Berries have become an inevitable part of everyday meals of all diet-conscious men. These fruits are rich in phyttonutrients like polyphenols (flavonoids, anthocyanins), vitamins (vitamin C, B, A and K) and minerals (Ca, Mg, Zn), which give them their unique and pleasant taste. They are at the same time low in fats, which makes them a popular and enjoyable food or snack. The juices obtained from berries have a specific flavor and aroma that makes them true energy boosters. All these features make the berries ideal part of the modern man’s diet. Dietary guidelines around the world recommend increased intake of fruits and vegetables as an exceptional source of phytochemicals for the prevention of chronic diseases. In addition, different epidemiological studies showed that the consumption of anthocyanins, the predominant class of flavonoids in berries, reduces the risk of chronic noncommunicable diseases (cardiovascular diseases, diabetes, cancer and arthritis) due to specific antioxidative and anti-inflammatory effects they demonstrate in vitro and in vivo (1, 2) (Figure 1).

Figure 1. The health benefits of berries (Stapleton et al., 2008)
Berries are at the top of the most important agricultural export items for several years in Serbia, second only to grains. The data from 2012 showed the export of 100,000 tons (mainly of frozen fruit) and given the condition of our agriculture, they are expected to retain that position. The raspberries are the berries primarily cultivated and exported, followed by strawberries and blackberries, while the importance of other species (chokeberry, black currant and bilberry) of this group of fruit is recognized and their production is on the rise.

Nowadays, food products have to satisfy numerous quality criteria before commercialization, especially in industrialized countries, where high quality food products have well-defined demanded characteristics. Among these quality criteria, the authenticity and traceability of wild berries and their product are very important. The characterization of berries elements has become the field of interest because their concentration can influence the quality of fruit and eventually the health of consumers. Chemical composition and nutritional value of berries is influenced not only by origin, but by the soil, climate, irrigation, agricultural practice and storage as well.

The analysis of variance shows that the differences in metal content between berries are statistically significant (p < 0.05) for iron, manganese, potassium, phosphate, magnesium and sodium and not for zinc. Regarding metal content, the variables responsible for the main difference between Rubus and Ribes genus, are phosphate, potassium and magnesium, while the results for zinc and calcium suggest that the contents of these metals are not linked to genetic origin. The author obtained this data for the fruit cultivated in the same field and under the same conditions, and concluded that the principal factor that determines the content of metals and phenolics in the berries, is genotype. These data implied that berries could be differentiated on the basis of their metal, anthocyanins and polyphenols content.

Zinc in plants

Numerous studies have confirmed the enormous biological significance of zinc in and for the human body. Although it is a rare element in the Earth’s crust (52-80 mg/kg) (5), it is a well known fact that agriculture increases zinc content in surface soils, as well as nonferrous metal industry and fertilizers. Zinc can also be found in water, where it originates from mine and industrial drainage, urban runoff, and from the erosion of soil particles containing Zn (US EPA 1980). The zinc content in plants differs considerably „reflecting the impact of different factors of various ecosystems and of genotypes” (6).

The availability of Zn depends on its physicochemical form. The free ionic form of Zn is totally available to a plant, while as a chelate, precipitate or part of live or dead soil biomass, it is partly or completely unavailable to a plant (7).

Also, there are many factors that determine the availability of zinc, such as the soil pH and structure, activity of microorganisms, and water content. Among them, soil pH (which can vary from 4.0 to 9.0) exhibits an impressive control over the free ion concentration. An increase of one pH unit, in 5.5 - 7 range, causes a 30-45-fold decrease in aqueous Zn$^{2+}$-ion concentration (7).

According to Kabata-Pendias (5), the highest concentrations of zinc are found in cereal grains (18-33 mg/kg mean value worldwide) being the lowest in rice and the highest in oats. The problem that occurs with zinc in grains is that it is bound tightly due to high phytate and dietary fibers contents, and its bioavailability is limited.

Being an important factor in human physiology and biochemistry, zinc is also a common component of plant metabolic pathways. The involvement of zinc in plant metabolism is essential since it is an active compound of dehydrogenases, proteinases, peptidases and phosphohyrolases. Zinc also stabilizes cellular components and influences cellular membrane stability (5).

