p^* -Closure Operator and p^* -Regularity in Fuzzy Setting

Anjana Bhattacharyya**

ABSTRACT. In this paper a new type of fuzzy regularity, viz. fuzzy p^* -regularity has been introduced and studied by a newly defined closure operator, viz., fuzzy p^* -closure operator. Also we have found the mutual relationship of this closure operator among other closure operators defined earlier. In p^* -regular space, p^* -closure operator is an idempotent operator. In the last section, p^* -closure operator has been characterized via p^* -convergence of a fuzzy net.

1. Introduction

Throughout the paper, by (X,τ) or simply by X we mean a fuzzy topological space (fts, for short) in the sense of Chang [3]. A fuzzy set [7] A is a mapping from a nonempty set X into a closed interval I = [0, 1]. The support [6] of a fuzzy set A in X will be denoted by suppA and is defined by $supp A = \{x \in X : A(x) \neq 0\}$. A fuzzy point [6] with the singleton support $x \in X$ and the value t (0 < t < 1) at x will be denoted by x_t . 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 in X respectively. The complement [7] of a fuzzy set A in X will be denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for all $x \in X$. For two fuzzy sets A and B in X, we write $A \leq B$ if and only if $A(x) \leq B(x)$, for each $x \in X$, and AqB means A is quasi-coincident (q-coincident, for short) with B [6] if A(x) + B(x) > 1, for some $x \in X$. The negation of these two statements will be denoted by $A \not\leq B$ and $A \not B$ respectively. clA and intA of a fuzzy set A in X respectively stand for the fuzzy closure [3] and fuzzy interior [3] of A in X. A fuzzy set A in X is called fuzzy α -open [2] if $A \leq intclintA$. The complement of a fuzzy α -open set is called a fuzzy α -closed [2] set. The smallest fuzzy α -closed set containing a fuzzy set A is called fuzzy α -closure

²⁰⁰⁰ Mathematics Subject Classification. Primary: 54A40; Secondary: 54D99.

Key words and phrases. Fuzzy p^* -closure operator, fuzzy p^* -closed set, fuzzy p^* -regular space, p^* -convergence of a fuzzy net.

 $^{^{**}{\}rm The}$ author acknowledges the financial support from UGC (Minor Research Project), New Delhi.

of A and is denoted by αclA [2], i.e.,

$$\alpha clA = \bigwedge \big\{ U : A \leq U \text{ and } U \text{ is fuzzy } \alpha\text{-closed} \big\}$$

A fuzzy set A in X is fuzzy α -closed if $A = \alpha clA$ [2]. A fuzzy set B is called a quasi neighbourhood (q-nbd, for short) of a fuzzy set A in an fts X if there is a fuzzy open set U in X such that $AqU \leq B$. If, in addition, B is fuzzy open (resp., α -open) then B is called a fuzzy open (resp., α -open) q-nbd of A. In particular, a fuzzy set B in X is a fuzzy open (resp., α -open) q-nbd of a fuzzy point x_t in X if $x_tqU \leq B$, for some fuzzy open (resp., α -open) set U in X.

2. Fuzzy p^* -Closure Operator: Some Properties

In this section fuzzy p^* -closure operator has been introduced and studied. Let us recall a definition from [4] for ready reference.

Definition 2.1 ([4]). A fuzzy set A in an fts (X, τ) is called fuzzy preopen if $A \leq intclA$. The complement of a fuzzy preopen set is called a fuzzy preclosed set.

The union of all fuzzy preopen sets contained in a fuzzy set A is called fuzzy preinterior of A, to be denoted by pintA.

The intersection of all fuzzy preclosed sets containing a fuzzy set A is called fuzzy preclosure of A, to be denoted by pclA.

Definition 2.2. A fuzzy preopen set A in an fts (X, τ) is called a fuzzy pre-q-nbd of a fuzzy point x_t , if $x_t q A$.

