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I - Fréchet-Urysohn spaces∗

V. Renukadevi and B. Prakash

Abstract. In this paper, we introduce the concept ss-sequentially quo-
tient mapping. Using this concept, we characterize s-Fréchet-Urysohn
spaces and s-sequential spaces.

Finally, we develop the properties of I-Fréchet-Urysohn spaces which
is the generalized form of s-Fréchet-Urysohn spaces. Also, we give an
example that product of two I-Fréchet-Urysohn spaces need not be an
I-Fréchet-Urysohn space for any I.

1. Introduction

The concept of convergence of a sequence of real numbers has been
extended to statistical convergence independently by Fast [7] and Schoen-
berg [29]. If K ⊂ N, then Kn will denote the set {k ∈ K : k ≤ n} and |Kn|
stands for the cardinality of Kn. The natural density of K is defined by

d(K) = lim
n→∞

|Kn|
n ,

if the limit exists [12, 23]. A sequence {xn} in a topological space X is said
to converge statistically [20](or shortly s-converge) to x ∈ X, if for every
neighborhood U of x, d({n ∈ N : xn ∈ U}) = 1. Any convergent sequence
is statistically convergent but the converse is not true [27]. But in general,
s-convergent sequences satisfy many of the properties of ordinary convergent
sequences in metric spaces. It has been discussed and developed by many
authors [3, 5, 6, 9, 10, 11, 21, 22, 25, 26].

The concept of I-convergence of real sequences [13, 14] is a generalization
of statistical convergence which is based on the structure of the ideal I
of subsets of the set of natural numbers. In the recent literature, several
works on I-convergence including remarkable contributions by Šalát et al
have occured [2, 4, 13, 14, 16, 19, 28]. The idea of I-convergence has been
extended from real number space to topological space [17] and to a normed
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linear space [28]. I-convergence coincides with the ordinary convergence if
I is the ideal of all finite subsets of N and with the statistical convergence
if I is the ideal of subsets of N of natural density zero.

We recall the following definition ([15], p.34).
If X is a nonvoid set, then a family of sets I ⊂ 2X is an ideal if (i) A,B ∈ I

implies A ∪B ∈ I and (ii) A ∈ I, B ⊂ A implies B ∈ I. The ideal is called
nontrivial if I 6= {∅} and X /∈ I. A nontrivial ideal I is called admissible if
it contains all the singleton sets. Several examples of nontrivial admissible
ideals may be seen in [13]. xn → x denotes a sequence {xn} converging to
x. Let X be a space and P ⊂ X. A sequence {xn} converging to x in X is
eventually in P if {xn/n > k} ∪ {x} ⊂ P for some k ∈ N; it is frequently in
P if {xnk

} is eventually in P for some subsequence {xnk
} of {xn}. Let P be

a family of subsets of X. Then ∪P and ∩P denote the union ∪{P/P ∈ P}
and the intersection ∩{P/P ∈ P}, respectively.

Throughout this paper, (X, τ) will stand for a topological space and I
for a nontrivial admissible ideal of N, the set of all positive integers and all
functions f : X → Y are continuous and onto.

Definition 1.1. Let P = ∪{Px | x ∈ X} be a cover of a space X. Assume
that P satisfies the following conditions (a) and (b) for each x ∈ X.

(a) Px is a network at x in X, i.e., x ∈ ∩Px and for each neighborhood
U of x in X,P ⊂ U for some P ∈ Px.

(b) If U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.

P is called a weak base [1] of X if whenever G ⊂ X, G is open in X if
and only if for each x ∈ G, there exists P ∈ Px such that P ⊂ G. The space
X is weakly first-countable [1] if X has a weak base P such that each Px is
countable for each x ∈ X.

Definition 1.2. (a) f is called pseudo-open [1] if for each y ∈ Y and
each neighborhood U of f−1(y) in X, y ∈ int(f(U)).

(b) Let f : X → Y be a mapping. f is sequentially quotient [18] if for
every convergent sequence S in Y , there is a convergent sequence L
in X such that f(L) is an infinite subsequence of S. Equivalently, if
whenever {yn} is a convergent sequence in Y , there is a convergent
sequence {xk} in X with each xk ∈ f−1(ynk

) [30].

