STUDY ON ANTIBODY PREVALENCE TO MICROSPORIDIAN ENCEPHALITOZOOON CUNICULI IN DOGS (CANIS FAMILIARIS) USING INDIRECT IMMUNOFLUORESCENCE

ŠTEFKOVIĆ M*, MASLEJ P*, HALANOVA M**, NOVOTNA A* and BALENT P*

*Department of Biology, Genetics and Animal Husbandry, University of Veterinary Medicine, Komenskeho Košice, **Department of Epidemiology, Faculty of Medicine, Pavol Jozef Safarik University, Košice, Slovak Republic

(Received 19. June 2001)

Several species of mammals including the dog seem to be potential sources of encephalitozoonosis for animal as well as human hosts. The presence of specific serum antibodies to Encephalitozoon cuniculi was studied in a group of 178 dogs from Eastern Slovakia. The indirect fluorescence of antibodies was chosen as a diagnostic method. Entire cell corpuscular antigen of the in vitro grown microsporidia and swine anti-dog FITC-conjugated immunoglobulin were used in the IFA test.

The animals whose sera reacted by immunofluorescence in a titre of at least 1: 20 were considered positive. Specific anti-E. cuniculi antibodies were found in 53 out of the 178 dogs investigated (29.8 %). Two thirds of the serum positive samples (37 out of 53) were in the lower titre range of 1: 20 to 1: 40. Sixteen dogs were seropositive at a dilution from 1: 80 to 1: 320. The other 125 dogs (70.2 %) showed seronegative reactions.

Our screening results indicated that the examination of canine sera for the presence of anti-E. cuniculi antigens is of great importance especially in dogs with health problems. The IFA test is a very sensitive method for detection of early microsporidian infection in dogs and for indication of very small amounts of specific post-infectious antibodies.

Key words: microsporidia, Encephalitozoon cuniculi, dogs, serological survey, indirect immunofluorescence

INTRODUCTION

Encephalitozoon cuniculi (phylum Microspora) is an obligate intracellular protozoan parasite invading a variety of cell types in a broad range of mammalian hosts including man. The parasite is well known as an agent causing encephalitozoonosis, a chronic disease with mostly latent progression. From the latent course the disease may progress into an active form of the infection that is usually influenced by suppression of the host immune system (Levkut et al., 1997).

Kantorowicz and Lewy (1923) in Germany firstly reported microsporidiosis in the dog (Canis familiaris). Since that time, canine encephalitozoonosis has been
diagnosed in numerous countries including France, England, Tanzania, the Republic of South Africa, Czechoslovakia, Zimbabwe, as well as in the USA (Van Dellen et al., 1989).

In the susceptible individual *E. cuniculi* prefers to invade central and peripheral nervous and renal tissues. The infection in dogs is occasionally connected with clinical signs of nonsuppurative encephalitis combined with weight loss in puppies (Plowright, 1952) and recurrent nephropathies in young and geriatric individuals (Stewart et al., 1986), well known as an *encephalitis-nephritis* syndrome. Subsequent uraemia and death may also occur. Moreover, various ophthalmic lesions such as cataract, retinitis, and superficial or deep keratitis have been reported in blue foxes - *Alopex lagopus* (Arnesen and Nordstoga, 1977) and domestic cats - *Felis catus* (Buyukmihci et al., 1977).

Natural modes of transmission of encephalitozoonosis are uncertain. Generally, it is believed that the disease is spread horizontally through infectious excrement by the oro-faecal, but above all the oro-urinal routes (Cox et al., 1979). Vertical - transplacental transmission of the infection may also play a role in the epizootology and pathogenesis of encephalitozoonosis especially in rodents (Hunt et al.; 1972) and carnivores (Mohn et al., 1982).

Recently, encephalitozoonosis has been confirmed as a zoonosis (Eckert, 1989; Deplazes et al., 1996). Some species of mammals including the dog seem to be eligible as potential animal sources of the microsporidial infection. Therefore, we decided to determine the actual serological status in a group of our usual patients using indirect immunofluorescence of antibodies as the diagnostic method.

MATERIAL AND METHODS

Serum samples. The presence of specific antibodies to *E. cuniculi* was investigated in a group of 178 dogs that came from the East Slovakia region. Blood samples were taken from dogs with various symptomatologies and diagnoses at the 1st Internal Disease Clinic of the UVM in Košice. Blood was withdrawn from the antebrachial vein (*vena antebrachii*) in the standard way. After allowing the clot to form, the blood was spun in a centrifuge at 600 g for 15 minutes. Decanted sera were stored frozen at -20 °C until used in the serological assay.

E. cuniculi organisms. The entire cell corpuscular antigen of the microsporidia was used in the IFA test. The agent spores of murine origin (Vávra et al., 1972) were grown within E6 cells of VERO - Green Monkey Kidney Culture. The infected cell culture was cultivated in modified RPMI 1640 media supplemented with 5% of foetal calf serum and antibiotics (penicillin, streptomycin and amphotericin B).

