАЈВАЖНИЈЕ КАРАКТЕРИСТИКЕ ИСПИТИВАНИХ СТЕРОИДНИХ ГЉИВА

Станиште: на мртвом окопаном и неокопаном дрвету, и на снегу, као што, утроље белењке, али и на физиологијском основним стаблима и границима (као сапрофит или паразит слабости), на речику храста, бухви, жовт итд.
Макроскопски опис: плодоноси тела крехка и од сулестог одстојећа, или велегла за доње стране сулеста, потпуно резупинирани (лежачи површином прилипљена), бездоксна, 5-30 мм, одстојећи, плоскоугао талеес, углавном правилен облика 1-2 мм дебео. Карипофора широка ретко и елипсови су убољено. Горња страна је јасно набрана, зонифицирана, жуто-парааната са сиво-белистим ободом (слика I). Старе карипофора су избределе и сиво-окер боје. Ивица је нежно светлија. Доња страна са хименофором платка, пресењава се јако до брасан-оранж, код старих карипофора је сивоблака. Констистенција карипофора еластична. Често су читава стабла и гране обрасле карипофором.

Микроскопски опис: споре елиптичне цилиндричне, патке, кијадиске, 5,5-6,5 x 2-3 μm.

Chondrostereum purpureum (Pers. ex Fr.) Posp.; *syn.* *Thelephora purpurea* Pers.; *Stereum purpureum* (Pers. ex Fr.) (Mericidaceae, Chondrostereum)

Станиште: као сапрофит на мртвом дрвету линцира (буке, храст, брезе ита.), ређе четирира. На дубоким и лежећим стаблима, на распустлених зернообликом дрвету. Извиђа белу трулеж. На живим линцирима јавља се као паразит слабости. На колонинама боље изазива боље „конусних лисица“ и трулеж грана и стабла.

Макроскопски опис: плодоносно тело потпуно резупинирани, крехко, са ивицама десетаким од сулеста неколико mm do 2-4 cm одстојећим, у виду растегнуте пролазеће од помоћним кн вл до наводећим дим, горња страна утисак зрењане нуре, опадобласти, жуто-парааната, јасно зонифицирана, ивица светла, хименијум гладак, роке до тамо жутоблак, стара је мрко-љубичаста (слика II).

Микроскопски опис: споре елиптичне до цилиндричне, патке, кијадиске, 0,3-0,8 x 2,3-3,5 μm.

Станиште: на мртвом, дубоким или обореном дрвету (овкуром или неокованом), линцира (буке, леске, брезе, храста ита.), као сапрофит, али и као паразит. Паразит у броју крака су појединачне кн действие, изазива жуто трулеж.

Макроскопски опис: плодоноси тело резупинирано ређе у виду брункестог белишкоакра деблите 0,5-2(3) mm, пружа се неколико кн или десетак кн (слика III). Хименијум слој гладак или кераван, наборан, матбедлинан, окварто до нарушења енг, једнократном опороре или енгап се у свежем стању или поборотом стању у коме при тркању подреже. Констистенција у свежем стању је крехка, док је у сувом стању тврда, крта и лако дномљива.

Микроскопски опис: споре споре елиптичне мутаплазмо епилопене, кијадиске, 6,5-9 x 3,5-4,5 μm.

Xylolobus fuscoalatus (Pers. ex Fr.) Kunt., *syn.* *Thelephora fuscoalata* Pers., *Stereum fuscoalatum* PERS. ex Fr., *Thelephora perdis Hartig.* (Stereumaceae, Xylolobus)

Станиште: само на мртвом дрвету и трпичима храта, у зени ерншке. После сезоне стабла на запада и мртве белишке. У дећима стаблима се развија до висе метра изнад земље, а напада и урагајено дрво. Често копаничаре дуто лежећи стабла у шуми.

Макроскопски опис: плодоноси тело имају земљану тунел светлее од добарном путочинама (2-5 mm). Позиционе су једнако, од 0,2-1,5 cm ширине и 6-8 mm деблите, црно-черне у основи касно жуто-бледо, мелици се сиво-белистим ободом (слика IV). Констистенција врло тврда, дреништа, густо брадасти елигевита.

Микроскопски опис: споре су жуте и жуте издужене, 4-5 x 3-3,5 μm, кијадиске. 35
3. МАТЕРИЈАЛ И МЕТОД

Утицај сеتروидних гљива на развијање дрвета храста, као и могућност његове заштите, испитан је на терену и у лабораторији. Огледи на терену постављени су у циљу да се испита утицај сеتروидних гљива на здрава дубећа стабла храста китњака и лужњака, односно степен паразитизма ових гљива, затим природна отпорност китњака и лужњака у састојинским условима и могућност заштите трупаца од пропадања у периоду од момента сече до изvlaчења из шуме, при дужем захранивању трупаца на сечини. У том циљу, на терену су постављени огледи са дубећим стаблима, као и заштитеним и незаштитеним трупацима, који су вештачки инокулисани испитиваним сеetroидним гљивама.

Лабораторијска испитивања имала су за циљ утврђивање анатомских промена на елементима грађе дрвета храста под утицајем сеetroидних гљива.

Испитивања су спроведена на дрвету китњака Quercus petrea (Matt.) Liebl. и лужњака Quercus robur L., који представљају наше две економски најзначајније врсте храста.

3.1. Теренска истраживања

3.1.1. Локалитети

Огледи су постављени на три локалитета, и то два у састојинама храста китњака (Q petraea agg) и један у лужњаковој (Q robur) састојини. Огледна пола (површине око 25 ара) са китњаком, издвојена су на локалитетима Сачиница (Мајданапашка домена, оддељење 60) и Крпиник (Гом, оддељење 89), док је огледна површина са лужњаком, издвојена у околини Подрачне Слатине у Слатинским низијским шумама (оддељење 31, олек Д).

Огледна површина на Мајданапашкој домени издвојена је у асоцијацији Querco-Carpinetum Rud., на надморској висини од 540 m и на јужној склоновитости. Огледна површина на Гому, издвојена је у асоцијацији Querco-Pinetum typicum на надморској висини од 980 m и на склоновитости северозападно. Огледна површина у Славоји издвојена је у климатској асоцијацији Querceto-Fraxinetum са већим учинком граба (11%) него јасена (3%), на надморској висини 0 m и потпуно равном терену.

3.1.2. Испитивање утицаја сеetroидних гљива на здрава дубећа стабла храста

На сваком локалитету обележено је по 10 потпуно здравих стабала храста, односно по два за сваку испитивану гљиву. Инокулација испитиваним гљивама извршена је на прсој висини (130 cm) коришћеном Преслеровог сврдала. Као инокулатум, коришћени су претходно припремљени извртци храстовог дрвета, који су у
лабораторијским условима образли мицелијом испитиваних гљива у Петри-посудама, после чега су преношени на терен. После макања и површинске стерилације коре, стерилисаним Пресервом свежим вађени су изврши из отсека стабала и у стерилним спруветама преношени у лабораторију ради утврђивања здравственог стања стабала, евоно уравног присуства микроорганизма. На њихово место стављани су припремљени нокулисане изврши до дубине од око 50 mm, тако да су захватали зоне бељане и срчане, а ране су затварале калемарским виском. После 20, 22, 62, 122, 152 и 163 недеље за Гоч и Дебели Љуг, евоно 17, 22 и 58 недеља за Славонију, узимани су контролни изврши са растојања од 7,5 cm лево и изнад места инокулације, ради приноше експерије, евоно уравног гљива кроз стабло у хоризонталном и вертикалном правцу. Сви узети узорци прве се рије су у стерилним спруветама пренети у лабораторију и анализиране на присуство гљива нокулина у нови, стерилисани изврши друге се рије, а ране, такође, затворене калемарским виском. Уколико после анализе прве се рије изврши бочно и изнад места инокулације, евоно констатовано присуство гљива, њихов рачун прегледу су са истог места вађени изврши друге се рије и анализиране ра и евоно анализиране. И на њихово место стављани нови стерилни изврши треће се рије. Уколико је, међутим, приликом првог или другог контролног прегледа констатовано присуство гљива на растојању од 7,5 cm изнад или бочно од места инокулације, тада су вађени контролни изврши на растојању од 15 cm од места инокулације, и то у правцу и евоно, евоно, места претходног узимања контролних изврши. Овај поступак је понављан сваке две недеље док се гљива не претворила у једном од ова два пракса, у току три године. Такође, пргањено је и здравствено стање отсека стабала према критеријуму за интензитет сушања у класи A и промене бије лици (у класи B, означено индексима:

- A₀ - здрава стабала (без сувих грана);
- A₁ - инцидентна фаза сушења (поједине суве гране);
- A₂ - сушност стабала (25 mm);
- A₃ - крај јако пророцена (према 50% сувих грана) завршица фаза ообељава;
- A₄ - њива, мртва стабала;
- B₀ - зелени боја лици (без сувог хлорозе);
- B₁ - блага хлороза (прве промене на лици);
- B₂ - јака хлороза (знакуто преко 50%);
- B₃ - уврдо љушта.