Lemma 2.1. For a fuzzy point x_t and a fuzzy set A in an fts (X, τ) , $x_t \in pclA$ if and only if every fuzzy pre-q-nbd U of x_t , UqA.

Proof. Let $x_t \in pclA$ and U be any fuzzy pre-q-nbd of x_t . Then $U(x) + t > 1 \Rightarrow t > 1 - U(x) \Rightarrow x_t \notin 1_X \setminus U$ which is fuzzy preclosed in X and hence by Definition 2.1, $A \nleq 1_X \setminus U \Rightarrow$ there exists $y \in X$ such that $A(y) > (1_X \setminus U)(y) \Rightarrow A(y) + U(y) > 1 \Rightarrow AqU$.

Conversely, let for any fuzzy pre-q-nbd U of x_t , UqA. Let V be any fuzzy preclosed set containing A, i.e., $A \leq V$... (1). We have to show that $x_t \in V$. If possible, let $x_t \notin V$. Then $V(x) < t \Rightarrow 1 - V(x) > 1 - t \Rightarrow x_t q(1_X \setminus V)$. By assumption $(1_X \setminus V)qA \Rightarrow A > V$, contradicts (1).

Lemma 2.2. For any two fuzzy preopen sets A and B in an fts X, A $\not AB \Rightarrow pclA \not AB$ and A $\not ApclB$.

Proof. If possible, let pclAqB. Then there exists $x \in X$ such that pclA(x) + B(x) > 1. Let pclA(x) = t. Then $B(x) + t > 1 \Rightarrow x_tqB$ and $x_t \in pclA$. By Lemma 2.1, BqA, a contradiction.

Similarly, we can prove that $A \not apcl B$.

Definition 2.3. A fuzzy point x_t in an fts X is called fuzzy p^* -cluster point of a fuzzy set A in X if pclUqA for every fuzzy pre-q-nbd U of x_t .

The union of all fuzzy p^* -cluster points of a fuzzy set A is called fuzzy p^* -closure of A, to be denoted by $[A]_p$. A fuzzy set A in X is called fuzzy p^* -closed if $A = [A]_p$. The complement of a fuzzy p^* -closed set is called fuzzy p^* -open.

Note 2.1. It is clear from Definition 2.1 and Definition 2.3 that $pclA \leq [A]_p$, for any fuzzy set A in an fts X. The converse is not true, in general, as seen from the following example.

Example 2.1. Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, B\}$ where B(a) = 0.7, B(b) = 0.5. Then (X, τ) is an fts. The collection of all fuzzy preopen sets in (X, τ) is of the form $\{0_X, 1_X, B, U\}$ where $U \not\leq 1_X \setminus B$ and that of fuzzy preclosed sets is $\{0_X, 1_X, 1_X \setminus B, 1_X \setminus U\}$ where $1_X \setminus U \not\geq B$. Consider the fuzzy point $a_{0.2}$ and the fuzzy set V defined by V(a) = V(b) = 0.1. Then $a_{0.2} \not\in pclV$ but $a_{0.2} \in [V]_p$. Indeed, C(a) = 0.81, C(b) = 0.5 is a fuzzy pre-q-nbd of $a_{0.2}$ but $C \not AV$. Although $pclC = 1_X qV$.

The following theorem shows that under which condition, the two closure operators pcl and p^* coincide.

Theorem 2.1. For a fuzzy preopen set A in an fts (X, τ) , $[A]_p = pclA$.

Proof. By Note 2.1, it suffices to show that $[A]_p \leq pclA$, for any fuzzy preopen set A in X.

Let x_t be a fuzzy point in X such that $x_t \notin pclA$. Then there exists a fuzzy pre-q-nbd V of x_t such that $V \not qA$. Then $V(y) + A(y) \le 1$, for all $y \in X \Rightarrow V(y) \le 1 - A(y)$, for all $y \in X \Rightarrow pclV \le pcl(1_X \setminus A) = 1_X \setminus A$ (since $1_X \setminus A$ is fuzzy preclosed in X). Thus $pclV \not qA$ and consequently, $x_t \notin [A]_p$. Hence $[A]_p \le pclA$ for a fuzzy preopen set A in X.