Definition 1.3. Let X be a space. P ⊂ X is called a sequential neighborhood
of x in X, if each sequence convergence to x ∈ X is eventually in P. A subset
U of X is called sequentially open if U is a sequential neighborhood of each
of its points. X is called a sequential space [8] if each sequentially open
subset of X is open. X is called a Fréchet-Urysohn space [8] if for each
x ∈ cl(A) ⊂ X, there exists a sequence {xn} such that {xn} converges to x
and {xn/n ∈ N} ⊂ A.
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Definition 1.4. [17] A sequence {xn} in X is said to be I-convergent to
x0 ∈ X if for any nonvoid open set U containing x0, {n ∈ N/xn /∈ U} ∈ I.
We call x0 as the I-limit of the sequence {xn}.

Definition 1.5. [24] O is I-sequentially open if and only if no sequence in
X \O has an I-limit in O.

Definition 1.6. [24] A subset A of a space X is said to be an I-sequentially
closed set if for every sequence {xn} in A with {xn} I-converges to x, then
x ∈ A.

Definition 1.7. [24] A topological space is I-sequential when any set O is
open if and only if it is I-sequentially open.

Even though we mainly deal with I-sequential and I-Fréchet-Urysohn
spaces, we see the basic definitions for s-sequential and s-Fréchet-Urysohn
spaces which will be useful for the theorems which deal s-sequential and s-
Fréchet-Urysohn spaces. An I-sequential space X is statistically sequential
if I = {A ⊂ X/d(A) = 0}.

Definition 1.8. A subset K of the set N is called statistically dense [20] if
d(K) = 1.

Definition 1.9. A space X is called statistically sequential(or shortly, s-
sequential) space [20] if for each non-closed subset A ⊂ X, there is a point
x ∈ X \A and a sequence {xn} in A statistically converging to x.

There is another way to define s-sequential space.

Definition 1.10. A subset A of a space X is said to be a statistically sequen-
tially open set (s-sequentially open) [31] if for any sequence {xn} statistically
converge to x and x ∈ A, then |{n/xn ∈ A}| = ω.
A topological space is s-sequential when any set O is open if and only if it is
s-sequentially open.
A topological space X is statistically Fréchet-Urysohn [20](or shortly, s-
Fréchet-Urysohn), if for each A ⊂ X and each x ∈ cl(A), there is a sequence
in A statistically converging to x.

Definition 1.11. A subsequence S of the sequence L is called statistically
dense in L [11] if the set of all indices of elements from S is statistically
dense.

Definition 1.12. A subsequence {xnk
} of the sequence {xn} is called a thin

subsequence of {xn} [31] if d(K) = 0 where K = {nk/k ∈ N}.

Remark 1.13. [17, 20]
(a) The limit of an I-convergent sequence is uniquely determined in

Hausdorff spaces.
(b) If a sequence {xn} converges to x in the usual sense, then it statis-

tically converges to x. But the converse is not true in general.
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(c) A sequence {xn} is statistically convergent if and only if each of its
statistically dense subsequence is statistically convergent.

(d) If a sequence {xn} I-converges to x, then every subsequence {xnk
}nk∈N\I

is I-convergent for every I ∈ I.

Lemma 1.14. [24] Let X be a topological space and A ⊂ X. Then the
following hold.
(a) A is I-sequentially open.
(b) X \A is I-sequentially closed.

2. I-Fréchet-Urysohn Space

In this section, we introduce I-Fréchet-Urysohn spaces and study their
properties. A space X is called an I-Fréchet-Urysohn space if for each
A ⊂ X and each x ∈ cl(A), there is a sequence in A I-converges to x.

It is easy to see that, if I is an admissible ideal, then the following
implications hold.

Fréchet-Urysohn space → I-Fréchet-Urysohn space
↓ ↓

Sequential space → I-sequential space
If I = {A ⊂ N/d(A) = 0}, then I-Fréchet-Urysohn space becomes s-Fréchet-
Urysohn space.

Proposition 2.1. Subspace of an I-Fréchet-Urysohn space is an I-Fréchet-
Urysohn space.