Пргањене су и релације стабала у зони места инокулације (ране) на њихове кајурице, деформације вертикалног или субвертикалног тивка, распадања у зони ране, испицања ексклада изда и такође, пргањено је пред тима променама у зони ране, прераснута инокулуција присутником стерилним гљива, на сваком локалитету избрано је и по пет потпуно здравих стабала (индекс сушања AₓBₓ) који су у зону инокулисане и чији је изглед стабала и правао, такође, пргањен на све релевантне промене, а која су у том смислу представљала контролу.

37
3.1.3. Испитивање утицаја стероидних глјива на трупце храста и могућности њихове заштите на месту сече

Период после сече па до прерађе трупца у потонима дрвне индустрије, свајако је најопаснији са аспекта изложености дрвета утицају штетних фактора. Међу њима липидиоле глјива и ксилофаги инсети заузимају најистакнутије место. Услови који владају у састојини, па и на дрвоиндустријским стовариштима погодују наше од ових организама на дрво. Ниво интензивности који је увек висок, као и стање самог дрвца које после сече поседују оптималну кoličinu влаге за развој глјива, чиње да је ова системица изузетно осетљива на појаву деструктора. Самим тим, потребно је посебно пажњу посветити управо заштити дрвета у овој осетљивој фази технолошке обраде, односно његовог пута од трупца па до финален производ (Михаић, 2004, Михаић, Петровић, 2004). Ова опасност још је више изразена уколико се ради о глјивама које се понашају као сапрофити, али и као фунгуситивне паразити, односно паразити слабости. То значи да су они у стању да своју деструктивну активност започну на дубљим стаблима и настави је на посечним трупцима.

Могућност заштите храстовог дрваста у периоду од сече до извлачења из састојине испитивана је на узорцима који су исекнути из потпуно здравих стабла ширине 60 cm, положени су на дрвене подметаче у слојевима од по 6 комада, који су помоћу коља и пластичне фолије интратврдени и заштићени од атмосферског површене љаца трупца, с обзиром да су неки од коришћених заштитних препарата били на бази органичних растара, као и такви непогодни за апликацију на влажне површине.

За испитивање су коришћени следећи препарати за заштиту дрваста:
1. С-С - со на бази хрома, бакра и бора;
2. С-П - антисептична паста за премазивање чела трупца;
3. Л - на бази 1% хлоргрифоса (C₆H₁₁Cl₂NO₃PS) и 1,5% дихлорфлуамида (C₆H₁₁Cl₂F₂N₆O₂S₂);
4. А-3 - на бази соли бакра и нафтенских киселина (бакарни нафтенат).

Сви наведени препарати коришћени су у производним концентрацијама (неразближени) изузев препарата СС који је коришћен као 10%-ни водени раствор.

Десет дана после сече извршено је третирање трупцих заштитним средставима. Препарат С-С коришћен је као 10%-ни водени раствор, док су антисептична паста С-П и препарати Л и А-3 коришћени у производеној концентрацији (без разређивања). Апликација препараата извршена је преко љубича ручним методом у количини од по 0,3 l по трупцу, изузев антисептичке пасте који је наносена према зицију на трошај. Третирани трупци остављени су у сложеним интегралним током следеће четири недеље, ради стабилизације примењених заштитних препарата у дрвету.
УТИЦАЈ СТЕРЕОИДНИХ ГЉИВА НА РАЗЛАГАЊЕ ДРВЕТА ХРАСТА И МОГУЋНОСТ...

После овог периода сви трупчићи су постављени по групама у еспланадним посредницама, а стабла су уреде проширен и напушен ниским врхом плочишта од дрвета на висини 1.5 м (група Г) и у висини 1.3 м (група Б). Порочни преноста, као и сви некоришћени места, три пута су прекинута индукутивном пастом С-А и са преградом Л, посебно индукутивном и ретикулуму фибриларном, ради пресечења спонтане инфекције и појаве патолошког процеса у осталом коре. Имомуција трупца извршена је коришћењем Пелскола на дубину од 10 cm, а на 10 cm од једног краја трупца. Као индукутивни коришћени су, претходно припремљени (индукутивни прорасли) извршених храстовог дрвета, на начин који је описан у огледу на дубином стаблу. Сви трупци постављени су на дубине у одређеним условима за вегетацију и у огледу на свим уместима огледа. Постављање огледа извршено је у летњем периоду, са временском разликама од 10 дана на сви три огледа на потпуно исто начини.
карпофора и др.) и узимањем узора из зона срчице и бељике за лабораторијску аналиzu на присуство глива или појаву трудежа.

3.2. Лабораторијска истраживања

Утицај стериоидних глива на срчицу и бељику китњака и луњака испитан је у лабораторијским условима у циљу да се утврде промене основних елемената анатомске грађе храста, коришћењем најсавременијих микроскопских техника.

3.2.1. Испитивање утицаја стериоидних глива на структурне промене елемената анатомске грађе дрвета храста

У праћењу анатомских промена код елемената грађе храстовог дрвета, комбиновао је анализу микроскопских препараата (микротомских пресекса) дебљине 0,5 μm, са анализом дрвених призми милиметарских димензија (Мирчић, 1997/6, 1997/7). Прави двомеђеоналинални тип препараата анализиран је на универзалном "Light" микроскопу (Zeiss), а други тродимензионалина, на скенинг електронском микроскопу (SEM-u).

При анализи микротомских пресекса, за сваку врсту и зону дрвета, за сваку врсту гливе и за сваки правац резања препараата (радијални, попречни и тангеницијални), припремљени су микропрепарати, од чега је половини третирана гимза-реагенцем, а половине ахридн-оранжем. Укупно је за једну врсту дрвета и једну гливу анализирано по око 120 микротомских пресекса са 4 различитих врста светла: нормалним, UV, плавим (флуоресцентним) и поляризованом.

За анализу на SEM-u припремљени су узорци проматричног облива и сваке врсте, односно зове које је била изложена дејству мишље испитиваних стериоидних глива. За сваку врсту и зону дрвета и сваку испитивану гливу анализирана су по три препараата приближних димензија 8-6-4 mm и њихове свободне површине детаљно анализиране у максималну магнификацију до 11,000 пута.

Узорци дрвета за ове анализе узети су из спрујета димензија 5-15-60 mm са дужом страном у радијалном, а краћом у тангеницијалном правцу, и то из приприрдских зове стабла. Тако је по дужини сваког узора била захваћена и зона бељике и зона срчице. Стерилизација узорака извршена је пропилен оксидом у гасном стерилизатору (шила "Ээктив"), да би се избејле деформације у структури дрвета које могу доћи због високе температуре при класичном начину стерилизације у аутоклаву.