We now characterize fuzzy p^* -closure operator of a fuzzy set A in an fts X.

Theorem 2.2. For any fuzzy set A in an fts (X, τ) , $[A]_p = \bigcap \{[U]_p : U \text{ is fuzzy preopen in } X \text{ and } A \leq U\}.$

Proof. Clearly, L.H.S. \leq R.H.S.

If possible, let $x_t \in \text{R.H.S}$, but $x_t \notin \text{L.H.S}$. Then there exists a fuzzy pre-q-nbd V of x_t such that $pclV \not pA$ and so $A \leq 1_X \setminus pclV$ and $1_X \setminus pclV$ being fuzzy preopen set in X containing A, by our assumption, $x_t \in [1_X \setminus pclV]_p$. But $pclV \not p(1_X \setminus pclV)$ and so $x_t \notin [1_X \setminus pclV]_p$, a contradiction. This completes the proof.

Remark 2.1. By Theorem 2.1 and Theorem 2.2, we can conclude that $[A]_p$ is fuzzy preclosed in X for a fuzzy set A in X.

Theorem 2.3. In an fts (X, τ) , the following hold:

- (a) the fuzzy sets 0_X and 1_X are fuzzy p^* -closed sets in X,
- (b) for two fuzzy sets A and B in X, if $A \leq B$, then $[A]_p \leq [B]_p$,
- (c) the intersection of any two fuzzy p^* -closed sets in X is fuzzy p^* -closed in X.

Proof. (a) and (b) are obvious.

(c) Let A and B be any two fuzzy p^* -closed sets in X. Then $A = [A]_p$ and $B = [B]_p$. Now $A \wedge B \leq A$, $A \wedge B \leq B$. Then by (b), $[A \wedge B]_p \leq [A]_p$ and $[A \wedge B]_p \leq [B]_p$. Therefore, $[A \wedge B]_p \leq [A]_p \wedge [B]_p = A \wedge B$.

Conversely, let $x_t \in A \land B$. Then $x_t \in A = [A]_p$ and $x_t \in B = [B]_p$. Then $A(x) \geq t$, $B(x) \geq t$, i.e., $A \land B(x) = \min\{A(x), B(x)\} \geq t$. Now for any fuzzy pre-q-nbd $A(x) = \min\{A(x), B(x)\} \geq t$. Therefore, $A(x) = \min\{A(x), B(x)\} \geq t$. Therefore,

Remark 2.2. In fact, the intersection of any collection of fuzzy p^* -closed sets is fuzzy p^* -closed. But the union of two fuzzy p^* -closed sets may not be fuzzy p^* -closed is clear from the following example.

Example 2.2. Let $X = \{a,b\}$, $\tau = \{0_X,1_X,A\}$ where A(a) = 0.4, A(b) = 0.7. Then (X,τ) is an fts. The collection of all fuzzy preopen sets in (X,τ) is $\{0_X,1_X,A,U\}$ where $U \not\leq 1_X \setminus A$. Then the collection of all fuzzy preclosed sets is $\{0_X,1_X,1_X\setminus A,1_X\setminus U\}$ where $1_X\setminus U\not\geq A$. Let C and D be two fuzzy sets given by C(a) = 0.5, C(b) = 0.6, D(a) = 0.2, D(b) = 0.7. Then $(C\bigvee D)(a) = 0.5$, $(C\bigvee D)(b) = 0.7$. Now $a_{0.6} \notin [C]_p$ as $a_{0.6}qU$ where U(a) = 0.41, U(b) = 0.31, but $pclU = U\not AC$. Again $a_{0.6} \notin [D]_p$ as $a_{0.6}qV$ where V(a) = 0.7, V(b) = 0.2, but $pclV = V\not AD$.

