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Coupled Common Fixed Point Theorems in
Partially Ordered G-metric Spaces for

Nonlinear Contractions
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Neetu Gupta and Sanjay Kumar

Abstract. The aim of this paper is to prove coupled coincidence and
coupled common fixed point theorems for a mixed g-monotone mapping
satisfying nonlinear contractive conditions in the setting of partially
ordered G-metric spaces. Present theorems are true generalizations of
the recent results of Choudhury and Maity [Math Comput. Modelling
54 (2011), 73–79], and Luong and Thuan [Math. Comput. Modelling
55 (2012), 1601–1609].

1. Introduction and Preliminaries

In [12], Mustafa together with Sims introduced the generalized structure of
metric spaces, calledG-metric spaces. Afterwards, numerous fixed point the-
orems in this generalized structure were proved by different authors. Works
noted in [1,6,9,11,13,14,17,21] are some examples in this direction. Bhaskar
and Lakshmikantham [3] introduced the notion of coupled fixed point and
proved some coupled fixed point theorems for a mapping satisfying mixed
monotone property in partially ordered metric spaces. As an application,
they discussed the existence and uniqueness of solution for a periodic bound-
ary value problem. Lakshmikantham and Ćirić [8] extended the notion of
mixed monotone property to mixed g-monotone property and generalized
the results of Bhaskar and Lakshmikantham [3] by establishing the existence
of coupled coincidence point results using a pair of commutative mappings.
These results have been extended and generalized by several authors. Ref-
erences [7, 15, 16] are some examples of these works. Now-a-days authors
have keen interest in proving fixed point theorems in partially ordered met-
ric spaces subjected to nonlinear contractive conditions, see [2,4,10,18–20].
Our paper deals with the establishment of some coupled coincidence and
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coupled common fixed point results for a mixed g-monotone mapping satis-
fying nonlinear contractive conditions in partially ordered G-metric spaces.
Our results generalize the recent results of Choudhury and Maity [5] and
Luong and Thuan [9]. We give also an example to illustrate our results. We
now recall some definitions and properties in G-metric spaces (see [12]).

Definition 1.1. Let X be a nonempty set. Suppose that G : X×X×X →
[0,+∞) is a function satisfying the following conditions:
(G1) G(x, y, z) = 0 if and only if x = y = z;
(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y;
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three

variables);
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rectangle

inequality).
Then G is called a G-metric on X and (X,G) is called a G-metric space.

Definition 1.2. Let (X,G) be a G-metric space. We say that {xn} is:
(i) a G-Cauchy sequence if, for any ε > 0, there is an N ∈ N (the set of

all positive integers) such that for all n,m, l ≥ N , G(xn, xm, xl) < ε;
(ii) a G-convergent sequence to x ∈ X if, for any ε > 0, there is N ∈ N

such that for all n,m ≥ N , G(x, xn, xm) < ε.
A G-metric space (X,G) is said to be complete if every G-Cauchy sequence
in X is G-convergent in X.

Proposition 1.1. Let (X,G) be a G-metric space. The following are equiv-
alent:

(i) {xn} is G-convergent to x;
(ii) G(xn, xn, x)→ 0 as n→ +∞;
(iii) G(xn, x, x)→ 0 as n→ +∞;
(iv) G(xn, xm, x)→ 0 as n,m→ +∞.

Proposition 1.2. Let (X,G) be a G-metric space. Then the following are
equivalent:

(i) the sequence {xn} is G-Cauchy;
(ii) G(xn, xm, xm)→ 0 as n,m→ +∞.

Proposition 1.3. Let (X,G) be a G-metric space. A mapping g : X → X
is G-continuous at x ∈ X if and only if it is G-sequentially continuous at
x, that is, whenever {xn} is G-convergent to x, {g(xn)} is G-convergent to
g(x).

Proposition 1.4. Let (X,G) be a G-metric space. Then the function G(x, y, z)
is jointly continuous in all three of its variables.
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Definition 1.3 ([5]). Let (X,G) be a G-metric space. A mapping F : X ×
X → X is said to be continuous if for any two G-convergent sequences {xn}
and {yn} converging to x and y respectively, {F (xn, yn)} is G-convergent to
F (x, y).

An interesting observation is that any G-metric space (X,G) induces a
metric dG on X given by

dG(x, y) = G(x, y, y) +G(y, x, x), for all x, y ∈ X.
Moreover, (X,G) is G-complete if and only if (X, dG) is complete.

Now, we recall some definitions introduced in [3, 8]. Let (X,�) be a
partially ordered set and g : X → X be a mapping. The mapping g is said
to be non-decreasing if for all x, y ∈ X, x � y implies g(x) � g(y). Similarly,
g is said to be non-increasing, if for all x, y ∈ X, x � y implies g(x) � g(y).

Bhaskar and Lakshmikantham [3] introduced the following notions of
mixed monotone mapping and coupled fixed point.

Definition 1.4. Let (X,�) be a partially ordered set and F : X × X →
X. The mapping F is said to have the mixed monotone property if F
is monotone non-decreasing in its first argument and is monotone non-
increasing in its second argument, that is, for all x1, x2 ∈ X, x1 � x2 implies
F (x1, y) � F (x2, y), for any y ∈ X and for all y1, y2 ∈ X, y1 � y2 implies
F (x, y1) � F (x, y2), for any x ∈ X.