Овако стерилизовани узорци побољшане су на проседно развијену мишље испитиваних глива у Петри-посуде (R=90 mm) са садржајем од по 20 mL малц-агарне плозге. Инкубација је трајала 8 нелеа при стандардним условима влаге и температуре (t=75±5%, r=21±1°C). Све Петри-посуде обележене су по ободу парафинским филмом ради спречавања исушивања плозге.

40
УТИЦАЈ СТЕРЕОИДНИХ ГЉИВА НА РАЗЛАГАЊЕ ДРВЕТА ХРАСТА И МОГУЋНОСТ...
4. РЕЗУЛТАТИ И ДИСКУСИЈA

4.1 Утицај стереоцидних гљива на здрава дубећа стабла храста

На локалитету Слачина (Мајданpeka домака, одељење (60), на стаблима китњака бочно ширење мицелије ни код једне испитиване гљиве, ни после 163 недеље није достигло 7,5 cm, изузев код једног стабла инокулисаног домаћим изолатом S. hirsutum, код кога је после 22 недеље гљива констатована на оном растојању од места инокулације.

Што се тиче асцидалног ширења мицелије, њено присуство је констатовано на растојању од 7,5 cm изнад места инокулације после 22 недеље, за све испитиване гљиве и код свих стабала, изузев код једног, инокулисаног мицелијом Ch. purpureum, при чему ни после 163 недеље мицелија ове врсте није констатована на поменутој висини изнад ране. Вађењем и анализом извртака са висине од наредних 7,5 cm (15 cm изнад ране) констатовано је да је мицелија оба изолата S. hirsutum, S. rugosum и X. frustulanus достигла ово растојање после 152 недеље, и то на 50% инокулисаних стабала.

Прегледом рана (места инокулације) после 163 недеље, код свих стабала, изузев општих инокулисаних мицелијом S. rugosum, утврђено је присуство вертикалног вретенастог калуса, чија је дужина износила: за стабла инокулисана гљивом S. hirsutum (од висине) 20-30 cm, за Ch. purpureum 10-20 cm и за X. frustulanus cca 2 cm.

Код стабала инокулисаних гљивом S. rugosum дошло је до појаве изражених таластних деформација вертикалног и субвертикалног ткiva у зони ране, на површини cca 10-30 cm, уз успорено калусирање (у односу на стабла инокулисана осталом гљивама).

Брже ширење (екстензивност) гљива у асцидина, него у хоризонталном (бочном) правцу које је, по правилу, констатовано на свим инокулисаним стаблима, са једне стране, вероватно је последица грађе стабла, а односно положаја елемената грађе у стаблу кроз које је гљива прораста, али свакако и чинићица да су инокулисана стабла била потпуно витална (здрава). Може се претпоставити да код физиолошки ослаблих стабала, ширење гљива у хоризонталном правцу, вероватно не би било тако ограничено као у овом случају, а свакако би било брже и у асцидина правцу.

Имуношци систем бије у контексту њеног здравственог стања, овде има претходну учешћу (Мирић, Тодоровић, 1996).

Ширење мицелије у стаблу зависи, као од врсте гљиве, тако и од времена инокулације и дела стабла, односно места инокулације (BoddY, Rayner, 1984).

Лабораторијском анализом извртака узетих из стабала констатовано је (у оним случајевима где је мицелија достигла одређено растојање од места инокулације) присуство хиброво у зони бешће за све испитиване гљиве, сем за X. frustulanus, чија је мицелија изолована из дела извртака који је захвацало срочку.

42
УТИЦАЈ СТЕРЕОИДНИХ ГЛЈИБА НА РАЗЛАГАЊЕ ДРЕВЕТА ХРАСТА И МОГУЋНОСТ...

Ова констатација је у складу са досадашњим сазнањима о усмерености (специјализацији) појединих врста гљива одређеним зонама дрвета, односно стабла, при чему треба истакнути да X. fructulatus може колонизирати и зону белењка, али тек после обарања стабла, односно по престанку кретања сока и изумирања белењка. Присуство ове врсте у зони срчика, објашњава се њеном танинноразрушавању, као и високом толеранцијом према недостатку кисеоника у зони мртвог дела стабла, односно срчика (Scehan, 1989. pers. com.).

Аналитик индекса сушења стабала после 163 недеље, може се закључити да ни на једном стаблу није дошло до промене на асимилационим органима (индекс сушења је остао 0). Што се тиче појаве суних грана, на стаблима инокулисаним домашним изолатом S. hirsutum и на по једном стаблу инокулисаним врстама S. ramosum и X. fructulatus, дошло је до појаве суњика (A_{2}B_{0}), док су се на остатим стаблима (изузев инокулисаним немачким изолатом S. hirsutum) јавила појединичне суње гране у кроћњи (A_{1}B_{0}).

Од пет контролних стабала, која нису вештачки инокулисана, два стабла су променила индексе сушења и то стабло бр. 2 (A_{1}B_{0}) и стабло бр. 5 (A_{1}B_{0}).

С обзиром на промене индекса сушења, које су забележене код контролних стабала, не може се да сагрупацију довести у везу присуство стереоидних гљива и појава суних грана у кроћњама инокулисаних стабала у току 3 године. Ово према том, што су коришћене врсте гљива познате као сапрофити или паразити слабости, а не као примари у зрочинци сушења. Од коришћених врста једино се за Ch. parapsilosis зна да може размножавати болест (па и сушење), не само коштничагово већ и на врховима врста дрвета као што су топола, брза, храст, буква, врба и др. (Ивановић, 1992). Промене које дойдо до тест стаблима, последица су акутне појаве сушења која се последњих година бележи у целој Европи, па и свету. Узрок ове појаве су многобројни, а прецизнија оговор добиће се кроз истраживања која се спроводе под координацијом међународних шумарских организација, по јединоственом методологији.

Резултати испитаивања брине експланирање мицелије и промене индекса сушења у току 13 година на стаблима кршиника на локалитету Крашина (Горње одање) показују следеће:
- хронолошко ширење мицелије у инокулисаним стаблима било је иден
- нско као и на локалитету Сламича (Мајданочка домаћа, одање 60), односно ни после 163 недеље гљиве нису констатоване на 7.5 cm од места инокулације (изузетак је домашни изолат S. hirsutum);
- што се тиче експланирања мицелије у асциналном правцу, немачки изолат S. hirsutum достигао је после 62 недеље 7.5 cm изнад места инокулације, али само на једном стаблу. Мицелија домаћег изолата констатована је на овој висини после 22 недеље (стабло 7), односно 62 недеље после 22 недеље (стабло 1), а после 156 недеља, мицелија ове врсте констатована је на 15 cm изнад места инокулације;
- врста *Ch. purpureum* ни после 163 недеље, ни у хоризонталном ни у аспи-
 јалном правцу, није достигла 7,5 cm од места инокулације;
- мицелија *S. rugosum* је после 22 недеље констатована на висини од 7,5 cm,
 али ни после 163 недеље није достигла 15 cm изnad места инокулације;
- на стаблима инокулисаним гљивом *X. fructulatus* мицелија је констатована
 у зони срчиште на 7,5 cm после 62 недеље, а после 156 недеља и на 15 cm
 изnad места инокулације;
- после 163 недеље код свих стабала (изуцав инокулисаних мицелијом *S. ru-
 gosum*), рани настале при инокулацији су калусирале у облику вретенастог
 вертикалног засебљања, уз напомену да код једног стабла које је инокулис-
 сано немачким ислатом *S. hirsutum*, није било уочљиве реакције стабала у
 зони озеле;
- у зони око места инокулације гљивом *S. rugosum* констатована је у свим
 случајевима деформација вертикалног и субвертикалног ткива, у виду та-
 ласастих испучења и удубљења површине са 10×25 cm, без или само са
 знацима успреког калусирања рane.