But for any fuzzy pre-q-nbd of $a_{0.6}$ is of the form U where $U \not\leq 1_X \setminus A$. Then $pclU = Uq(C \lor D)$ and consequently, $a_{0.6} \in [C \lor D]_p$. Therefore, $[C]_p \lor [D]_p < [C \lor D]_p$. Also $(C \lor D)(a) = 0.5 \not\geq 0.6$ and so $a_{0.6} \notin C \lor D$.

Note 2.2. It is clear from Remark 2.2 that fuzzy p^* -open sets in an fts (X, τ) may not form a base for a fuzzy topology.

Result 2.1. We conclude that $x_t \in [y_{t'}]_p$ does not imply $y_{t'} \in [x_t]_p$ where $x_t, y_{t'}$ (0 < t, t' < 1) are fuzzy points in X as shown from the following example.

Example 2.3. Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, A, B\}$ where A(a) = 0.5, A(b) = 0, B(a) = 0.7, B(b) = 0. Then (X, τ) is an fts. The collection of all fuzzy preopen sets in X is $\{0_X, 1_X, A, B, U, V\}$ where $0.3 < U(a) \le 0.5, U(b) = 0$ and $V(a) > 0.5, 0 \le V(b) \le 1$. Then the collection of all fuzzy preclosed sets is $\{0_X, 1_X, 1_X \setminus A, 1_X \setminus B, 1_X \setminus U, 1_X \setminus V\}$ where $0.5 \le 1 - U(a) < 0.7, U(b) = 1$ and $0 \le 1 - V(a) < 0.5, 0 \le 1 - V(b) \le 1$. Consider the fuzzy points $a_{0.6}$ and $b_{0.1}$. We claim that $b_{0.1} \in [a_{0.6}]_p$, but $a_{0.6} \notin [b_{0.1}]_p$. Indeed, any fuzzy preq-nbd of $b_{0.1}$ is of the form V where V(a) > 0.5, V(b) > 0.9 and pclV = W

where W(a) > 0.5, W(b) = 1 and $Wqa_{0.6}$. But D(a) = 0.41, D(b) = 0 is a fuzzy pre-q-nbd of $a_{0.6}$ and $pclD = D \not qb_{0.1}$.

3. p^* -Closure Operator: Mutual Relationship with Other Closure Operators

In this section we have established some mutual relationship of p^* -closure operator with other closure operators, viz., α^* -closure operator, θ -closure operator.

First We recall some definitions for ready references.

Definition 3.1 ([5]). Let A be a fuzzy set and x_t , a fuzzy point in an fts X. x_t is called a fuzzy θ -cluster point of A if every closure of every fuzzy open q-nbd of x_t is q-coincident with A.

The union of all fuzzy θ -cluster points of A is called fuzzy θ -closure of A, to be denoted by $[A]_{\theta}$. A is called fuzzy θ -closed if $A = [A]_{\theta}$ and the complement of a fuzzy θ -closed set is called fuzzy θ -open.

Definition 3.2 ([1]). A fuzzy point x_t in an fts X is called a fuzzy α^* -cluster point of a fuzzy set A in X if $\alpha clUqA$ for every fuzzy α -open q-nbd U of x_t . The union of all fuzzy α^* -cluster points of A is called fuzzy α^* -closure of A, to be denoted by $[A]_{\alpha}$. A fuzzy set A is called fuzzy α^* -closed if $A = [A]_{\alpha}$ and the complement of fuzzy α^* -closed set is called fuzzy α^* -open.

Result 3.1. $[A]_p \leq [A]_\theta$, for any fuzzy set A in an fts X.

Proof. Let $x_t \in [A]_p$. Let V be any fuzzy open q-nbd of x_t . Then V is fuzzy pre-q-nbd of x_t also. As $x_t \in [A]_p$, $pclVqA \Rightarrow clVqA \Rightarrow x_t \in [A]_\theta$.

Remark 3.1. It is clear from the following example that $[A]_p \neq [A]_{\theta}$, for any fuzzy set A in an fts X, in general.