The concept of the mixed monotone property was generalized by Laksh-
mikantham and Ćirić [8] as follows.

Definition 1.5 ([8]). Let (X,�) be a partially ordered set and F : X ×
X → X and g : X → X. The mapping F is said to have the mixed g-
monotone property if F is monotone g-non-decreasing in its first argument
and is monotone g-non-increasing in its second argument, that is, for all
x1, x2 ∈ X, g(x1) � g(x2) implies F (x1, y) � F (x2, y), for any y ∈ X and
for all y1, y2 ∈ X, g(y1) � g(y2) implies F (x, y1) � F (x, y2), for any x ∈ X.

Clearly, if g is the identity mapping, then Definition 1.5 reduces to Defi-
nition 1.4.

Definition 1.6. An element (x, y) ∈ X ×X is called a coupled fixed point
of the mapping F : X ×X → X if F (x, y) = x and F (y, x) = y.

Definition 1.7. An element (x, y) ∈ X ×X is called a coupled coincidence
point of the mappings F : X × X → X and g : X → X if F (x, y) = g(x)
and F (y, x) = g(y).

Definition 1.8. Let F : X ×X → X and g : X → X. Then, F and g are
said to be commutative if g(F (x, y)) = F (g(x), g(y)) for all x, y ∈ X.

Definition 1.9 ([10]). Let Φ denote all functions φ : [0,+∞) → [0,+∞)
such that
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(i) φ is continuous and increasing;
(ii) φ(t) = 0 iff t = 0;
(iii) φ(t+ s) ≤ φ(t) + φ(s), for all t, s ∈ [0,+∞).

Definition 1.10 ([9]). Let Θ denote all functions θ : [0,+∞)× [0,+∞)→
[0,+∞) such that lim(t1,t2)→(r1,r2) θ(t1, t2) > 0 for all (r1, r2) ∈ [0,+∞) ×
[0,+∞) with r1 + r2 > 0.

Let (X,�) be a partially ordered set, F : X × X → X be a mapping
having the mixed monotone property and suppose there exists a G-metric
such that (X,G) is a G-metric space. Choudhury and Maity [5] established
some fixed point results for the mapping F under the following contractive
condition

G(F (x, y), F (u, v), F (w, z)) ≤ k

2
(G(x, u, w) +G(y, v, z))

for w � u � x and y � v � z, where k ∈ [0, 1).
Recently, Luong and Thuan [9] generalized the results of Choudhury and
Maity [5] by proving some coupled fixed point theorems in partially ordered
G-metric spaces under a nonlinear contractive condition of the form

G(F (x, y), F (u, v), F (w, z)) ≤
G(x, u, w) +G(y, v, z)

2
− θ(G(x, u, w), G(y, v, z))

for w � u � x and y � v � z, where θ ∈ Θ.

2. Main Results

Our first result is the following coupled coincidence point theorem.

Theorem 2.1. Let (X,�) be a partially ordered set and suppose there is
a G-metric G on X such that (X,G) is a complete G-metric space. Let
F : X × X → X and g : X → X be mappings such that F has the mixed
g-monotone property on X and there exist two elements x0, y0 ∈ X with
g(x0) � F (x0, y0) and g(y0) � F (y0, x0). Suppose there exist φ ∈ Φ and
θ ∈ Θ such that

(1)

φ(G(F (x, y), F (u, v), F (w, z))

≤ 1

2
φ(G(g(x), g(u), g(w)) +G(g(y), g(v), g(z)))

− θ(G(g(x), g(u), g(w)), G(g(y), g(v), g(z)))

for all (x, y), (u, v), (w, z) ∈ X × X with g(w) � g(u) � g(x) and g(y) �
g(v) � g(z). Further suppose that F is continuous, F (X × X) ⊆ g(X),
g is continuous and commutes with F . Then, there exist x, y ∈ X such
that F (x, y) = g(x) and F (y, x) = g(y), that is, F and g have a coupled
coincidence point (x, y) ∈ X ×X.
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Proof. Let x0, y0 ∈ X be such that g(x0) � F (x0, y0) and g(y0) � F (y0, x0).
Since F (X × X) ⊆ g(X), we can choose x1, y1 ∈ X such that g(x1) =
F (x0, y0) and g(y1) = F (y0, x0).

Analogously, there exist x2, y2 ∈ X such that g(x2) = F (x1, y1) and
g(y2) = F (y1, x1).

Continuing this process, we can construct two sequences {xn} and {yn}
in X such that

(2) g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn) ∀ n ≥ 0.

Now we prove that for all n ≥ 0,

(3) g(xn) � g(xn+1) and g(yn) � g(yn+1).

We shall use the mathematical induction. Let n = 0, since g(x0) � F (x0, y0)
and g(y0) � F (y0, x0), in view of g(x1) = F (x0, y0) and g(y1) = F (y0, x0),
we have g(x0) � g(x1) and g(y0) � g(y1), that is, (3) holds for n = 0. We
assume that (3) holds for some n > 0. As F has the mixed g-monotone
property and g(xn) � g(xn+1), g(yn) � g(yn+1), from (2), we get

g(xn+1) = F (xn, yn) � F (xn+1, yn), F (yn+1, xn) � F (yn, xn) = g(yn+1).