Индики сушења инокулисаних стабала на Гочу показују веће промене, него
што је то био случај на локализату Сличина, с тим што ни овде нису констатоване
промене на аспиционалним органима. Појачаније промене забележене су код
стабала инокулисаних врстом *S. hirsutum* (оба ислата) и крстала се од појаве поје-
диничних срвих грана (*A*₂ *B*₂ *B*₀) преко суковрхости (*A*₂ *B*₂ *B*₀) до појаве бројних срвих
грана у крошни (*A*₂ *B*₂ *B*₀). На стаблима инокулисаним гљивом *Ch. purpureum* јављале
су се појединачне сребре гране (*A*₂ *B*₂ *B*₀), како је случај био и са гљивом *S. rugosum*. Ова
појава била је најмање изражена код стабала инокулисаних врстом *X. fructulatus*
(*A*₂ *B*₀ *B*₀).

Од пет контролних стабала на овом локалитету, три су променила индекс су-
шења у току 163 недеље. У свим поменутим случајевима дошло је до појаве срвих
грана, док промене аспиционалних органи нису констатоване. Контролно стабло
бр. 1 после 163 недеље имало је индекс сушења *A*₁ *B*₀, стабло бр. 2 *A*₁ *B*₂ *B*₀
и стабло
бр. 5 *A*₂ *B*₀ *

Промена индекса сушења код контролних стабала указује на појаву акутног
сушења, чији узрок овим истраживањима није утврђен, а што није ни било ци.
У поређењу са резултатима добијеним на локалитету Сличина, ова појава,
бар што се тиче реакције изабраних контролних стабала изражена је на локалитету Кржаник
на Гочу.

Резултати испитивања брзине ширења мицелије стереоидних гљива у стаб-
лим и премеа индекса сушења код лужњака (*Q. robur*) у Сличинском лизинским
шумама (оделење 31, опсек Д) показују следеће:
- током период праћења експониције мицелије кроз инокулисана стабб из 58
 недеља, констатовано је да у хоризонталном правцу ни једна гљива није до-
 стигла растојање од 7,5 cm;
УТИЦАЈ СТЕРЕОИДНИХ ГЉИВА НА РАЗЛАГАЊЕ ДРВЕТА ХРАСТА И МОГУЋНОСТ...

- мицелија оба изолата S. hirsutum конститована је на 7,5 cm изнад места инокулације у периоду на каснији 17 недеља, а што је био случај и са врстама S. rugosum и X. fruticosatus;
- на истом растојању од места инокулације, мицелија Ch. purpureum је конститована тек после 58 недеља, али само код једног тест стабла;
- прегледом рана после 58 недеља конститовано је истицање скудата мрве боје из распукалих насталних на месту инокулације (дужине 7,12 cm), уз одсуство или слабо изражено калусирање.

Индекс сушења код стабала Q. robur су одређени 58 недеља након инокулације, при чему су, за разлику од локалитета у Србији, (на китњаку) конститоване и неке премене на асимилационим органима и то, изао код инокулисаних, тако и код контролних стабала. Она појава помоћу указује на учинак фактора који овим истраживачима нису могли бити обухваћени, па стога ни тачно дефинисан.

Стабла инокулисана немачким изолатом S. hirsutum нису пременила индекс сушења у односу на почетни, док је код стабала инокулисаних домаћим изолатом ове гљиве, дошло до појаве благе хлорозе (A1B1).

Стабла инокулисана вретом Ch. purpureum нису показивала значајне хлорозе ни присуство сувих грана, осим појединичних на једном стаблу.

Појава појединичних сувих грана и хлорозе (A1B1) конститована је на свим стаблима инокулисаним гљивама S. rugosum и X. fruticosatus.

Од 5 контролних стабала, на 4 су конститовани знаци хлорозе (B1, стабла бр. 1, 2, 4 и 5), а на два стабла и појава појединичних сувих грана (А1, стабала бр. 1 и 4). Резултати који се односе на премену индекса сушења код тест стабала, из тог разлога, не могу се са сигурношћу доводити у везу са присуством мицелије стереоидних гљива у њима.

Приликом ауторима, на дубину преразирања гљива у интерналност, а у пречник рана и концентрација инокулаума, али не и старост стабала (Спиц, Норс, 1988). Ови аутори наводе да се споре Ch. purpureum пасивно (без клижања) прогноз орез ткивном кисећем, али кроз камбијално ткиво, флоесм или ткиво косе, нису прогнозе за се одузимања ових зона. Дубине рана на гљиву Salix humboldtiana var. pyramidalis, показивале су то по цело годишно осетљивост на инфекцију од гљиве Ch. purpureum, при чему је гљива дубље преразирала у стабло вада је као инокулат коришћена мицелија. Дубина преразирања зависила је од старости рана при инокулацији. При томе је конститовано, да су свако ране није појачаније инфекције, ране старе месец дана било је тешко, а после три месеца немогуће инфичирати гљивом Ch. purpureum. Многи аутори сматрају да се узрок налази у компетицији других микроорганизама који у међуокрену ће попримати површину рана (Брукс, Стори, 1923, Брукс, Моор, 1926, Субраман, 1983, Мерси, Кир, 1984).

Компаративним резултати прегледа рана на стаблима китњака и лужњака инокулисанх гљивом S. rugosum, може се закључити да је код свих стабала китњака
после 163 недеље дошло до појаве таласастих деформација кортикальног и супкритикаловог ткива у зони око места инокулације, што представља симптом настајања рака рана на хрању. Код луцирана светле појаве није комацирања нису 58 недеље, када је извршена последња опсервација.

Liese (1930) i Bercenthal (1933) налазе да инфекција овом глином настаја од две две недеље пре појаве симптома. При томе се, према овим ауторима, глија S. rugosa испод ткаца похађа салфетарски, пролазе у комбиниране зоне, разара и, а затим се шири по осталим деловима беле, изгиравајући белу. Како су инокулисана места у нашим испитивањима представљала свеже ране (према Преслерајм вртама), добијени резултати не коинцидирају са наводима поменутих аутора, да је инфекција могућа испуњена свежим патрљаком грана. Са луцирањем је случај био другачије, односно, после 58 недеље није дошло до појаве симптома настајања рака рана у зони места инокулације. Претпоставка да на луцирању није остварена инфекција не може се са сигурношћу потврдити, с обзиром да је дефинитивна опсервација на стабилима луцирања (због ратних дејстава) на овој локалитету, извршена 58 недеља после инокулације. Овом у прилог иде чињеница да ни остала стабала луцирања, 58 недеља после инокулације, нису калусирала, као што је то било констатовано са стабилима китља после 62 недеље. Може се претпоставити, да до реакције стабала, односно калусирања, долази тек након овог периоде, тј. да се оно одвија у другој и трећој години после ранања стабала. Такође, може се закључити да до појаве симптома настајања рака долази у овом периоду.

Према Pearce-y i Rutherford-y (1981), доласку на стабилима долази искључиво уз присуство микроорганизама, при чему се ствара защитни слой од око 30 редова бела ћелија аксиалног паренхима, а хистохемијским испитивањима утврђено је да су зидови ових ћелија суберицифцирани. Као такво, ово ткиво је отпорније на утицај глија него здраво дрво и у том смислу представља баријеру за даље ширење глије према новосалатим (новоприрачним) плућним стаблама дрвета. Практично, на тај начин у одређеном временском периоду, рана и зона тркуши оно раже, бива локализована и изолована од окоелог здравог дрвета. Веза између појаве калусирања и присуства микроорганизама у стаболини, тешко би могла бити потпуно елиминирана као узрок појаве тркуши, с обзиром на перманентно присуство спора великог броја глије у ваздуху у стаболини. У том смислу свака појава освећења (рана) неминовно је у вези са микроорганизмима, па се и калусирање као реакција билке не може са сигурношћу одвојити од њиховог присуства. Brooks i Stokes (1923), такође, налазе да је присуство микроинактивацијом садог материјала која базирају на методи коришћења здравих стаблака и стабала глија, при чему је чак и у осталим условима долазило до стварања калуса, оповрзани претходну хипотезу. Мишљење смо, да присуство микроорганизама има утицај на брзину реакције билке

46
домаћина, али да то није једини услов и разлог калусирања рана. Реакције у зонама трауматизованог ткива последица су и нормалног одређивања и дебљинског при-
рецивања стабили, а изазива и мешавине реакција до којих долази у контексту кон-
ституције ћелија дрвног ткива и биљних сокова са атмосферским ваздухом.