Zinc deficiency (below 20 mg/kg) can occur in plants mostly in calcareous and alkaline soils, under acid and semi-acid conditions. The deficiency affects young leaves first. Zinc-deficient plants are undeveloped and short too due to inadequate growth hormone supply (5). Zn deficiencies also appear in highly weathered tropical soils that cover about 20 % of the world’s land surface in the tropics and subtropics. Almost half of the agricultural soils from India, one-third of the agricultural soils of China, 14 Mha in Turkey and 8 Mha in Western Australia are considered Zn-deficient for plants (7).

However, an even bigger problem then Zn-deficiency are the toxicity and intolerance of zinc in plants which occurs in soils with prolonged use of fertilizers that contains zinc, as well as with inputs from other pollution sources which increase zinc content in soils. Zn-toxicity is often associated with a joint deficiency of Mg, Fe or Mn due to a competitive uptake between the polyvalent cations (8). These states are species- and genotype-dependent and rely on the plant growth stage. Eisler (9) reported that sensitive plants wither when the soil Zn concentration exceeds 100 mg/kg and photosynthesis is stopped when the content is over 178 mg Zn/kg. Some species have shown the ability to accumulate larger amount of zinc (Thlaspi spp. can contain more than 10,000 mg/kg) and are used for phytoremediation of soil (10).

Since papers related to berries mainly allude to phytoc hemicals as pivotal for positive effects on human body, we would like to make reference to the content of zinc in berry fruit, as well as comparing zinc content to recommended daily intake and review zinc roles.

Considering that Recommended Dietary Allowance (RDA) (National Research Council, 2001) for zinc has been set at 11 milligrams per day for men and 8 milligrams per day for women,
Table 1. Zinc content in berries from the U.S. Department of Agriculture Nutrient Database (11)

<table>
<thead>
<tr>
<th>Berry</th>
<th>mg Zn/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackberry, raw</td>
<td>0.53</td>
</tr>
<tr>
<td>Blueberry, raw</td>
<td>0.16</td>
</tr>
<tr>
<td>Cherry, sour, red, raw</td>
<td>0.10</td>
</tr>
<tr>
<td>Cranberry, raw</td>
<td>0.10</td>
</tr>
<tr>
<td>Currant, black, raw</td>
<td>0.27</td>
</tr>
<tr>
<td>Currant, red and white, raw</td>
<td>0.23</td>
</tr>
<tr>
<td>Gooseberry, raw</td>
<td>0.12</td>
</tr>
<tr>
<td>Raspberry, raw</td>
<td>0.52</td>
</tr>
<tr>
<td>Strawberry, raw</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Supplementation cured this disorder. After a while, the Food and Nutrition Board of the National Academy of Sciences established the recommended dietary allowances for zinc for humans. Since then, the agricultural and pharmaceutical industries were required by law to label the zinc contents of their products.

Even though it was believed that zinc deficiency was rare in humans, the clinical pictures similar to those reported for zinc-deficient dwarfs from the Middle East were common in many developing countries, where primarily cereal proteins were consumed by the population. Few reports have also shown that zinc deficiency affected both males and females. It has been documented that a nutritional deficiency of zinc affects today more than 2 billion people in the developing world. The clinical manifestations related to zinc deficiency include growth retardation, hypogonadism, impaired cognitive functions and immune disorders (16).

The zinc deficiency affects not only the developed countries, but also the developing world. Newborns, children, pregnant women and old people are the populations at highest risk. This deficiency tends to appear when there is a low zinc intake, an increased loss of zinc from the body, or with increased Zn requirements of the body. The early sign of zinc deficiency is the loss of taste. Zinc deficiency has been linked with anorexia, dermatitis, poor wound healing, hypogonadism with impaired reproductive capacity, impaired immune function, and depressed mental function (18). Zinc deficiency in mothers has been associated with increased incidence of congenital malformation in infants (19).