Spore isolation. After bursting of the infected cells mature spores were released into the media. The organisms were collected from the culture supernatants after centrifugation at 450 g for 20 minutes. The sediment was resuspended in non-buffered Percoll (density 1.30 g/ml, pH 8.8) and following centrifugation at 750 g for 20 minutes spores were separated. Subsequently, the organisms were once washed by centrifugation in sterile phosphate-buffered saline (PBS, pH 7.2). Freshly cleared spores were resuspended in PBS added antibiotics. The spores were counted within Burkers chamber in 10 rectangles, then diluted to a concentration of 8 x 10⁸ spores per ml and stored at 4 °C.
Study on antibody prevalence to microsporidian *Encephalitozoon cuniculi* in dogs (*canis familiaris*) using indirect immunofluorescence

Indirect fluorescent antibody test. The IFAT method was performed to determine specific antibodies to *E. cuniculi*. The test was done as described in detail by Chalupsky *et al.* (1973). Both a positive and a negative serum was included in all tests as controls. An *E. cuniculi* spore suspension in 20 μl PBS was spotted into each well of alcohol-degreased glass slides. After allowing drying the slides were fixed in cold acetone for 20 min and air-dried again. To control antigen preparation quality, some slides were unspecifically stained with optical brightener Calcofluor White M2R (SIGMA) and observed under blue fluorescence conditions (Figure 1).

![Control staining of *E. cuniculi* spores without adding of the tested sera using optical brightener Calcofluor White M2R (SIGMA), x 1000. Blue fluorescence, 450 nm colour light, 390-420 nm excited filters and 470 nm barrier filter.](image)

The antigen spots were flooded with 10 μl of sera diluted from 1: 20 to 1:320 and then incubated for 30 min at 37 °C within a moist chamber. The slides were subsequently washed twice in distilled water and PBS for 10 min each. Following air-drying, the slides were covered with 20 μl of fluorescein isothiocyanate-conjugated swine anti-dog immunoglobulin (SwAD/FITC; SEVAC a.s., Czech Republic) in 1:160 dilution. After 30 min incubation at 37 °C the slides were washed in PBS and air-dried. Dry slides were counter stained with Evans blue and coverslips mounted with buffered glycerine. The immunofluorescent reaction was evaluated in fluorescent microscope ZEISS JENALUMAR using 510 nm coloured light, excitation filters of 405-409 nm and a barrier filter of 550 nm.

RESULTS

The prevalence of specific antibodies to *Encephalitozoon cuniculi* was investigated in a group of 178 dogs using IFAT as the diagnostic method. In the case of a positive immunological reaction, spores were observed as oval fluorescent formations of 1.5-2.5 μm in size. The titre of each serum sample was
defined as the reciprocal value of the highest serum dilution showing strong peripheral fluorescence of 50% spores (Figure 2).

Both positive and negative control sera as they were determined by ELISA (Štefković et al., 1999) were included into the examinations for comparison of the serological reactions.

All canine serum samples were firstly tested at an initial 1:20 dilution. Sera that positively reacted at this screening titre were subsequently examined also at dilutions from 1:40 to 1:320. The animals whose sera reacted by immunofluorescence in titres at least 1:20 were considered positive.

Out of 178 dogs investigated, 53 were found to be positive by serological IFAT examination (29.8%). Blood serum samples of 25 dogs reacted positively at a dilution 1:20, while another 28 were positive at a dilution from 1:40 to 1:320. The other 125 dogs showed seronegative results (Table 1).

<table>
<thead>
<tr>
<th>Animals number (n)</th>
<th>Serological evaluation negative</th>
<th>Serological evaluation positive</th>
<th>Reciprocal IFA titres to E. cuniculi</th>
</tr>
</thead>
<tbody>
<tr>
<td>per cent (%)</td>
<td>125</td>
<td>53</td>
<td>25 1:20 12 1:40 5 1:80 8 1:160 3 1:320</td>
</tr>
<tr>
<td></td>
<td>70.2</td>
<td>29.8</td>
<td>14.1 6.7 2.8 4.5 1.7</td>
</tr>
</tbody>
</table>

Fig. 2. A positive IIF result fluorescence of the parasite spores after binding of specific antibodies present in the sera of an examined animal, x 1200. Green fluorescence, 510 nm colour light, 405-490 nm excited filters and 550 nm barrier filter.
DISCUSSION

Encephalitozoonosis is an opportunistic infection of mammals usually with an asymptomatic course in immunocompetent hosts (Koudela et al., 1993). Clinical diagnostics of the disease above all in carnivores, is practically impossible also due to marked similarity of the unique signs to rabies or other diseases affecting the nervous system (Balent et al., 1995). In vivo diagnosis is therefore mostly based upon the results of serological examinations. Several methods have been developed for this purpose, such as the complement fixation test, India immunno-ink reaction, immunoenzymatic assay, the method of indirect microagglutination and the method of radial haemolysis (Balent et al., 1997). However, the most frequently employed method for the evaluation of anti-Encephalitozoon cuniculi antibody prevalence is the indirect immunofluorescent test because of its reliability and sensitivity.