Also for the same reason we have

g(xn+2) = F (xn+1, yn+1) � F (xn+1, yn), F (yn+1, xn) � F (yn+1, xn+1) = g(yn+2).

Merging the above results, we obtain g(xn+1) � g(xn+2) and g(yn+1) �
g(yn+2).

Thus by the mathematical induction, we conclude that (3) holds for all
n ≥ 0.

Since g(xn) � g(xn−1) and g(yn) � g(yn−1), from (1) and (2), we have

φ(G(g(xn+1), g(xn+1), g(xn)))

= φ(G(F (xn, yn), F (xn, yn), F (xn−1, yn−1))

≤ 1

2
φ(G(g(xn), g(xn), g(xn−1)) +G(g(yn), g(yn), g(yn−1)))

− θ(G(g(xn), g(xn), g(xn−1)), G(g(yn), g(yn), g(yn−1))).

As θ(t1, t2) ≥ 0 for all t1, t2 ∈ [0,+∞), we have

(4)
φ(G(g(xn+1), g(xn+1), g(xn)))

≤ 1

2
φ(G(g(xn), g(xn), g(xn−1)) +G(g(yn), g(yn), g(yn−1))).

Similarly, since g(yn−1) � g(yn) and g(xn−1) � g(xn), from (1) and (2), we
have

(5)
φ(G(g(yn+1), g(yn+1), g(yn)))

≤ 1

2
φ(G(g(yn), g(yn), g(yn−1)) +G(g(xn), g(xn), g(xn−1))).
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From (4), (5) and a property of φ, we have

φ(G(g(xn+1), g(xn+1), g(xn)) +G(g(yn+1), g(yn+1), g(yn)))

≤ 1

2
φ(G(g(xn), g(xn), g(xn−1)) +G(g(yn), g(yn), g(yn−1)))

+
1

2
φ(G(g(yn), g(yn), g(yn−1)) +G(g(xn), g(xn), g(xn−1)))

= φ(G(g(xn), g(xn), g(xn−1)) +G(g(yn), g(yn), g(yn−1))).

Set ρn = G(g(xn+1), g(xn+1), g(xn)) + G(g(yn+1), g(yn+1), g(yn)), then
using the monotonicity of φ the sequence {ρn} is non-increasing and so
there exists ρ ≥ 0 such that

(6)

lim
n→+∞

ρn = lim
n→+∞

[
G(g(xn+1), g(xn+1), g(xn))

+G(g(yn+1), g(yn+1), g(yn))
]

= ρ.

We shall show that ρ = 0. Suppose, on the contrary, that ρ > 0. By (6), the
sequences {G(g(xn+1), g(xn+1), g(xn))} and {G(g(yn+1), g(yn+1), g(yn))} have
convergent subsequences that are still denoted by {G(g(xn+1), g(xn+1), g(xn))}
and {G(g(yn+1), g(yn+1), g(yn))} respectively. Suppose that

lim
n→+∞

G(g(xn+1), g(xn+1), g(xn)) = ρ1 and

lim
n→+∞

G(g(yn+1), g(yn+1), g(yn)) = ρ2.

Then ρ1 + ρ2 = ρ > 0. Reasoning as above and using a property of φ, we
have

φ(G(g(xn+1), g(xn+1), g(xn)) +G(g(yn+1), g(yn+1), g(yn)))

≤ φ(G(g(xn+1), g(xn+1), g(xn))) + φ(G(g(yn+1), g(yn+1), g(yn)))

≤ φ(G(g(xn), g(xn), g(xn−1)) +G(g(yn), g(yn), g(yn−1)))

− θ(G(g(xn), g(xn), g(xn−1)), G(g(yn), g(yn), g(yn−1)))

− θ(G(g(yn), g(yn), g(yn−1)), G(g(xn), g(xn), g(xn−1))).

Taking the limit as n→ +∞ in the last inequality, using (6), the continuity
of φ and the property of θ, we have

φ(ρ) ≤ φ(ρ)− lim
n→+∞

θ(G(g(xn), g(xn), g(xn−1)), G(g(yn), g(yn), g(yn−1)))

− lim
n→+∞

θ(G(g(yn), g(yn), g(yn−1)), G(g(xn), g(xn), g(xn−1)))

< φ(ρ),
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which is a contradiction. Thus ρ = 0, that is,

(7)
lim

n→+∞
G(g(xn+1), g(xn+1), g(xn)) = 0,

lim
n→+∞

G(g(yn+1), g(yn+1), g(yn)) = 0.

In what follows, we shall prove that {g(xn)} and {g(yn)} are Cauchy se-
quences. Suppose, to the contrary, that at least one of {g(xn)} and {g(yn)}
is not a G-Cauchy sequence, that is,

lim
m,n→+∞

G(g(xm), g(xn), g(xn)) 6= 0.