Proof. Let Y be a nonempty subspace of X and x ∈ clY (A) where A ⊂
Y . Then clY (A) = Y ∩ clX(A) which implies x ∈ clX(A). Since X is an
I-Fréchet-Urysohn space, there exists a sequence in A I-converges to x.
Therefore, Y is an I-Frechet-Urysohn space. �

Proposition 2.2. The disjoint topological sum of any family of I-Fréchet-
Urysohn spaces is an I-Fréchet-Urysohn space.

Proposition 2.3. If f : X → Y is a quotient map, when X is an I-Fréchet-
Urysohn space, then Y is an I-Fréchet-Urysohn space⇐⇒ f is pseudo open.

Proof. Suppose that Y is an I-Fréchet-Urysohn space. Let y ∈ Y and U be
an open neighborhood of f−1(y). If y /∈ intf(U), then y ∈ cl(Y \ f(U)).
Since Y is an I-Fréchet-Urysohn space, there is a sequence {yn} ⊂ Y \
f(U) I-converges to y. Since f is quotient, cl(f−1({yn})) ⊂ f−1(cl{yn}) =
f−1({yn}) ∪ f−1(y). Since U is an open neighborhood of f−1(y) and U ∩
f−1({yn}) = ∅, f−1(y) ∩ cl(f−1({yn})) = ∅ and thus, f−1({yn}) is closed.
This implies X \ f−1({yn}) = f−1(Y \ {yn}) is open. Since f is quotient,
Y \{yn} is open which is a contradiction to {yn} I-converges to y. Therefore,
y ∈ intf(U) and hence f is pseudo open.
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Conversely, let y ∈ cl(A) with A ⊂ Y. Suppose f−1(y)∩ cl(f−1(A)) = ∅. Let
U = X \ cl(f−1(A)). Then f−1(y) ⊂ U and f is pseudo open implies that

y ∈ int(f(U)) ⊂ int(f(int(X \ f−1(A))))

⊂ int(intf(X \ f−1(A)))

= intf(X \ f−1(A))

= int(Y \A)

= Y \ cl(A)

Therefore, y ∈ Y \ cl(A) which is a contradiction. There exists x ∈ f−1(y)∩
cl(f−1(A)). Since X is I-Fréchet-Urysohn, there exists a sequence {xn} ⊂
f−1(A) such that {xn} I-converges to x so that {f(xn)} ⊂ A and {f(xn)}
I-converges to y. Therefore, Y is an I-Fréchet-Urysohn space. �

Since Cartesian product of two Fréchet-Urysohn spaces is not a Fréchet-
Urysohn space, naturally, one can arise a question that "Is Cartesian product
of two I-Fréchet-Urysohn spaces is I-Fréchet-Urysohn space?" The answer
is not for all I as shown by the following Example 2.4.

Example 2.4. Let Sm = {xm,n/n ∈ N}
⋃
{xm} be a space with a topology

defined as follows:
Each {xm,n}is open and U is a neighborhood of xm, then {n/xm,n /∈ U} ∈
I. Clearly, each Sm is an I-Fréchet-Urysohn space and X ′ be the disjoint
topological sum of Sm for m ∈ N. By Proposition 2.2, X ′ is an I- Fréchet-
Urysohn space. Now form X from X ′ by identifying all xm to x1. Then the
natural map f : X ′ → X is a psuedo open map, since for a neighborhood
U of f−1(x), f(U) is a neighborhood of x. By Proposition 2.3, X is an I-
Fréchet-Urysohn space.
Let Y = {xn/n ∈ N}

⋃
{x} be a space with a topology as defined for Sm and

hence Y is an I-Fréchet-Urysohn space.
But X × Y is not an I-Fréchet-Urysohn space.
For A =

⋃
m∈N

(Sm × {xm}), z = (x1, x) ∈ cl(A).

Suppose there exists a sequence {(x′n, xn)}n∈N I-converges to (x1, x). Then
{π1(x′n, xn)}n∈N I-converges to x1 and {π2(x′n, xn)}n∈N I-converges to x, by
Proposition 2.1 in [24]. {π1(x′n, xn)}n∈N = {x′n}n∈N I-converges to x1 im-
plies for somem, x′n ∈ Sm for n ∈ N ′ /∈ I. This implies that {π2(x′n, xn)}n∈N ′ =
{xm}n∈N ′ is a constant sequence I-converges to xm. Since Y is Hausdorff
and the subsequence {xnk

}nk∈N ′′ of an I-convergent sequence {xn}n∈N I-
converges to x if N ′′ /∈ I, {xn}n∈N ′ I-converges to x that is, {xn}n∈N ′
I-converges to two different limits which is a contradiction.
Therefore, there is no sequence in A I-converges to x.
Hence X × Y is not an I-Fréchet-Urysohn space.