In Slovakia, animal encephalitozoonosis was first reported in farmed (Hipikova et al., 1995) and laboratory rabbits (Levkut et al., 1996) using IFAT as a diagnostic method. Later the disease was also diagnosed in mice following natural as well as experimental infection (Štefković et al., 1997; EI Naas et al., 1998). Seropositivity to E. cuniculi, moreover, was also confirmed in an HIV-positive man (Cislakova et al., 1998) and finally the first finding of IFA anti-E. cuniculi antibodies in cows was recorded recently in Slovakia (Halanová et al., 1999).

The humoral immune response to the agent causing canine microsporidiosis was first studied by means of the IFA test in South Africa (Stewart et al., 1979). As the minimal antibody titre which would represent positive infection with E. cuniculi was not known, they assumed, through experience with experimentally infected dogs, that titres as low as 1: 20 may be significant. Non-specific fluorescence was sometimes detected at a dilution of 1: 10, so that titre was considered negative (Stewart et al., 1979). The serum positivity in our study was evaluated on the basis these previous findings.

Our results showed a 29.8 % prevalence rate of specific antibodies to E. cuniculi in the examined dogs. The majority of the serum positive samples (37 out of 53) was in the titre range of 1: 20 to 1: 40. Similarly, Stewart et al., (1979) obtained results that indicated 18 % antibody IFA prevalence in canine serum samples submitted for various clinical pathological examinations in the Pretoria and Durban areas. Most of these positive samples were also in the lower titre range. Moreover, 70 % seropositivity was detected in a group of dogs from previously proven Encephalitozoon infected kennels. More than half the positivity was in the titre range of 1:160 to 1:320. Such high prevalence can be expected after outbreaks of encephalitozoonosis-related clinical signs and the high titres obtained would suggest recent infection.

However, it is necessary to note that our study was not a case of investigating an average sample of the dog population in the area observed. All our dog patients were admitted to the clinic with the aim of solving their health problems. The actual seropositivity in the general canine population in Eastern Slovakia should be much lower.

Another study done in stray dogs indicated 13.3 % prevalence of antibodies to E. cuniculi (Hollister et al., 1989). In this survey 33 sera out of the 248 examined reacted positively by ELISA at titres of from 1: 1,000 to 1: 3,200 and were classified as low, moderate or strong positive. Comparison of total IgG and specific IgG showed that specific IgG was greatly increased in the moderately and strongly
positive sera. This finding confirms our previous assumption about the lower general prevalence of anti-\textit{E. cuniculi} antibodies in dogs.

Acknowledgements

This study was financially supported by grants No. 1/7022/20 and No. 1/1005/98 of the Scientific Grant Agency of Ministry of Education and Science of the Slovak Republic, that are gratefully acknowledged.

Address for correspondence:
Dr. M Stefkovic
Department of Biology, Genetics and Animal Husbandry,
University of Veterinary Medicine,
Komenskaho 73, 041 81 Kosice, Slovak Republic

REFERENCES

Study on antibody prevalence to microsporidian *Encephalitozoon cuniculi* in dogs (*canis familiaris*) using indirect immunofluorescence

PROUČAVANJE PREVALENCE ANTITELA NA MIKROSPORIDIJU *Encephalitozoon cuniculi* KOD PASA (*Canis familiaris*) METODOM INDIREKTNE IMUNOFLUORESCENCE

ŠTEFKOVIĆ M, MASLEJ P, HALANOVA M, NOVOTNA A I BALEN'T P

SADRŽAJ

Nekoliko vrsta životinja, uključujući i pse, predstavljaju potencijalne izvore encefalitozoonoze za ljude i druge životinje. U ovom radu su izneti rezultati ispitivanja prisustva antitela na parazit *Encephalitozoon cuniculi* u serumu 178 pasa iz istočne Slovačke metodom indirektne imunofluorescence. U ispitivanjima su korišćeni kompletni celularni antigeni ove mikrosporidijske kultivisani u *in vitro* uslovima i svinjski anti-pseci Ig konjugovani FITC-om. Životinje koje su imale veći titar od 1:20 smatrane su pozitivnim. Specifična antitela protiv ovog parazita dokazana su kod 53 od 178 ispitivanih pasa (29.8%). Dve trećine pozitivnih uzoraka imalo je vrednosti titra od 1:20 do 1:40. Ukupno 16 pasa je imalo titar od 1:80 do 1:320 dok je 125 pasa pokazalo seronegativnu reakciju (70.2%). Naši rezultati ukazuju da je pregled pasa na prisustvo antitela protiv *E. cuniculi* od velikog značaja za zdravlje ljudi a da je indirektna imunofluorescencija dovoljno osjetljiva i pouzdana metoda.