Then, there exists ε > 0 for which we can find two subsequences {g(xm(i))}
and {g(xn(i))} of {xn} such that n(i) is the smallest index for which n(i) >
m(i) > i,

ri = G(g(xn(i)), g(xn(i)), g(xm(i))) +G(g(yn(i)), g(yn(i)), g(ym(i))) ≥ ε.

This means that

G(g(xn(i)−1), g(xn(i)−1), g(xm(i))) +G(g(yn(i)−1), g(yn(i)−1), g(ym(i))) < ε.

By rectangle inequality, we get

G(g(xn(i)), g(xn(i)), g(xm(i)))

≤ G(g(xn(i)), g(xn(i)), g(xn(i)−1)) +G(g(xn(i)−1), g(xn(i)−1), g(xm(i)))

and

G(g(yn(i)), g(yn(i)), g(ym(i)))

≤ G(g(yn(i)), g(yn(i)), g(yn(i)−1)) +G(g(yn(i)−1), g(yn(i)−1), g(ym(i))).

Using the above inequalities, we get

ε ≤ ri = G(g(xn(i)), g(xn(i)), g(xm(i))) +G(g(yn(i)), g(yn(i)), g(ym(i)))

≤ G(g(xn(i)), g(xn(i)), g(xn(i)−1)) +G(g(yn(i)), g(yn(i)), g(yn(i)−1)) + ε.

Letting i→ +∞ and using (7) we have
(8)

lim
i→+∞

ri = lim
i→+∞

[
G(g(xn(i)), g(xn(i)), g(xm(i)))

+G(g(yn(i)), g(yn(i)), g(ym(i)))
]

= ε.
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Using the fact that G(x, x, y) ≤ 2G(x, y, y) for any x, y ∈ X, we obtain from
(G5) that

(9)

G(g(xn(i)), g(xn(i)), g(xm(i)))

≤ G(g(xn(i)), g(xn(i)), g(xn(i)+1))

+G(g(xn(i)+1), g(xn(i)+1), g(xm(i)))

≤ 2G(g(xn(i)+1), g(xn(i)+1), g(xn(i)))

+G(g(xn(i)+1), g(xn(i)+1), g(xm(i)+1))

+G(g(xm(i)+1), g(xm(i)+1), g(xm(i)))

and

(10)

G(g(yn(i)), g(yn(i)), g(ym(i)))

≤ 2G(g(yn(i)+1), g(yn(i)+1), g(yn(i)))

+G(g(yn(i)+1), g(yn(i)+1), g(ym(i)+1))

+G(g(ym(i)+1), g(ym(i)+1), g(ym(i))).

By (9) and (10), we have

(11)

ri = G(g(xn(i)), g(xn(i)), g(xm(i))) +G(g(yn(i)), g(yn(i)), g(ym(i)))

≤ 2ρn(i) + ρm(i) +G(g(xn(i)+1), g(xn(i)+1), g(xm(i)+1))

+G(g(yn(i)+1), g(yn(i)+1), g(ym(i)+1)).

By (11), using the properties of φ, we get
(12)

φ(ri) ≤ φ(2ρn(i) + ρm(i) +G(g(xn(i)+1), g(xn(i)+1), g(xm(i)+1))

+G(g(yn(i)+1), g(yn(i)+1), g(ym(i)+1)))

≤ 2φ(ρn(i)) + φ(ρm(i)) + φ(G(g(xn(i)+1), g(xn(i)+1), g(xm(i)+1)))

+ φ(G(g(yn(i)+1), g(yn(i)+1), g(ym(i)+1))).

Since n(i) > m(i), g(xn(i)) � g(xm(i)) and g(ym(i)) � g(yn(i)), by (1) we
deduce
(13)

φ(G(g(xn(i)+1), g(xn(i)+1), g(xm(i)+1)))

= φ(G(F (xn(i), yn(i)), F (xn(i), yn(i)), F (xm(i), ym(i)))

≤ 1

2
φ(G(g(xn(i)), g(xn(i)), g(xm(i))) +G(g(yn(i)), g(yn(i)), g(ym(i))))

− θ(G(g(xn(i)), g(xn(i)), g(xm(i))), G(g(yn(i)), g(yn(i)), g(ym(i))))

≤ 1

2
φ(ri)− θ(G(g(xn(i)), g(xn(i)), g(xm(i))), G(g(yn(i)), g(yn(i)), g(ym(i))))
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Similarly, we have

(14)
φ(G(g(yn(i)+1), g(yn(i)+1), g(ym(i)+1))) ≤

1

2
φ(ri)

− θ(G(g(yn(i)), g(yn(i)), g(ym(i))), G(g(xn(i)), g(xn(i)), g(xm(i)))).

Inserting (13) and (14) in (12), we get

(15)

φ(ri) ≤ 2φ(ρn(i)) + φ(ρm(i)) + φ(ri)

− θ(G(g(xn(i)), g(xn(i)), g(xm(i))), G(g(yn(i)), g(yn(i)), g(ym(i))))

− θ(G(g(yn(i)), g(yn(i)), g(ym(i))), G(g(xn(i)), g(xn(i)), g(xm(i)))).