4.2. Утицај стереоидних гљива на трупце храстова и могућности њихове за-
штите на месту сече

Резултати прегледа трупца заштићених одабраним препаратима и вештачки
инокулисаних стереоидним гљивама који се односе на дрво катњака (Q. petraea agg.
за локалитет Слатина (Мајданпачка домена) може се констатовати да су контролни
tрупчићи (група А), који нису били ни заштићени ни инокулисани стереоидним гљивама,
обраши плодноносним телима S. hirsutum услед спонтане инфекције у
самије састојини, при чему је дошло до потамњења бељаке (почеста фаза труженка),
док је срцина била ненападнута, што је потврђено лабораторијском анализом (инкуб
ирањем узорака на вештачкој хранливој посоки). Овакви резултати су се јавили
и код других контролних трупца (група Б) и поред тога што су трупчићи били вештачки
инокулисани, што наводи на закључак да је нево инокулума S. hirsutum у самој са
стостини био висок и да је инфекција спонтаним путем (спораом) превазилазила спо
собност коришћених инокулума стереоидних гљива у компетицији на дрвето као хран

Поред чињенице да је до спонтане инфекције дошло спораом и на знатно ве
боје површини од вештачки инокулисане, познато је да је током ширења микелизе
S. hirsutum у лонгитудиналном правцу у дрвету храстова, после момента инфекције успорено, а чиме се са лужерм инкубације убрзала код неких других врста др
вета межути, случај је обрнут (Раврег, 1979).

Код група Ц, Е и Ф ни у једној испитиваној комбинацији није било симптома пропадања ни бељаке ни срчине у периоду од шеснаест недеља, а у групи Д (анти-
сеptичка паста), на трупцима инокулисаним гљивама Ch. preparum и S. rugosum дошло је до појаве плодносних тела Sch. communis и S. hirsutum, опет као последица
спонтане инфекције у шуми, са уочљивим симптомима одмах фазе труженка бељаке.

На трупцима који су били заштићени коришћеним препаратима, а који нису пос
ке плодних инокулисаних (група Х), као последица клопања инфекција јавила су се плодносна тела врста Bulgariania polimorpha Wett. (трупчићи заштићени препаратима C-C и Z) и Schizophyllum commune Ex. (трупчићи заштићени препаратом C-P), при чему је бељака имала знатно прозрачности, док је срчине, да друге ст
ране, била ненападнута.

На трупцима дужине 1,5 m, који су били положени на древе подметене и
инокулисане коришћењем Прескеровог свргла (група Г), после 16 недеља дошло је
до масовне појаве плодоносних тела *S. hirsutum* (на свим трпунцима) и *Sch. commune* на трпунцима који су инокулисани домашним изолатом *S. hirsutum*, *Ch. purpureum* и *X. frustulatus*, при чему је након тренутне ове групе биљака била у одмањној фази тркуца.

На основу ових резултата, генерално гласајући, можемо закључити да је у састојинским условима могућност и ефикасност извођења вештачке инфекције ограничена многим факторима, међу којима су ниво инокулума других микроорганизама и климатски фактори, састав од пресудног значаја. Ова констатација открива много питања, међу којима се истиче и проблем оцене метода за испитивање *in vivo* у овој области.

На основу приказаних резултата, а такође имајући у виду све претходне намесе, иако се могу извести одређени закључци везани за ефикасност заштитних препараата. Препарати С-С, А-З и Л су својим дејством испуњили функцију заштитног средства у току 16 недеља и обезбедили од пропадања и срчику и бељику обореног дрвета китњака у датим условима испитивања. Нешто слабији ефекат показује антибактеријални препарат С-П, шаказа због његов превасходне химичке структуре на штиту чела трпуша од наглог сушења и распустања.

Код контролних група (групе А, Б и Г) испитују се у периоду од 16 недеља, а појаве пругулисти или потпуног пропадања бељише уз масивно формирање плодоносних тела глуба, из чега се, компарадцијом може сагледати и позитивни ефекат коришћења заштитних препараата, на овој локалитету.

Резултати испитивања могућности заштите трпуша китњака (*Q. petraea*) на локалитету Крачин (Точ. оделаце 89) показују да је код контролних група А, Б и Г посебно сече коштована мозаична тркуца бељише, а на српским културама плодоносних тела врсте *B. rodutorum*, док је срчица била ниска и неважна. Испод коре свих контролних трпунцића коштоване су ходини и ларве оселице стрижиуббе *Plagionotus arcuatus*.

На трпунцима контролних груп Б, инокулисаним мицелијом *S. hirsutum*, коштована су плодоносна тела *S. hirsutum*, на површини и пукотинама кора, као и по зони бељише на површиним пресцама трпунцића, при чему је бељица била у одмањној фази тркуца. Испод коре свих трпунцића коштовани су ходини и ларве *P. arcuatus*, као и ларве агрепзидног типа. Код трпунцића инокулисаних мицелијом *Ch. purpureum* и *S. rugosum*, у зони бељише је коштована појава пругукиости. У зони срчице није коштовано присуство глуба ни на срп особу накулама глуба *X. frustulatus*. Разлог овоме може бити у методу узимања узраца за аналиту трпунца на присуство глуба, а чиме је са сваке стрпунцеле одредити контур до брдина 5 cm, а узорци узимани из преосталог дела.

На основу овог начина узимања, може се закључити да, узолова присуство глубе није коштовано, мицелиј из површинског инокулума није продирала више од око 5 cm у дубину трпуша од његовог чела.
УТИЦАЈ СТЕРЕОИДНИХ ГЉИБА НА РАЗЛАГАЊЕ ДРВЕТА ХРАСТА И МОГУЋНОСТ...

Код свих трупчића из групе Ц, који су били заштићени препаратом С-С (10%), срчица је била ненападнута, док је бељика у свим случајевима била у омалој фази травлења. Испод коре свих трупчића ове групе, констатована су ларице аргиролакунатог типа, а на трупчићима инокулисаном мицелијом X. fructicosus, стрме гљиве Hypoxylon multiforme Fr.

Трупчићи заштићени антитингичком пастом С-П (група Д), после 17 недеља имали су здраву срчицу, док је бељика била у омалој фази беле травлења, са бројним карпофорама S. hisutum по површини и у пукотинама коре. На трупчићима ове групе који нису вештачки инокулисани, као и на олим инокулисаним мицелијом Ch. purpureum и X. fructicosus, јављале су се стрме Hypoxylon spp., а у зони бељике мозачини тип травлења.

Код групе Е, на трупчићима заштићеним препаратом А-З, симптоми травлења нису констатовани само на трупчићима инокулисаним немачким изолатом S. hisutum. У осталим случајевима констатована је мозачина травлење бељике, а код оних инокулисанђем домаћим и немачким изолатом S. hisutum симптоми пролазности. У свим случајевима срчица је била ненападнута и на површини коре није било формирања карпофора.

Код трупчића заштићених препаратом Л (група Ф) дошло је до појаве мозачине травлења бељике и одубљивања коре у свим случајевима, док је срчица била ненападнута, односно потпуно здрава.

На контролној групи трупца дужина 1,5 m, који су дубински инокулисани помоћу Преслеровог сера (група Г), констатована је заснована појава последњих тела S. hisutum на површини и у пукотинама коре као и у зони бељике на попречним пресечним трупцима. Бељика је у свим случајевима била одмах у травлењу, односно потпуно пропала, а испод коре нису констатовани хормони или ларице ксилофа. Истовремено, на основу анализа узорака дрвета у зони срчице, констатовано је да ни у једном случају није дошло до колонизирања ове зоне.