Example 3.1. Consider Example 2.1. Consider the fuzzy point $a_{0.51}$ and a fuzzy set C given by C(a) = C(b) = 0.1. Then U(a) = 0.5, U(b) = 0 being a fuzzy pre-q-nbd of $a_{0.51}$, pclU = U $\not | C$ and so $a_{0.51} \notin [C]_p$. But other than 1_X , B is the only fuzzy open q-nbd of $a_{0.51}$ and $clB = 1_X qC$. Therefore, $a_{0.51} \in [C]_\theta$.

Result 3.2. $[A]_p \leq [A]_{\alpha}$, for any fuzzy set A in an fts X.

Proof. Let $x_t \in [A]_p$. Let U be a fuzzy α -open q-nbd of x_t . Then U is a fuzzy preopen set and hence $pclUqA \Rightarrow \alpha clUqA \Rightarrow x_t \in [A]_{\alpha}$.

Remark 3.2. It is clear from the following example that $[A]_p \neq [A]_\alpha$, for any fuzzy set A in an fts X, in general.

Example 3.2. Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, A, B\}$ where A(a) = 0.5, A(b) = 0.4, B(a) = 0.7, B(b) = 0.5. Then (X, τ) is an fts. The collection of all fuzzy α -open sets is $\{0_X, 1_X, A, B, V\}$ where $V \ge B$ and that of fuzzy preopen sets is $\{0_X, 1_X, A, B, U, V_1, W\}$ where $U \le A, U \le 1_X \setminus B, V_1 > 1_X \setminus A, W \ge B$.

Consider the fuzzy point $b_{0.71}$ and the fuzzy set D, defined by D(a) = D(b) = 0.6. Then $U_1(a) = 0.4$, $U_1(b) = 0.3$ is a fuzzy preopen set such that $b_{0.71}qU_1$. But $pclU_1 = U_1 \not dD$ and so $b_{0.71} \notin [D]_p$. All fuzzy α -open q-nbds of $b_{0.71}$ are $1_X, A, B, V$ where $V \geq B$. $\alpha clA = (1_X \setminus A)qD$, $\alpha clB = \alpha clV = \alpha cl1_X = 1_X qD$ and so $b_{0.71} \in [D]_{\alpha}$.

Remark 3.3. The following two examples show that fuzzy p^* -closure operator and fuzzy closure operator are independent notions.

Example 3.3. Let $X = \{a, b\}$, $\tau = \{0_X, 1_X, B\}$ where B(a) = 0.7, B(b) = 0.5. Then (X, τ) is an fts. Consider the fuzzy point $a_{0.51}$ and the fuzzy set C given by C(a) = C(b) = 0.4. Then $a_{0.51} \notin [C]_p$ as U defined by U(a) = 0.5, U(b) = 0, being a fuzzy pre-q-nbd of $a_{0.51}$, pclU = U/qC. But other than 1_X , B is the only fuzzy open q-nbd of $a_{0.51}$ such that BqC. Consequently, $a_{0.51} \in ClC$.

Example 3.4. Let $X = \{a\}$, $\tau = \{0_X, 1_X, A, B\}$ where A(a) = 0.4, B(a) = 0.7. Then (X, τ) is an fts. Then the collection of all fuzzy preopen sets is $\{0_X, 1_X, U, V\}$ where $U \leq A$, $V \geq B$. Consider the fuzzy point $a_{0.4}$ and the fuzzy set C given by C(a) = 0.3. Then B is a fuzzy open q-nbd of $a_{0.4}$, but $B \not A C$ and so $a_{0.4} \notin clC$. But any fuzzy pre-q-nbd of $a_{0.4}$ is of the form V and $pclV = 1_X qC$ and so $a_{0.4} \in [C]_p$.

4. Fuzzy p^* -Regular Space: Some Characterizations

In this section a new type of fuzzy regularity has been introduced and studied and shown that in this space p^* -closure operator and pcl operator coincide.