By (8), the sequences

{G(g(xn(i)), g(xn(i)), g(xm(i)))} and {G(g(yn(i)), g(yn(i)), g(ym(i)))}

have subsequences converging to ε1 and ε2 (say) respectively and ε1 + ε2 =
ε > 0. By passing to subsequences, we may assume that

lim
i→+∞

G(g(xn(i)), g(xn(i)), g(xm(i))) = ε1

and
lim

i→+∞
G(g(yn(i)), g(yn(i)), g(ym(i))) = ε2.

Taking i → +∞ in (15) and using (7), (8), the properties of φ and θ, we
have

φ(ε) ≤ 2φ(0) + φ(0) + φ(ε)− lim
i→+∞

θ
(
G(g(xn(i)), g(xn(i)), g(xm(i))),

G(g(yn(i)), g(yn(i)), g(ym(i)))
)

− lim
i→+∞

θ
(
G(g(yn(i)), g(yn(i)), g(ym(i))), G(g(xn(i)), g(xn(i)), g(xm(i)))

)
= φ(ε)− lim

i→+∞
θ
(
G(g(xn(i)), g(xn(i)), g(xm(i))),

G(g(yn(i)), g(yn(i)), g(ym(i)))
)

− lim
i→+∞

θ
(
G(g(yn(i)), g(yn(i)), g(ym(i))), G(g(xn(i)), g(xn(i)), g(xm(i)))

)
< φ(ε),

which is a contradiction. Thus, {g(xn)} and {g(yn)} are Cauchy sequences.
Since the G-metric space (X,G) is complete, there exist x, y ∈ X such that
{g(xn)} and {g(yn)} are convergent to x and y respectively, that is from
Proposition 1.1, we have

lim
i→+∞

G(g(xn), g(xn), x) = lim
i→+∞

G(g(xn), x, x) = 0

and
lim

i→+∞
G(g(yn), g(yn), y) = lim

i→+∞
G(g(yn), y, y) = 0.
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Using the continuity of g and Proposition 1.3, we get

(16) lim
i→+∞

G(g(g(xn)), g(g(xn)), g(x)) = lim
i→+∞

G(g(g(xn)), g(x), g(x)) = 0

and

lim
i→+∞

G(g(g(yn)), g(g(yn)), g(y)) = lim
i→+∞

G(g(g(yn)), g(y), g(y)) = 0.

Since, g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn), hence the commuta-
tivity of F and g yields that

(17)

{
g(g(xn+1)) = g(F (xn, yn)) = F (g(xn), g(yn)),

g(g(yn+1)) = g(F (yn, xn)) = F (g(yn), g(xn)).

Next we show that F (x, y) = g(x) and F (y, x) = g(y). The mapping
F is continuous and since the sequences {g(xn)} and {g(yn)} are respec-
tively G-convergent to x and y, hence using Definition 1.3 the sequence
{F (g(xn), g(yn))} isG-convergent to F (x, y). Therefore, by (17), {g(g(xn+1))}
is G-convergent to F (x, y). By uniqueness of limit and using (16), we have
F (x, y) = g(x). Similarly, we can show that F (y, x) = g(y). Hence (x, y) is
a coupled coincidence point of F and g. �

Theorem 2.2. Let (X,�) be a partially ordered set and G be a G-metric
on X. Let F : X×X → X and g : X → X be mappings such that F has the
mixed g-monotone property on X and there exist two elements x0, y0 ∈ X
with g(x0) � F (x0, y0) and g(y0) � F (y0, x0). Suppose there exist φ ∈ Φ and
θ ∈ Θ such that

(18)

φ(G(F (x, y), F (u, v), F (w, z))

≤ 1

2
φ(G(g(x), g(u), g(w)) +G(g(y), g(v), g(z)))

− θ(G(g(x), g(u), g(w)), G(g(y), g(v), g(z)))

for all (x, y), (u, v), (w, z) ∈ X × X with g(w) � g(u) � g(x) and g(y) �
g(v) � g(z). Further suppose that (g(X), G) or (F (X ×X), G) is complete,
F (X ×X) ⊆ g(X) and the following conditions hold:

(i) if a non-decreasing sequence {xn} in X converges to x ∈ X, then
xn � x for all n,

(ii) if a non-increasing sequence {yn} in X converges to y ∈ X, then
yn � y for all n.

Then, there exist x, y ∈ X such that F (x, y) = g(x) and F (y, x) = g(y),
that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof. Following the proof of Theorem 2.1, it follows that {g(xn)} and
{g(yn)} are Cauchy sequences. Now, we distinguish the following two cases.
Case 1. If (g(X), G) is complete, then there exist x, y ∈ X such that
g(xn) → g(x) and g(yn) → g(y) as n → +∞. Since {g(xn)} is non-
decreasing and {g(yn)} is non-increasing, by given hypotheses, we have
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g(xn) � g(x) and g(y) � g(yn) for all n ≥ 0. Then using (18) and the
properties of φ and θ, we have

φ(G(F (x, y), g(xn+1), g(xn+1)))

= φ(G(F (x, y), F (xn, yn), F (xn, yn)))

≤ 1

2
φ(G(g(x), g(xn), g(xn)) +G(g(y), g(yn), g(yn)))

− θ(G(g(x), g(xn), g(xn)), G(g(y), g(yn), g(yn)))

≤ 1

2
φ(G(g(x), g(xn), g(xn)) +G(g(y), g(yn), g(yn))).