Zinc homeostasis and bioavailability

The human body contains zinc in all tissues and fluids. The largest pools of zinc are the muscles and bones, liver and skin as well, and just 5% occurs extracellularly (12). A small amount of readily available zinc is stored in the liver, kidney and pancreas (20). Beside its function as an active centre of more than 1000 different enzymes that occur in all six groups of the IUBMB (International Union of Biochemistry and Molecular Biology) enzyme classification (6), Zn maintains the structure and function of membranes, either stabilizing thiol groups and inhibiting oxidative damage by binding to membranes at sites that otherwise might be occupied by metals with a redox potential, or by scavenging free radicals by bonding with metallothionein (12).

The body does not have depots of zinc. About 1% of the total body zinc needs to be restored daily by food intake (21) and longed periods of zinc reduction cannot be compensated. A systemic zinc deficiency can be the result of: 1. decreased dietary intake, 2. decreased absorption, 3. increased elimination, 4. mutations in the ZIP4-transporter encoding gene the (i.e. acrodermatitis enteropathica), important in intestinal uptake, 5. tissue and cellular redistribution or use of certain medications (penicillamine, diuretics, antimetabo-
Zinc content in berries - the importance for human health

Bojana Miladinović at al.

Zinc connection with depression has been widely reported. This metal is found in many glutamatergic nerve terminals in its ionic (Zn2+) form (36). It has been reported that several diverse treatments (acute or chronic treatment with zinc, co-administration of zinc and antidepressants at subeffective doses) produces antidepressant-like effect in experimental animals predictive of antidepressant activities (37, 38). The opposite – depressive effect was also confirmed where rats and mice were fed with zinc-deficient diets exhibited depressive-like behavior, which was reversed after the use of antidepressants (39).

When humans are concerned, it has been found that serum zinc is correlated with the severity of depression (40). Low serum zinc levels were found in patients with depression (41). It was found that 25 mg of zinc for 12 weeks, improved the effectiveness of antidepressant treatment in patients who were previously resistant to conventional pharmacotherapy (42). It was also found that depressed patients had serum zinc levels lower than control subjects, and after an antidepressant treatment, these values increased, suggesting that serum zinc may be a marker for depression (43). Women with a lower intake or without zinc supplementation had more symptoms of depression than women with higher intakes or those who took zinc supplements (44).

Swardfager (45) noticed that zinc plays a role in depression by modulating oxidative stress, inflammation, neuroplasticity and neurogenesis. It was observed that chronic fatigue syndrome patients, who usually exhibit depressive symptoms, have lower serum zinc levels, which lead to increased oxidative stress, impairment of the immune system and increased inflammatory signs. These changes may contribute to the symptoms of depression (46).

The role of zinc in Alzheimer’s disease

Alzheimer’s disease (AD) is the most common form of senile dementia, characterized by a progressive deterioration of cognitive abilities (47). In addition to a significant loss of cholinergic neurons, AD is characterized by the accumulation of protein aggregates, the main constituent of which is amyloid-β protein. Amyloid-β originates from APP protein by the cleavage of one of three proteinase enzymes called α, β, and γ secretases (48, 49).

Manosso has reviewed the current studies that associate zinc with the pathogenesis of AD, focusing on the interactions of zinc with proteins that are commonly and significantly altered in this disease. It was proposed that diverse neurodegenerative processes may perturb the cellular zinc le-
vel, raising it to the level where zinc contributes to the disease progression. This phenomenon may affect the plaque development and modify zinc content in the tissue through immuno-inflammatory and/or regenerative responses (36).

The synaptic vesicles in the brain contain 15% of zinc. Smaller amount of zinc may be loosely bound to proteins and amino acids within the cytoplasm. These are labile, or chelatable forms of zinc, while the rest is tightly bound. The hippocampus contains the highest concentrations of chelatable zinc, where vesicular zinc is localized in neurons using glutamate as a neurotransmitter (50). Even though glutamate is the major neurotransmitter in the hippocampus and cortex, not all neurons that use glutamate contain chelatable zinc. A link of excitatory amino acid with AD has been suggested (51). The hypothesis suggested that in AD, there are initial increases in intracellular chelatable zinc which is then released, precipitating β-amiloid proteins and compromising neuronal viability. The resulting immunological and inflammatory responses are partially responsible for the modifications of tissue levels of chelatable zinc. Abnormally high and low intracellular chelatable zinc could be involved in neuronal death by different mechanisms (52).