Definition 4.1. An fts (X, τ) is said to be fuzzy p^* -regular if for each fuzzy point x_t and each fuzzy pre-q-nbd U of x_t , there exists a fuzzy preopen set V in X such that $x_tqV \leq pclV \leq U$.

Theorem 4.1. For an fts (X, τ) , the following conditions are equivalent:

- (a) X is fuzzy p^* -regular space.
- (b) For any fuzzy set A in X, $[A]_p = pclA$,
- (c) For each fuzzy point x_t and each fuzzy preclosed set F with $x_t \notin F$, there exists a fuzzy preopen set U such that $x_t \notin pclU$ and $F \leq U$.
- (d) For each fuzzy point x_t and each fuzzy preclosed set F such that $x_t \notin F$, there exist fuzzy preopen sets U and V in X such that $x_tqU, F \leq V$ and $U \not qV$.
- (e) For any fuzzy set A and any fuzzy preclosed set F with $A \not\leq F$, there exist fuzzy preopen sets U and V such that $AqU, F \leq V$ and U $\not qV$.
- (f) For any fuzzy set A and any fuzzy preopen set U with AqU, there exists a fuzzy preopen set V such that $AqV \leq pclV \leq U$.

Proof. (a) \Rightarrow (b): By Note 2.1, it suffices to show that $[A]_p \leq pclA$, for any fuzzy set A in X.

Let $x_t \in [A]_p$ and V be any fuzzy pre-q-nbd of x_t . By (a), there exists a fuzzy preopen set W such that $x_tqW \leq pclW \leq V$. Since $x_t \in [A]_p$, pclWqA and so VqA. Consequently, $x_t \in pclA \Rightarrow [A]_p \leq pclA$.

- (b) \Rightarrow (a): Let x_t be a fuzzy point in X and U be any fuzzy pre-q-nbd of x_t . Then $U(x)+t>1 \Rightarrow x_t \notin (1_X \setminus U) = pcl(1_X \setminus U) = [1_X \setminus U]_p$ (by (b)). Then there exists a fuzzy pre-q-nbd V of x_t such that $pclV \not q(1_X \setminus U) \Rightarrow pclV \leq U$. Then $x_tqV \leq pclV \leq U \Rightarrow X$ is fuzzy p^* -regular.
- (a) \Rightarrow (c): Let x_t be a fuzzy point in X and F, a fuzzy preclosed set in X with $x_t \notin F$. Then $F(x) < t \Rightarrow 1 F(x) + t > 1 \Rightarrow x_t q(1_X \setminus F)$. By (a), there exists a fuzzy preopen set W such that $x_t qW \leq pclW \leq 1_X \setminus F$. Therefore, $F \leq 1_X \setminus pclW = U$ (say) which is fuzzy preopen. Now $x_t qW \Rightarrow x_t qpintW \leq W \leq pint(pclW) \Rightarrow x_t qpint(pclW) \Rightarrow (pint(pclW))(x) + t > 1 \Rightarrow 1 (pint(pclW))(x) < t \Rightarrow x_t \notin 1_X \setminus (pint(pclW)) \Rightarrow x_t \notin pcl(1_X \setminus pclW) \Rightarrow x_t \notin pclU$.
- (c) \Rightarrow (d): Let x_t be a fuzzy point in X and F, a fuzzy preclosed set in X with $x_t \notin F$. By (c), there exists a fuzzy preopen set U such that $x_t \notin pclU$ and $F \leq U$. Now $x_t \notin pclU \Rightarrow$ there exists a fuzzy pre-q-nbd W of x_t such that $W \not = U$.
- (d) \Rightarrow (e): Let A be any fuzzy set and F, any fuzzy preclosed set in X with $A \not\leq F$. Then there exists $x \in X$ such that A(x) > F(x). Let A(x) = t. Then $x_t \notin F$. By (d), there exist fuzzy preopen sets U and V such that $x_tqU, F \leq V$ and $U \not qV$. Again, $U(x) + A(x) = U(x) + t > 1 \Rightarrow AqU$.
- (e) \Rightarrow (f): Let A be any fuzzy set and U, any fuzzy preopen set in X with AqU. Then $A \not\leq 1_X \setminus U$ which is fuzzy preclosed. By (e), there exist fuzzy preopen sets V and W such that $AqV, 1_X \setminus U \leq W$ and $V \not qW$. Then by Lemma 2.2, $pclV \not qW$. Thus $AqV \leq pclV \leq 1_X \setminus W \leq U$.