Letting n → +∞ in the last inequality and using the properties of φ, we
obtain

φ(G(F (x, y), g(x), g(x))) ≤ 0,

which implies that G(F (x, y), g(x), g(x)) = 0, that is, F (x, y) = g(x). Simi-
larly, it can be shown that F (y, x) = g(y).
Case 2. If (F (X × X), G) is complete, then there exist p, q ∈ F (X × X)
such that F (xn, yn)→ p and F (yn, xn)→ q as n→ +∞. Since F (X×X) ⊆
g(X), so there exist x, y ∈ X such that p = g(x) and q = g(y) and from
here onwards the proof follows as in Case 1. �

If g = I, the identity mapping in Theorem 2.1, then we deduce the fol-
lowing result of coupled fixed point.

Corollary 2.1. Let (X,�) be a partially ordered set and suppose there is a
G-metric G on X such that (X,G) is a complete G-metric space. Let F :
X ×X → X be a continuous mapping such that F has the mixed monotone
property on X and there exist two elements x0, y0 ∈ X with x0 � F (x0, y0)
and y0 � F (y0, x0). Also suppose there exist φ ∈ Φ and θ ∈ Θ such that

(19)
φ(G(F (x, y), F (u, v), F (w, z))

≤ 1

2
φ(G(x, u, w) +G(y, v, z))− θ(G(x, u, w), G(y, v, z))

for all (x, y), (u, v), (w, z) ∈ X × X with w � u � x and y � v � z Then,
there exist x, y ∈ X such that F (x, y) = x and F (y, x) = y, that is, F has a
coupled fixed point (x, y) ∈ X ×X.

If φ = g = I, the identity mapping in Theorem 2.1, then we obtain the
result of Luong and Thuan [9] in the form of following corollary.

Corollary 2.2 ([9]). Let (X,�) be a partially ordered set and suppose there
is a G-metric G on X such that (X,G) is a complete G-metric space. Let
F : X × X → X be a mapping such that F is continuous and has the
mixed monotone property on X and there exist two elements x0, y0 ∈ X with
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x0 � F (x0, y0) and y0 � F (y0, x0). Also suppose there exists θ ∈ Θ such that

G(F (x, y), F (u, v), F (w, z)

≤ 1

2
(G(x, u, w) +G(y, v, z))− θ(G(x, u, w), G(y, v, z))

for all (x, y), (u, v), (w, z) ∈ X ×X with w � u � x and y � v � z. Then,
there exist x, y ∈ X such that F (x, y) = x and F (y, x) = y, that is, F has a
coupled fixed point (x, y) ∈ X ×X.

Let Ψ denote the class of functions ψ : [0,+∞) → [0,+∞) satisfying
limt→r ψ(t) > 0 for each r > 0. Now, considering θ(t1, t2) = ψ(max{t1, t2})
for all t1, t2 ∈ [0,+∞) with ψ ∈ Ψ in Theorem 2.1, we have the following
corollary.

Corollary 2.3. Let (X,�) be a partially ordered set and suppose there is
a G-metric G on X such that (X,G) is a complete G-metric space. Let
F : X × X → X and g : X × X be mappings such that F is continuous,
F has the g-mixed monotone property on X and there exist two elements
x0, y0 ∈ X with g(x0) � F (x0, y0) and g(y0) � F (y0, x0). Also suppose there
exist φ ∈ Φ and ψ ∈ Ψ such that

φ(G(F (x, y), F (u, v), F (w, z))

≤ 1

2
φ(G(g(x), g(u), g(w)) +G(g(y), g(v), g(z)))

− ψ(max{G(g(x), g(u), g(w)), G(g(y), g(v), g(z))})

for all (x, y), (u, v), (w, z) ∈ X × X with g(w) � g(u) � g(x) and g(y) �
g(v) � g(z). Then, there exist x, y ∈ X such that F (x, y) = g(x) and
F (y, x) = g(y), that is, F and g have a coupled coincidence point (x, y) ∈
X ×X.

Moreover, if φ = g = I, the identity mapping in Theorem 2.1, θ(t1, t2) =
1−k
2 (t1 + t2) for all t1, t2 ∈ [0,+∞), where θ ∈ Θ with k ∈ [0, 1) then

we obtain the main result of Choudhury and Maity [5] in the form of the
following corollary.

Corollary 2.4. Let (X,�) be a partially ordered set and suppose there is
a G-metric G on X such that (X,G) is a complete G-metric space. Let
F : X × X → X be a mapping such that F is continuous and has the
mixed monotone property on X and there exist two elements x0, y0 ∈ X with
x0 � F (x0, y0) and y0 � F (y0, x0). Also suppose there exists k ∈ [0, 1) such
that

G(F (x, y), F (u, v), F (w, z) ≤ k

2
(G(x, u, w) +G(y, v, z))

for all (x, y), (u, v), (w, z) ∈ X ×X with w � u � x and y � v � z. Then,
there exist x, y ∈ X such that F (x, y) = x and F (y, x) = y, that is, F has a
coupled fixed point (x, y) ∈ X ×X.
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Now, we give sufficient conditions for uniqueness of the coupled fixed
point. If (X,�) is a partially ordered set, then we endow the product space
X ×X with the following partial order:

for (x, y), (u, v) ∈ X ×X, (u, v) � (x, y)⇔ x � u, y � v.