Increases of chelatable zinc occur as a secondary response to oxidative stress. Chelatable zinc increases in the neurons undergoing apoptosis (53) and other cells induced to die via apoptosis (54). Moreover, a loss of cholinergic neurons may cause increased hippocampal content of zinc in AD (55). Increases in chelatable zinc may initiate neurodegenerative processes by direct activation of transcription factors, protein kinases and DNA synthesis and by inhibition of enzymes critical for cell survival. Zinc inhibits brain sodium-potassium adenosine triphosphatase (Na-K-ATPase) and mitochondrial energy production at micromolar concentrations. Inhibition of Na-K-ATPase and complexes I and II of the mitochondrial respiratory chain causes neuronal death (52).

Zinc and immunity

Low serum zinc level is a sensitive marker of immune activation and inflammation (56) and elevated production of pro-inflammatory cytokines, as interleukin-6 may be one of the causes of zinc deficiency (57). Zinc plays a pivotal role in few signal transduction and gene expression pathways, including that of cytokine genes (58). Prasad showed that the activity of serum thymulin, a thymus-specific hormone involved in T-cell functions, was decreased in mildly zinc-deficient subjects (59).

The positive role of zinc with ascorbic acid, L-carnitine and methylmethionine sulfonium chloride (vitamin U) has been discovered. It was reported that these complexes exhibited an insulinomimetic activity in diet-induced metabolic syndrome in rats. The World Health Organisation (WHO) has issued a warning about pandemic outbreak of this syndrome, the dominant underlying risk factors of which are abdominal obesity and insulin resistance. It is a well known fact that adipose tissue expresses and secretes a panel of adipocytokines (plasminogen activator inhibitor-1,2, TNF-α), which contribute to the development of vascular diseases, hyperlipidemia, hyperglycemia and insulin resistance. Thus the reduction of abdominal adipose tissue is the first line of treatment or prevention for metabolic syndrome (60). Insulinomimetic activity of Zn(II) ion complexed with maltol, amino acids, picolic acid and their derivatives has been also confirmed by Yoshikawa and others (61). These results indicate that metabolic syndrome could be prevented through the reduction of visceral adipose tissue content and/or improvement of blood fluidity brought about by a Zn(II) complex with vitamin U and vitamin C (60).

Ophthalmic role of zinc

Zinc is present in all retinal cells, being particularly concentrated in photoreceptors. Zinc, as an essential part of zinc-finger DNA binding proteins, influences the expression of numerous zinc-binding proteins (62) and is engaged in the transcriptional regulation of binding elements (63). The ability of zinc to inhibit oxidation is concentration dependent, since zinc in high concentrations is toxic to the retina (64). Significantly, retinal zinc concentrations are affected in age-related macular degeneration (AMD) (65).

Zinc has a key role in multiple functions of general cell metabolism (mitochondrial function, gene expression, antioxidant defense, DNA repair mechanisms, cell proliferation, cell differentiation, apoptosis), retinal development and specific retinal functions (phototransduction, rhodopsin recovery, neurotransmission). Zinc also participates in the conversion of light stimulation into an electrical signal (phototransduction); intracellular signals within the photoreceptors (rhodopsin deactivation and/or regeneration); and/or communication between photoreceptors and other retinal neurons and glial (Muller) cells. Reisomerization of 11-cis-retinal from all-trans retinol is mediated by a metalloenzyme, retinol dehydrogenase, which requires catalytic Zn2+ at the active site of the enzyme (62).

Retinal zinc bioavailability responds quickly to any variations in serum levels. A specific retinal regulatory mechanism of zinc homeostasis reacts in the early stages of a deficiency. These mechanisms include oxidative stress and photoreceptor disruption. Zinc deficiency results in poor dark adaptation (66).

No retinal abnormalities have been described in animal studies or in patients with zinc overload. This means that in vivo homeostatic mechanisms may prevent zinc from accumulating in the healthy retina (62).

Aging has been associated with zinc depletion. Wills (65) found a reduction in total zinc in the neuroretina of men, although not in women.
This author suggested that processes such as inflammation could trigger the AMD abnormality and result in secondary alterations of zinc homeostasis.