Ако се упореде резултати добијени за локалитете Сlagen (Мађарска домена) и Крушник (1 оч), може се закључити да су у првом случају ефекти заштите биле повећани. С обзиром да су огледи на оба локалитета постављене и вођене по истој методи, узрок различитог успеха заштите може бити у различитим условима инокулима на поменутим локалитетима, јер је у свим случајевима спонтано, у односу на вештачку инфекцију, доминантно утицала на појаву прелагања бељике. Један од разлога може бити и различитост природне отпорности врсте алпица са ова два локалитета али, такође, и микроклиматски услови у деловима састојина у којима су огледи спроведени.

Резултати испитивања могућности заштите трупца храста дужина (Q robur) на локалитету Сlagenске низијске шуме (Почевска Сlagen), 17 недеља после инокулијације показују да је код трупчића контролисе групе А, у свим случајевима срчица била ненападнута, док је бељика била у фази мала травлења и на површini и у пукотинама коре, као и на делу бељике на попречним пресечима трупчића.
Иста ситуација констатована је и код контролне групе Б, као и код тест група Ц, Д и Е, уз напомену да су се на површини и у пупоћинама коре код последње по- мена у групама ванови карпофор S.hirsutum, као последица спонтане инфекције. Изузетак у овој групи били су трупчићи инокулисани главом S.hirsutum (оба изолата) код којих је бељика локализована симптоме пролуктости.

Контролни трупци дужине 1,5 m (група Г), 17 недеља после инокулације биле су потпуно обрасле плодносним телом S. hirsutum, уз појаву одмакле фазе тру- лежи бељике. Срчан је у свим случајевима био испарићути, док испад коре и у дрвету нису констатоване ларве или ходници ксилофага.

Као и за локалитет у Србији, тако се и за овај локалитет може закључити, да је доминантну улогу у процесу бељике имала појава спонтане инфекције у самој састојини и то првенствено од врсте S. hirsutum, чија су бројна плодносна тела констатована на трупцима у свим три локалитета (Мирић, Поповић, 2003).

У поређењу са успешном заштитом на локалитетима у Србији, може се закључити да је највећи успех забележен код је у лапана у дрвећу, с обзиром да је прогла- дом, 17 недеља после инокулације, готово у свим испитиваним групама констато- вана одмакла фаза трулежи бељике. На сва три локалитета и код китњака, код држ- њана, услед спонтане инфекције главом S. hirsutum јављала се мозација трулеж бељике. Према Rayner-y и Todd-y (1979, према Frankland et al., 1982) ове мрке линије, умешају трулех зона дрвета, последица су соматске иноматабилности, односно интраасцијального антагонизма на истом хранљивом супстрату, јер су инцид- је у одвеженим зонама дрвета биле различитог порекла (различит зојеви исте врсте).

У састојивским условима са високом концентрацијом спора (нивоом иноку- лума) ове врсте у ваздуху, пореклом из различитих плодносних тела, ова претпос- тавка се може узети као реална. У многим случајевима ово је потврђено и лабораторијским испитивањима, тајним тзв. смешаних колура (Rayner, 1976, Frank- land et al., 1982, Lazarev, 2002).

У целини постајано, с обзиром на процесе бељике храста код утицаним главом S. hirsutum и неуспешног успеха заштите трупци, примењени методи ин- дикације, као и испитивана заштитна средства не могу се са потпуномшћу препо- ручити као практичну примену, мада се у условима држег ваздуховања трупци на сечни могу примењивати. С обзиром на инсекто-заштитницу природу препарата, може се претпоставити да они умногови умањују опасност од напада ксилофага које могу бити вектори инфекције трупци главама. Ипак, истичемо да резултати добијени у нацима истраживањима не задовољавају у потпуности очекивани ефекте.

Проблем очувања бељике храста у смислу максималног квантитативног и квалитативног искоришћења сировине, треба решавати правилним избором времена.
сече, правовременим извлачењем и прерадом трупала или испитивањем и увођењем неких ефикаснијих препратака, уколико из организационо-техничких и других разлога долази до дужег задржавања трупала на сечини.

4.3. Утицај стереоидних гљива на структурне промене елемената анатомске грађе дрвета храста

Анатомске промене у елементима дужињака и китњака изазивање дејству стереоидних гљива, описане су у даљем тексту, а најкарактеристичнији детаљи су приказани на фотографијама.

У свим елементима структуре дрвета дужињака изложених дејству немачког изолата *S. hirsutum*, била је присутна велика маса хифа, при чему је биљака у већој мери прорасла хирама у односу на срчику. На древним власником тензионог дрвета (Г слојеви) запажени су јасни знаки разарања зидова, при чему је долазило до њиховог стањивања и у зони биљнке и зони срчице и то из правца увена. Лумен схватених паренхимских ћелија били су испуњени хирама, док је њихов садржај (полифенолне материје) добио делом концентрисан зидови ћелија нормалних древних власника у зони биљнке су јако деградирани (слика 1), док у зони срчице, и поред присуства ћелије, масе хифа, није уочено овај феномен. Срчице ћелија (*трансмембрана*), као једна, тако и више, у зони срчице, добија делом су прорасле мицелијом, уз уочљиво концентриране лептонованих полифенолних материја из лумена паренхима срчиных зрака.

Код храста китњака (*Q. petrea*), такође, присутна је велика маса хифа у свим елементима грађе дрвета, како у биљници тако и у срчици.

У обе ове зоне, местимично се уочава потпуна декомпозиција зидова древних власника, а нарочито тензионог дрвета, при чему остају још неразложени једини делови средње ламеље која је јаче лигнификацирана, па самим тим и мање подложна биолигенацији (слика 2).

Врста *S. hirsutum* очигледно брже и лакше изазива деградацију дрвета китњака, разарајући чак и срчицу, него што је то био случај са дужињаком.

Код свих слемских грађе дрвета дужињака (*Q. robur*) изложених дејству мицелија домашњег изолата *S. hirsutum*, била је присутна велика маса хифа, како у зони биљнке тако и у зони срчице. Зидови (секундарни и примарни) древних власника тензионих дрвета (Г слојеви) у зони биљнке стањени су скоро до сапе средње ламеље, док су зидови паренхимских ћелија у једноредним срчиних зрака у истој зони, местимично кородирани.

Тракеје у зони биљници су испуњене масом хифа које користе јамице за пролаз до суседних ћелија, при чему је видљива почетна фаза разлагања зидова у зони ово јамастих кроз које пролазе хифе. У луменима ћелија власана тензионог дрвета (Г слоја) и паренхимских ћелија срчице, присутна је маса хифа, али без видљивих знакова разарања ћелијског зила.

51
Код китњака (*Q. petraea*) хифе су биле присутне у свим елементима грађе у зони бељике као и срници. У зони тензионог дрвета бељике, зидови дрвних ћелија су становни или потпуно разорени. Местимично пресецаје само средина замода, ипак је и она потпуно разложена. Полифенолни садржај паренхимских ћелија срних зрака добром делом је конзумиран, а такође и бељишки зидови. Зидови трахеја разорени су у великој мери.

У зони срнице само се местимично уочава деградација ћелијских зидова дрвних влакана док је садржај паренхимских ћелија конзумиран у мањој мери него код бељика (слика 3).

Код дрвета дужњака (*Q. robur*) изложеног дејству гљива *Ch. purpureus* хифе су у зони срнице мање присутне него у зони бељике у којој су зидови дрвних влакана и паренхимских ћелија разорени (слика 4).

У зони срнице, полифенолни садржај паренхимских ћелија је местимично конзумиран, а појединачно се уочавају и ћелије емањених или кородираних зидова (Мирић, Цвјетићанин, 1998, Мирић, 2003).