Theorem 2.3. In addition to the hypotheses of Theorem 2.1, suppose that
for every (x, y), (x∗, y∗) ∈ X × X there exists (u, v) ∈ X × X such that
(F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)).
Then F and g have a unique coupled common fixed point, that is, there exists
a unique (x, y) ∈ X × X such that x = g(x) = F (x, y) and y = g(y) =
F (y, x).

Proof. From Theorem 2.1, the set of coupled coincidence points of F and
g is non-empty. Suppose that (x, y) and (x∗, y∗) are coupled coincidence
points of F and g, that is, g(x) = F (x, y), g(y) = F (y, x), g(x∗) = F (x∗, y∗)
and g(y∗) = F (y∗, x∗), then we show that

(20) g(x) = g(x∗) and g(y) = g(y∗).

By assumption, there exists (u, v) ∈ X × X such that (F (u, v), F (v, u)) is
comparable to (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)). Put u0 = u,
v0 = v, and choose u1, v1 ∈ X so that g(u1) = F (u0, v0) and g(v1) =
F (v0, u0). Then, proceeding as in the proof of Theorem 2.1, we can induc-
tively define sequences {g(un)}, {g(vn)} such that

g(un+1) = F (un, vn) and g(vn+1) = F (vn, un) ∀n ≥ 0.

Further, set x0 = x, y0 = y, x∗0 = x∗, y∗0 = y∗ and, on the same way, define
the sequences {g(xn)}, {g(yn)}, {g(x∗n)} and {g(y∗n)}. Then it is easy to
show that

g(xn)→ F (x, y), g(yn)→ F (y, x),

g(x∗n)→ F (x∗, y∗), g(y∗n)→ F (y∗, x∗)

as n→ +∞.
Since (F (x, y), F (y, x)) = (g(x1), g(y1)) = (g(x), g(y)) and (F (u, v), F (v, u)) =

(g(u1), g(v1)) are comparable, then g(x) � g(u1) and g(y) � g(v1). It is
easy to show that (g(x), g(y)) and (g(un), g(vn)) are comparable, that is,
g(x) � g(un) and g(y) � g(vn) for all n ≥ 1. Thus from (1), we have

φ(G(g(un+1), g(x), g(x)))

= φ(G(F (un, vn), F (x, y), F (x, y)))

≤ 1

2
φ(G(g(un), g(x), g(x)) +G(gvn, g(y), g(y)))

− θ(G(g(un), g(x), g(x)), G(g(vn), g(y), g(y))).
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Similarly,
φ(G(g(vn+1), g(y), g(y)))

= φ(G(F (vn, un), F (y, x), F (y, x)))

≤ 1

2
φ(G(g(vn), g(y), g(y)) +G(g(un), g(x), g(x)))

− θ(G(g(vn), g(y), g(y)), G(g(un), g(x), g(x))).

Using the above inequalities and a property of φ, we have

(21)

φ(G(g(un+1), g(x), g(x)) +G(g(vn+1), g(y), g(y)))

≤ φ(G(g(un+1), g(x), g(x))) + φ(G(g(vn+1), g(y), g(y)))

≤ φ(G(g(un), g(x), g(x)) +G(g(vn), g(y), g(y)))

− θ(G(g(un), g(x), g(x)), G(g(vn), g(y), g(y)))

− θ(G(g(vn), g(y), g(y)), G(g(un), g(x), g(x)))

≤ φ(G(g(un), g(x), g(x)) +G(g(vn), g(y), g(y))).

By monotonicity of φ, it follows that
G(g(un+1), g(x), g(x)) +G(g(vn+1), g(y), g(y))

≤ G(g(un), g(x), g(x)) +G(g(vn), g(y), g(y)).

Let αn = G(g(un), g(x), g(x))+G(g(vn), g(y), g(y)), then the sequence {αn}
is a non-increasing sequence, so there exists some α ≥ 0 such that

lim
n→+∞

αn = lim
n→+∞

[G(g(un), g(x), g(x)) +G(g(vn), g(y), g(y))] = α.

We shall show that α = 0. Suppose, to the contrary, that α > 0. There-
fore, {G(g(un), g(x), g(x))} and {G(g(vn), g(y), g(y))} have subsequences
converging to α1 and α2 (say) respectively. Taking the limit, up to sub-
sequences, as n→ +∞ in (21) and using the continuity of φ, we have

φ(α) ≤ φ(α)− lim
n→+∞

θ(G(g(un), g(x), g(x)), G(g(vn), g(y), g(y)))

− lim
n→+∞

θ(G(g(vn), g(y), g(y)), G(g(un), g(x), g(x)))

< φ(α),

a contradiction. Thus, α = 0, that is

lim
n→+∞

[G(g(un), g(x), g(x)) +G(g(vn), g(y), g(y))] = 0.

Hence, it follows immediately that g(un) → g(x) and g(vn) → g(y). Simi-
larly, one can prove that g(un)→ g(x∗) and g(vn)→ g(y∗). By uniqueness
of limit, it follows that g(x) = g(x∗) and g(y) = g(y∗). Thus we proved (20).