$(f) \Rightarrow (a)$: Obvious.	
----------------------------------	--

Corollary 4.1. An fts (X, τ) is fuzzy p^* -regular if and only if every fuzzy preclosed set in X is fuzzy p^* -closed in X.

Proof. Let (X, τ) be fuzzy p^* -regular space and A, a fuzzy preclosed set in X. Then by Theorem 4.1 (a) \Rightarrow (b), $A = pclA = [A]_p$ and hence A is fuzzy p^* -closed in X.

Conversely, let $A = [A]_p$ for any fuzzy preclosed set in X. Let B be any fuzzy set in X. Then $pclB = [pclB]_p$. Then $[B]_p \leq [pclB]_p = pclB$. Again from Note 2.1, $pclB \leq [B]_p$ and so $[B]_p = pclB$ for any fuzzy set B in X. Hence by Theorem 4.1 (b) \Rightarrow (a), X is fuzzy p^* -regular space.

Remark 4.1. In a fuzzy p^* -regular space (X, τ) , $[[A]_p]_p = [A]_p$.

Proof. By Theorem 4.1 (a) \Rightarrow (b), $[[A]_p]_p = [pclA]_p = pcl(pclA) = pclA = [A]_p$ (by Theorem 4.1 (a) \Rightarrow (b)).

5. Characterizations of Fuzzy p^* -Closure Operator Via Fuzzy Net

In this section fuzzy p^* -closure operator of a fuzzy set is characterized in terms of fuzzy p^* -cluster point of a fuzzy net and its fuzzy p^* -convergence.

Definition 5.1. A fuzzy point x_t in an fts (X, τ) is called a fuzzy p^* -cluster point of a fuzzy net $\{S_n : n \in (D, \geq)\}$ if for every fuzzy pre-q-nbd U of x_t and for any $n \in D$, there exists $m \in D$ with $m \geq n$ such that $S_m qpclU$.

Definition 5.2. A fuzzy net $\{S_n : n \in (D, \geq)\}$ in an fts (X, τ) is said to p^* -converge to a fuzzy point x_t if for any fuzzy pre-q-nbd U of x_t , there exists $m \in D$ such that $S_n qpclU$ for all $n \geq m$ $(n \in D)$. This is denoted by $S_n \overrightarrow{p^*} x_t$.

Theorem 5.1. A fuzzy point x_t is a fuzzy p^* -cluster point of a fuzzy net $\{S_n : n \in (D, \geq)\}$ in an fts (X, τ) if and only if there exists a fuzzy subnet of $\{S_n : n \in (D, \geq)\}$ which p^* -converges to x_t .

Proof. Let x_t be a fuzzy p^* -cluster point of the fuzzy net $\{S_n : n \in (D, \geq)\}$. Let $p(Q_{x_t})$ denote the set of fuzzy preclosures of all fuzzy pre-q-nbds of x_t . Then for any $A \in p(Q_{x_t})$, there exists $n \in D$ such that S_nqA . Let E denote the set of all ordered pairs (n, A) such that $n \in D$, $A \in p(Q_{x_t})$ and S_nqA . Then (E, \gg) is a directed set, where $(m, A) \gg (n, B)$ $((m, A), (n, B) \in E)$ if and only if $m \geq n$ in D and $A \leq B$. Then $T : (E, \gg) \to (X, \tau)$ given by $T(m, A) = S_m$ is clearly a fuzzy subnet of $\{S_n : n \in (D, \geq)\}$.