У дрвету китњака (*Q. petraea*) хифе су такође у већој мери присутне у бељици него у срници, при чему су у зони бељике јасно уочљива оштећења свих типова

Слика I - Кариофоре гљиве беле трулежи бељике храста *Sternum hirsutum*
Figure I - Fruit bodies of Oak sapwood White-rot fungus *Sternum hirsutum*

Слика II - Кариофоре гљиве беле трулежи бељике храста *Ch. purpureus*
Figure II - Fruit bodies of Oak sapwood White-rot fungus *Ch. purpureus*
дравних ћелија (слика 5). У поређењу са осталим анализираним препаратима, у овом случају је интензитет разарања зидова дравних ћелија највише изражен. У зони срчиње, полифенолни садржај паренхимских ћелија сржних зрака местимично је консумиран, док је корозија зидова дравних, као и паренхимских ћелија сржних зрака, јасно уочљива (слика 6).

Spiers и Hopcroft (1988.) наводе да врста Ch. purpureum разара све слојеве дравних ћелија код Salix humboldtiana var. pyramidalis, укључујући и средњу ламелу. На зидовима ћелија ови аутори су констатовали бројне алвеоле, што је и карактеристично за гливе дравних трележи које исподавају способност унформног станивања ћелијских зидова од лумена ка средњој ламели, формирањем алвеола и експанзијом кроз порусе јамице (Willcox, 1968). Поред пенетрације зидова, констатовано је и консумирање полифенолног садржаја лумена паренхимских ћелија врбе.

Код дрвета љушћака (O. robusta) изложеног дејству гливе S. rugosum хифе су биле присутне у већини, нарочито у зони тензивног дрвета (1 слојеви), при чему се уочава станивање ћелијских зидова. Хифе су, такође, присутне и у трајевима где излазе алумена орађења око јамице које користе као природне пролазе за експанзију у суседне ћелије (слика 7). У зони срчиње се не уочава разарање или станивање зидова, али изгледа да хифе консумирају садржај паренхимских ћелија.
Figure 1. Austrian Oak sapwood with destroyed walls of wooden fibers and hyphen of *S. hirsutum*

Figure 2. Sessile Oak sapwood with destroyed walls of tension-wood fibers, due to impact of *S. hirsutum*

Figure 3. Sessile Oak heartwood with hyphen of *S. hirsutum* inside the parenchyma cells and wooden fibres

Figure 4. Austrian Oak sapwood with destroyed walls of fibers and parenchyma cells, due to impact of *Ch. purpureum*
Слика 5. Белика кнгла са хифама Ch. purpureum и оштећенима зидови дрвних ћелија
Figure 5. Sessile Oak sapwood with hyphae of Ch. purpureum and damages of wooden cell walls
Слика 6. Српичка кнгла са хифама Ch. purpureum и оштећенима зидови дрвних влакана и паренхима округих зраца
Figure 6. Sessile Oak heartwood with Ch. purpureum hyphae and damages of wooden-fiber walls and parenchyma of medullary rays
Слика 7. Хифе S. rugosum у трахејама белике дужњака оштећенима зидови у зонама око јонкина (SEM)
Figure 7. Hyphae of S. rugosum in tracheas of Austrian Oak sapwood with damages of wall in nearby pit zones (SEM)
Слика 8. Оштећени зид паренхимских ћелија српичке кнгла под утицајем S. rugosum
Figure 8. Damages of parenchyma cell-walls of Sessile Oak heartwood, due to impact of S. rugosum (SEM)
Слика 9. Белика дуњача са хифама X. frustulatus, стањеним зидовима влакана тензионог дрвета, трахеија и ћелија паренхима

Figure 9. Austrian Oak sapwood with X. frustulatus hyphae and thinned walls of tension wood-fibers, tracheae and parenchyma cells

Слика 10. Оштетења зида парен. ћелија у зони ерите дуњача са хифама X. frustulatus (SEM)

Figure 10. Damage of parenchyma cell-wall in heartwood zone of Austrian Oak with hyphae of X. frustulatus (SEM)

Слика 11. Белика китњака са оштетењима зидова влакана тензионог дрвета и ћелијама паренхима под утицајем X. frustulatus

Figure 11. Sessile Oak sapwood with damages of walls of tension wood-fibers and parenchyma cells due to impact of X. frustulatus

Слика 12. Стањени и релокативни зидови влак. ерите китњака утицајем X. frustulatus (SEM)

Figure 12. Thinned and destroyed walls of wooden fibers of sessile oak heartwood, due to impact of X. frustulatus
УТИЦАЈ СТЕРЕОИДНИХ ГЉИБА НА РАЗЛАГАЊЕ ДРВЕТА ХРАСТА И МОГУЋНОСТ…

Код китњака (Q. petraea) хибе су присутне и у бељици и у срници. Ђелије у зони тензионог дрвета у бељици (Г слојеви) показују јасне знake деградације, док су зидови паренхимских ђелија једнородних срних зрака у видљивој злокачественој седиментацији. У зони срнике хибе конзумирају садрај парапаренхимских ђелија срних зрака и ђелија аксијалног паренхима. При већем увећању (на SEM-у) видљиви су алвеоларна оштећења зидова паренхимских ђелија (слика 8).

Код дрвета дужњака изложеног дејству гљиве X. frutisulatus хибе су биле присутне и у бељици и у срници. У зони бељици дошло је до разлагања зидова ђелија тензионог дрвета и паренхимских ђелија (слика 9). У зони срнике уочили је корозија зидова паренхимских ђелија (слика 10) као и конзумирање њиховог садраја. У тркачевима срнике, хибе користе жамицу за експанзију у суседне ђелије, али се не уочида деградација зидова у пенокомичној овалити хибм.

Код китњака хибе су биле присутне у свим елементима грађе дрвета, а нарочито у паренхимским ђелијама срних зрака. Зидови ђелија тензионог дрвета у зони бељици показују јасне знake деградације (слика 11). У зони срнике је присутна мања мања хиба X. frutisulatus него у бељици, а тензионо дрво у овој зони је у мањој мери деградирано него тензионо дрво бељицег. Своро потпуно стање је оштећења се на кларног и примарног зид ђелија дрвених влакана инак је, при већој магнификацији (на SEM-у), јасно видљиво (слика 12).

5. ЗАКЉУЧАК

1. У стаблима китњака и дужњака бочно ширење микције свих истипатих гљива, било је знатно спорије од акојалигог. После 163 недеље све ране на китњаку су потпуно калусирале, осим на стаблим иникулинским гљивом S. rugosum, где су конституована таласте деформације кортикалног и субкортикалног ткива. После 58 недеља ране на дужњаку су биле некалусиране, са распуцницима и појавом мрког екссудата, а констатована је појава хлороозе и појединачних сувих грана у срници.

Нека контролна (инокулинисана), као и тест (инокулинисана) стабла и китњака и дужњака на свим локалитетима показале су промене индекса здравственог стикна, на ове појаве не могу довести у директну везу са активношћу стериоидних гљива. До потпуног калусирања рана на китњаку и дужњаку долази у току две и три године од настанка озеда.

2. Срница трпаша и китњака и дужњака, као заштићених тако и незаштићених, остала је неопштесана и после 4 месеца у шуми, на свим локалитетима, а спонтана инфекција од гљиве S. hirsutum, имала је доминантан утицај на пропадање бељицег. У ђелици посађено, може се констатовати вишак природног опороста срнике китњака храстаса и оба локалитета, а, са друге стране, изражена отстлбношћ бељицег. Заштитини ефекат постигнут је само
на трпцима китњака на локалитету Сличина (Мајданпека домена). Масова споштана инфекција глијом S. hirsutum на сва три локалитетета, истиче значај нис врсте за пропадање бележе храста, у едноему на устане критика стериоидне гливи.

Због пропадања бележе трпцима обе врсте храста у шуми, примењени на- чин апликације препарата за заштиту, као и сами препарати, не могу се са великим успехом пререшити за коришћење при заштити трпцима у шуми. Као мера очувања бележе храста од пропадања, препоручује се пра- вовремено извлачење, правилно лагеровање и благовремене примарне пре- раде трпцима храста или испитивање и увођење неких ефикаснијих препа- рата за заштиту дрвета на сечинама.