It was also found that zinc protects the retina from oxidative stress-induced pericyte apoptosis, neovascularisation and capillary leakage, and it can be considered beneficial in the prevention of diabetic retinopathy (67).

Therapeutic role of zinc

Zinc has been analyzed and approved by the Food and Drug Administration for the treatment and long-term management of Wilson’s disease. Zinc prevents accumulation of copper in genetically susceptible individuals and may decrease copper load in patients with Wilson’s disease (68). Zinc was effective in decreasing the incidence of infections in therapeutic dosages (75 mg of elemental zinc daily in three separate doses). Zinc acetate lozenges as a therapeutic agent reduced by 50% the duration and severity of the common cold (69).

Scientists around the world have been dealing with a couple of major challenges for effective zinc supplementation. The first challenge is the requirement of higher frequency of zinc doses. Weekly doses may not be as effective as smaller doses given daily. Most of the zinc in the human body is situated in the muscle and bone tissues, and is not normally released during zinc deprivation. Second, there are uncertainties about the best type of zinc salts to be used, related to their bioavailability and side effects. Further, zinc absorption is inhibited by fiber and phytate present in food. To date, most zinc supplementation studies in humans have used either sulphate, acetate, gluconate, aminooate, histidine, and methionine. The zinc monomethionine supplement has been proven in independent studies to be absorbed significantly better than other forms of zinc, and to resist dietary fiber and phytate (70).

Conclusion

Berries hold an important position among the fruits that can be attributed to their high antioxidant phytochemical contents. Berries are not so rich in zinc, but because of their beneficial chemical composition they are recommended to be widely consumed.

Zinc has got numerous physiological roles in both human and plants organisms, from boosting of the immune system to the spread of antibiotic-resistant bacteria. On the other hand, when its homeostasis is disrupted, zinc shows an opposite effect and functions as an enemy.

Acknowledgements

This research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant no. III 46013 and III 41018).

References

4. Plessi M, Bertelli D, Albasini A. Distribution of metals and phenolic compounds as a criterion to evaluate variety of berries and related jams. Food Chem 2007; 100(1):419–27. [CrossRef]

12. House AW. Trace element bioavailability as exemplified by iron and zinc. Field Crop Res 1999; 60(1-2):41-56. [CrossRef]

26. Hedera P, Fink JK, Bockenstedt PL, Brewer GJ. Myeloproliferative disease and pancytopenia due to copper deficiency and high zinc levels of unknown origin: further support for existence of a new zinc overload syndrome. Arch Neurol 2003; 60(9):1303-6. [CrossRef] [PubMed]

44. Maserejian NN, Hall SA, McKinlay JB. Low dietary or supplemental zinc is associated with depression symptoms among women, but not men, in a population-based epidemiological survey. J Affect Disorders 2012; 136(3):781–8. [CrossRef] [PubMed]

62. Ugarte M, Osborne NN. Recent advances in the understanding of the role of zinc in ocular tissues. Metallomics 2013; 6(2):189-200. [CrossRef] [PubMed]

64. Osborne NN, Wood JP. The beta-adrenergic receptor antagonist metipranolol blunts zinc-induced photoreceptor and RPE-apoptosis. Invest Ophth Vis Sci 2006; 47(7):3178-86. [CrossRef] [PubMed]

Zinc content in berries - the importance for human health

Revizalni rad

UDC: 546.47:613.262

doi:10.5633/amm.2016.0410

SADRŽAJ CINKA U JAGODASTOM VOĆU – ZNAČAJ ZA ZDRAVLJE

Bojana Miladinović, Dušica Stojanović, Milica Kostić, Milica Milutinović, Milan Jokanović, Dušanka Kitić

Univerzitet u Nišu, Medicinski fakultet, Departman za farmaciju, Niš, Srbija

Kontakt: Bojana Miladinović
Univerzitet u Nišu, Medicinski fakultet, Departman za farmaciju
Bul. dr Zorana Đinđića 81, 18 000 Nis, Serbia
E-mail: bojana.miladinovic@medfak.ni.ac.rs

Ključne reči: cink, jagodasto voće, ishrana, biljke, bioraspoloživost, deficit