Now, since F (x, y) = g(x), F (y, x) = g(y) and the pair (F, g) is commut-
ing, it follows that

(22)

{
g(g(x)) = g(F (x, y)) = F (g(x), g(y)),

g(g(y)) = g(F (y, x)) = F (g(y), g(x)).
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Denote g(x) = z and g(y) = w. Then by (22), we deduce

g(z) = F (z, w) and g(w) = F (w, z).

Thus (z, w) is a coupled coincidence point. Then by (20) with x∗ = z and
y∗ = w, it follows that g(z) = g(x) and g(w) = g(y), that is g(z) = z
and g(w) = w. It follows z = g(z) = F (z, w) and w = g(w) = F (w, z).
Therefore (z, w) is a coupled common fixed point of F and g. To prove the
uniqueness, assume that (p, q) is another coupled common fixed point. Then
by (20), we have p = g(p) = g(z) = z and q = g(q) = g(w) = w. �

If g = I, the identity mapping in Theorem 2.3, then we deduce the fol-
lowing corollary.

Corollary 2.5. In addition to the hypotheses of Corollary 2.1, suppose that
for every (x, y), (x∗, y∗) ∈ X × X there exists a (u, v) ∈ X × X such that
(F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)).
Then F has a unique coupled fixed point, that is, there exists a unique
(x, y) ∈ X ×X such that x = F (x, y) and y = F (y, x).

Now, we give a simple illustrative example.

Example 2.1. Let X = [0,+∞). Then (X,�) is a partially ordered set
with the partial ordering given by

x � y ⇐⇒ (x = y or x, y ∈ [0, 1] and x ≤ y).

Let G(x, y, z) = |x− y|+ |y− z|+ |z− x| for x, y, z ∈ X. Define g : X → X
by g(x) = x for all x ∈ X and F : X ×X → X by

F (x, y) =

{
x
8 if x ∈ [0, 1], y ∈ X
x− 7

8 if x > 1, y ∈ X.

Define also φ : [0,+∞) → [0,+∞) by φ(t) = t
2 for all t ∈ [0,+∞) and

θ : [0,+∞)× [0,+∞)→ [0,+∞) by θ(t1, t2) = t1+t2
12 for all t1, t2 ∈ [0,+∞).

By routine calculations, the reader can easily verify that the following as-
sumptions hold:

(i) (X,G) is a complete G-metric space;
(ii) F has the mixed monotone property;
(iii) (x0, y0) = (0, 1)⇒ x0 = 0 = F (x0, y0) and y0 = 1 > 1

8 = F (y0, x0);
(iv) F is continuous.

Here, we show only that condition (19) in Corollary 2.1 holds for all (x, y), (u, v), (w, z) ∈
X ×X with w � u � x and y � v � z.
We distinguish the following four cases:
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Case 1. If (x, y), (u, v), (w, z) ∈ [0, 1]× [0, 1], we have
φ(G(F (x, y), F (u, v), F (w, z))

=
1

2

|x− u|+ |u− w|+ |w − x|
8

≤ 1

6
(|x− u|+ |u− w|+ |w − x|+ |y − v|+ |v − z|+ |z − y|)

=
1

4
(|x− u|+ |u− w|+ |w − x|+ |y − v|+ |v − z|+ |z − y|)

− 1

12
(|x− u|+ |u− w|+ |w − x|+ |y − v|+ |v − z|+ |z − y|)

=
1

2
φ(G(x, u, w) +G(y, v, z))− θ(G(x, u, w), G(y, v, z)).

Case 2. If (x, y), (u, v), (w, z) ∈ [0, 1]× (1,+∞), we have y = v = z and
φ(G(F (x, y), F (u, v), F (w, z))

=
1

16
(|x− u|+ |u− w|+ |w − x|)

≤ 1

6
(|x− u|+ |u− w|+ |w − x|)

=
|x− u|+ |u− w|+ |w − x|

4
− |x− u|+ |u− w|+ |w − x|

12

=
1

2
φ(G(x, u, w) +G(y, v, z))− θ(G(x, u, w), G(y, v, z)).

Case 3. If (x, y), (u, v), (w, z) ∈ (1,+∞) × (1,+∞), we have x = u = w,
y = v = z and hence

φ(G(F (x, y), F (u, v), F (w, z)) = 0.

Case 4. If (x, y), (u, v), (w, z) ∈ (1,+∞)× [0, 1], we have again

φ(G(F (x, y), F (u, v), F (w, z)) = 0.

Thus condition (19) holds in all the cases. Hence by Corollary 2.1, F has a
coupled fixed point (0, 0) ∈ X ×X.

Note that Corollary 2.1 is not applicable in respect of the usual order of
real numbers because condition (19) does not hold. In fact, in this case,
from condition (19) with (x, y) = (4, 2), (u, v) = (3, 3), (w, z) = (2, 4), we
have

φ(G(F (x, y), F (u, v), F (w, z)) = 2

6≤ 4

3
=

1

2
φ(G(x, u, w) +G(y, v, z))− θ(G(x, u, w), G(y, v, z)).
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