We claim that $\overrightarrow{Tp^*}x_t$. Let V be any fuzzy pre-q-nbd of x_t . Then there exists $n \in D$ such that $(n, pclV) \in E$ and so S_nqpclV . Now for any $(m, A) \gg (n, pclV)$, $T(m, A) = S_mqA \leq pclV \Rightarrow T(m, A)qpclV$. Consequently, $\overrightarrow{Tp^*}x_t$. Conversely, if x_t is not a fuzzy p^* -cluster point of the fuzzy net $\{S_n : n \in (D, \geq)\}$, then there exists a fuzzy pre-q-nbd U of x_t and an $n \in D$ such that S_m /qpclU, for all $m \geq n$. Then clearly, no fuzzy subnet of the net $\{S_n : n \in (D, \geq)\}$ can p^* -converge to x_t .

Theorem 5.2. Let A be a fuzzy set in an fts (X, τ) . A fuzzy point $x_t \in [A]_p$ if and only if there exists a fuzzy net $\{S_n : n \in (D, \geq)\}$ in A, which p^* -converges to x_t .

Proof. Let $x_t \in [A]_p$. Then for any fuzzy pre-q-nbd U of x_t , pclUqA, i.e., there exists $y^U \in suppA$ and a real number p_U with $0 < p_U \le A(y^U)$ such that the fuzzy point $y^U_{p_U}$ with support y^U and value p_U belong to A and $y^U_{p_U}qpclU$. We choose and fix one such $y^U_{p_U}$ for each U. Let \mathcal{D} denote the set of all fuzzy pre-q-nbds of x_t . Then (\mathcal{D},\succeq) is a directed set under inclusion relation, i.e., $B, C \in \mathcal{D}, B \succeq C$ iff $B \le C$. Then $\{y^U_{p_U} \in A : y^U_{p_U}qpclU$ and $U \in \mathcal{D}\}$ is a fuzzy net in A such that it p^* -converges to x_t . Indeed, for any fuzzy pre-q-nbd U of x_t , if $V \in \mathcal{D}$ and $V \succeq U$ (i.e., $V \le U$), then $y^V_{p_V}qpclV \le pclU \Rightarrow y^V_{p_V}qpclU$.

Conversely, let $\{S_n : n \in (D, \geq)\}$ be a fuzzy net in A such that $S_n \overrightarrow{p^*} x_t$. Then for any fuzzy pre-q-nbd U of x_t , there exists $m \in D$ such that $n \geq m$ $\Rightarrow S_n qpclU \Rightarrow AqpclU$ (since $S_n \in A$). Hence $x_t \in [A]_p$.

Remark 5.1. It is clear that an improved version of the converse of the last theorem can be written as " $x_t \in [A]_p$ if there exists a fuzzy net in A with x_t as a fuzzy p^* -cluster point".

References

- [1] Anjana Bhattacharyya, α^* -closure operator in fuzzy setting, Analele Universității Oredea, Fasc. Matematica, Tom XXI Issue No. 2 (2014), 67-72.
- [2] A.S. Bin Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fussy Sets and Systems 44 (1991), 303-308.
- [3] C.L. Chang; Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [4] A.S. Mashhour, M.H. Ghanim and M.A. Fath Alla, On fuzzy noncontinuous mappings, Bull. Cal. Math. Soc. 78 (1986), 57-69.
- [5] M.N. Mukherjee and S.P. Sinha, Fuzzy θ-closure operator on fuzzy topological spaces, Internat. J. Math. and Math. Sci. 14 (2) (1991), 309-314.
- [6] Pao Ming Pu and Ying Ming Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, Jour. Math. Anal. Appl. 76 (1980), 571-599.
- [7] L.A. Zadeh, Fuzzy Sets, Inform. Control 8 (1965), 338-353.

Anjana Bhattacharyya

DEPARTMENT OF MATHEMATICS VICTORIA INSTITUTION (COLLEGE) 78 B, A.P.C. ROAD KOLKATA - 700009 INDIA

 $E ext{-}mail\ address: anjanabhattacharyya@hotmail.com}$