3. У целини посматрано, испитивање стериоидне гливи изазвања већа оште- тења елемената грађе китњака него дужњака. Зона бележе обе врсте хра- ста, оштетења је од сличне. Од елемената грађе обе врсте храста, најуго- женија су влажка тензионог дрвета (Г слојеви) и паренхимске ћелије, док су трахеје и нормална врста влажак најчешће у зони срчка. општина према дејству испитиваних стериоидних глива. У свим испитиваним комбинацијама где су конститована оштећења, гливе су најпре конкурирале садржај паренхимских ћелија, затим разараће зидове влажка тензионог дрвета, зидове паренхимских ћелија, а затим зидове трахеја у зонама ово- јанцима, док су поређана влажка влажак најчешће у зони срчка, била нај- мање оштећена, или неоштећена. При стањању зидова, разлагање је на- предовало из дужма ћелија према средњој замели.

Због неправилне и неравномерне дистрибуције и учешћа оштећених зона унутар дрвета, закључак о укупној угрожености одређених врста, односно захвата храста не треба доносити у квалитативном, већ искусивном у квалитативном смислу.

ЛИТЕРАТУРА

58
УТИЦАЈ СТЕРЕОИДНИХ ЂУЛИВА НА РАЗЛАГАЊЕ ДРВЕТА ХРАСТА И МОГУЋНОСТ…

Гајић М., Тешић Ж. (1992): Вредна рода храста (Quercus) у Србији, АШ-ДЕЛО, Београд
Живојиновић С. (1958): Запишач нема, Научна књига, Београд
Ивановић М. (1992): Много билога, Наук, Београд
 Јовановић Б. (1991): Лекаровија, Научна књига, Београд
Карапшић Д., Арђелић М. (2002): Нијемачке сламе: проморавачки биољеци храстова у немачкој и њемачкој девоари, Центар за заштиту и унапређење биомедицине, Црне Горе, Подгорица
Lažatev V. (2002): Interaction of recombinant mycelia of the fungus Fomitopsis pinicola (Sow. Ex Fr.) Karst. on PDA medium, Genetica 1, Vol. 34, Beograd (21-33)
Марикиновић П. (1992): Сушене граце китиља у североисточној Србији, урочени и биолошки, „Епидемијске сушене храста китиља у североисточној Србији”, Проузет, Пожаревац
Мирић М. (1994а): Биохемијска процеси вегетације мицелија биољаца североисточне србије из рода Fomitopsis изолирана из храстова и његова имунизација, „Запишач нема данас и сутра”, одбор за научно издавање, Београд
Мирић М. (1994б): Биохемијска процеси вегетације мицелија биољаца храстова изолирана из храстова изолирана из североисточне србије, „Запишач нема данас и сутра”, одбор за научно издавање, Београд
Мирић М. (1995): Биохемијска процеси вегетације мицелија биољаца храстова изолирана из храстова из североисточне србије, „Запишач нема данас и сутра”, одбор за научно издавање, Београд
Мирић М. (1997а): Прилагођавање хоризонталним и вертикалним геометријама биољаца храстова, „Запишач нема данас и сутра”, одбор за научно издавање, Београд
Мирић М. (1997б): Прилагођавање хоризонталним и вертикалним геометријама биољаца храстова, „Запишач нема данас и сутра”, одбор за научно издавање, Београд
Мирић М. (2003): Deterioration of oak wood by fungus Chroodrosetum purpureum (Pers. ex Fr.) Rozb., Int. scientific conference “50 years University of Forestry”, Sofia

59
Мирчић М. (2004): Занимљива дрвена - биолошки пребиљевача дрвена код њена и на њим у коморама њиховим структура, Дрвотехника 4, Београд (8-10)
Мирчић М., Петровић С. (2004): Занимљива дрвена - биолошки пребиљевача дрвена, Преради дрвета 6, Београд (38-45)
Мирчић М., Поповић З. (2003): Contribution to the knowledge of the fungus Stereum hirsutum (Wild. ex Fr.) S.F. Gray - The cause of oak sapwood white rot, International scientific conference “50 Years University of Forestry”, Софија
Мирчић М., Схемт М. (1992): Избришивање сировачних лака, Главни штамарски факултета 74, Шумарски факултет Универзитета у Београду, Београд (11-15)
Пеар П.В., Рютерфорд И. (1981): A wound - associated suberized barrier to the spread of decay in sapwood of oak (Quercus robur L.), Physiological Plant Pathology 19, 1 (359-369)
Петровић М. (1987): Занимљива дрвена, Шумарски факултет Универзитета у Београду - Институт за прераду дрвета, Београд
Петровић М., Мирчић М. (1986): Резултати испитивања занимљивих посебности биолошке облика немијских дрвета, Записник материјала 27/2, Београд (8-13)
Петровић М., Мирчић М. (1987): Резултати испитивања немијских дрвета и израда научних приказа о сировачним лакама у ЈС Србији, Записник материјала 28/2, Београд (32-37)
Райнер А.Д.М. (1976): Deuteromycetes Phylumycetes and narrow dark zones in decaying wood, Transactions of the British Mycological Society 67(3) (345-349)
Райнер А.Д.М. (1979): Internal spread of fungi inoculated into hardwood stumps, New phytol, 82(2) (505-518)
Руфак Џ. (1960): Биолошки холтерснорендер Пилзе, VEB Gustav Fischer - Верлиг, Женга
Сталперс Ж. (1975): Identification of wood-destroying Fungi in pure culture, Centralbureau voor Schimmelcultures, Studies in Mycology № 16, Браам
Ургеновић А. (1956): Технологија дрвета, Накледнички завод Хрватске, Загреб
IMPACT OF STEREOIDE FUNGI ON DECOMPOSITION OF OAK WOOD
AND POSSIBILITY OF ITS' PROTECTION

Summary

Four most frequent stereoide fungi i.e. Stereum hirsutum (Wild. ex Fr.) S.E. Gray, Chondrostereum purpureum (Pers. ex Fr.) Pouv., Stereum rugosum (Pers. ex Fr.) Fr. and Xylobolus frustulatus (Pers. ex Fr.) Karst. have been investigated on their impact on alive sound trees of Sessile (Quercus petraea agg.) and Austrian Oak (Quercus robur L.), as well as on the fresh felled trunks in stands conditions. The possibility of preventing attack and decay of wood has been checked out by using several appropriate wood preservatives. Microscopically and sub microscopically analyses of inoculated and incubated Oak wood samples in controlled laboratory conditions, have been performed using Light microscope providing normal-, polarized-, UV-, as well as the blue-fluorescence light. The highest magnification, up to 11,000 times, has been provided by using SEM. The result showed speed of mycelium spread in longitudinal and tangential directions in sound upstanding trunks, time of callusing of artificially made wounds as well as the changing of indexes of health conditions (appearance of leaf chlorose and died branches), that have been different depending to wood species, fungus species as well as to inoculation.

The results of testing the possibilities of preventing the decay of trunks just after felling, at temporary forests storages, showed that it has been an uncertain success, so it is recommended to perform organisational and technical measures, what means emergency export of logs out of forests. Four months has been enough long period to enable spontaneous infection in situ and appearance of sapwood white rot provoked by wild strain of fungus Stereum hirsutum originated from forest.

All tested fungi caused more degradation in the case of Sessile Oak than in the case of Austrian one. The sapwood zone has been more endangered than the heartwood one. Fungi previously consumed the content of parenchyma cells, than destroyed the walls of tension wood-fibers, than the walls of parenchyma cells and finally the walls of tracheas in nearby zones of bordered pits. The normal wood fibers, especially in the heartwood zone, have been slightly damaged or undamaged. Due to unordinary and irregularly distribution of damaged zones inside the wood, the conclusion relating to general endangering of certain wood species or its' zone should not be considered in quantitative, but exclusively in qualitative sense.