Theorem 2.5. Every I-Fréchet-Urysohn space is an I-sequential space.
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Proof. Let U be an I-sequential open set. Let x ∈ cl(X \ U). Then there
exists a sequence {xn} in X\U I-converges to x. Now X\U is I-sequentially
closed implies x ∈ X \ U . Therefore, X \ U is closed and hence U is open.
Therefore, X is an I-sequential space. �

Converse of the above Theorem 2.5 need not be true as shown by Ex-
ample 3.1 [31].

Proposition 2.6. If every subspace of a space X is I-sequential, then X is
an I-Fréchet-Urysohn space.

Proof. Let x ∈ cl(A). If x ∈ A, then the proof is obvious. If x /∈ A, then A is
not closed in X. Now let Y = A∪{x}, then A is not closed in Y. But by our
assumption, Y is an I-sequential space. Therefore, there exists a sequence
{xn} ⊂ A such that {xn} I-converges to x. �

Theorem 2.7. Let X be an I-Fréchet-Urysohn space. If W is a weak neigh-
borhood of x ∈ X, then x ∈ int(W ).

Proof. Suppose x /∈ int(W ). Then x ∈ cl(X \W ). Since X is an I- Fréchet-
Urysohn space, there exists a sequence {xn} in X \W I-converges to x ∈W.
This implies that W is not an I-sequential neighborhood of x in X which is
a contradiction. Therefore, x ∈ int(W ). �

Corollary 2.8. Let X be an I-Fréchet-Urysohn space. If X is weakly first
countable, then X is first countable.

Lemma 2.9. Every I-Fréchet-Urysohn space is J -Fréchet-Urysohn space
⇐⇒ I ⊂ J .

Proof. Suppose I * J that is, there exists I ∈ I and I /∈ J . Now form a
space X = {xn}n∈N

⋃
{x} and its topology is defined as follows :

Each {xn} is open and each neighborhood U of x is such that {n/xn /∈ U} ∈
I.
Then clearly X is an I-Fréchet-Urysohn space.
Now let A = {xn/n /∈ I}.
Then x ∈ cl(A) and there is no sequence in A which is J -convergent to x.
Suppose {xn}n∈N ⊂ A J -converges to x.
Form U = {xn/n /∈ I}

⋃
{x} which is an open neighborhood of x.

{n/xn /∈ U} = I /∈ J which is a contradiction. Therefore, X is not a J -
Fréchet-Urysohn space.
Conversely, suppose I ⊂ J
Let X be an I-Fréchet-Urysohn Space and x ∈ cl(A).
Then there exists a sequence {xn}n∈N ⊂ A such that {xn} I-converges to
x, that is, {n/xn /∈ U} ∈ I for all neighborhood U of x.
Since I ⊂ J , {n/xn /∈ U} ∈ J for all neighborhood U of x.
Then the sequence {xn} in A J -converges to x.
Therefore, X is a J -Fréchet-Urysohn space. �
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3. ss-Sequentially Quotient Maps

In this section, we introduce a map namely, ss-sequentially quotient map
and using this we characterize s-sequential spaces and s-Fréchet-Urysohn
spaces. Also, we give their properties. A mapping f : X → Y is said to be
an ss-sequentially quotient map if for given {yn} s-converges to y in Y , there
exist {xn} s-converges to x, x ∈ f−1(y) and xn ∈ f−1(yn). In Proposition
3.1, s-σX denote the set X topologized by the statistical sequential closure
of the relative topology from X that is, all statistically sequentially open
sets are open. Therefore, X and s-σX have same s-convergent sequences
and hence it is easy to prove Proposition 3.1.

Proposition 3.1. Let f : X → Y be a mapping and g = f |s−σX : s-σX →
s-σY. Then f is an ss-sequentially quotient if and only if g is ss-sequentially
quotient.

By Proposition 2.1 in [24] and the definition of ss-sequentially quotient
mapping, the proof of the following Proposition 3.2 is clear.

Proposition 3.2. Let f : X → Y and g : Y → Z be any two mappings.
Then the following hold.
(a) If f and g are ss-sequentially quotient, then g ◦ f is ss-sequentially quo-
tient.
(b) If g ◦ f is ss-sequentially quotient, then g is ss-sequentially quotient.

Proposition 3.3. For any topological space, the following hold.
(a) Finite product of ss-sequentially quotient mappings is ss-sequentially quo-
tient.
(b) ss-sequentially quotient mappings are hereditarily ss-sequentially quotient
mappings.

Proof. (a) Let
∏N
i=1 fi :

∏N
i=1Xi →

∏N
i=1 Yi be a map where each fi :

Xi → Yi is ss- sequentially quotient map for i = 1, 2, 3, ...N. Let
{(yi,n)}n∈N be s-converges to (yi) in

∏N
i=1 Yi. By Proposition 2.1 in

[24], each {yi,n} is a sequence s-converges to yi in Yi. Since each
fi is an ss-sequentially quotient map, there exists a sequence {xi,n}
s-converges to xi such that fi(xi,n) = yi,n.

Take (xi) ∈
∏N
i=1Xi. Then {(xi,n)} s-converges to (xi), since for

neighborhood U of (xi), there exists a thin subsequence Ni of N for
each i = 1, 2, 3, ...N such that {n ∈ N/(xi,n) /∈ U} ∈

⋃
Ni which is a

thin subsequence of N as set of all thin subsequence form an ideal.
Therefore,

∏N
i=1 fi is an ss-sequentially quotient map.

(b) Let f : X → Y be an ss-sequentially quotient map and H be a sub-
space of Y . Take g = f |f−1(H) such that g : f−1(H)→ H be a map.
Given a sequence {yn} s-convergence to y in H, there exists a se-
quence xn ∈ f−1(yn) ∈ f−1(H) such that (xn) s-converges to x ∈
f−1(y) ∈ f−1(H), since f is ss-sequentially quotient map and {yn}
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s-converges to y in Y. Therefore, g is an ss-sequentially quotient
map. �

The following examples shows that sequentially quotient and ss-sequentially
quotient mappings are independent.

Example 3.4. Let X = S1
⊕
S2 and Y = S1 be a topological space as de-

fined in Example 2.4. Let f : X → Y be a mapping defined by

f(xi,n) =

{
x1,2n, if i = 1
x1,2n−1, if i = 2

and f(x1) = f(x2) = x1.
Then clearly, f is sequentially quotient but not ss-sequentially quotient since
for an s-convergent sequence {x1,n} in Y , there is no s-convergent sequence
{xn} in X such that xn ∈ f−1(x1,n).

Example 3.5. Let X = {xn/n ∈ N}
⋃
{x} be a topological space such that

{xn} converges to x. Take X ′ =
⊕
L∈∧

L, where ∧ is the set of all subsequences

of X with x and L s-converges to x. Let f : X ′ → X be an identity mapping.
Then clearly, f is ss-sequentially quotient but not sequentially quotient, since
there is no convergent sequence in X ′.

We observe that the following implication is true when X and Y are first
countable, by Theorem 2.2 in [20].

ss-sequentially quotient map =⇒ sequentially quotient map
In [31], author raised a question: “How to characterize s-sequential spaces

as the images of metric spaces under some continuous mappings?". Also,
for s-Fréchet-Urysohn spaces. So, we characterize s-sequential spaces and
s-Fréchet-Urysohn spaces in terms of mappings.

Theorem 3.6. Y is an s-sequential space ⇔ every ss-sequentially quotient
mapping onto Y is quotient.

Proof. Let Y be an s-sequential space and f : X → Y be an ss-sequentially
quotient mapping onto Y. Suppose that f−1(U) is open in X and U is not
open in Y. Then Y \ U is not closed in Y. Therefore, by hypothesis, there
exists y ∈ U such that {yn} s-converges to y such that yn ∈ X \U. Since f is
ss-sequentially quotient, there exists a sequence {xn} s-converges to x such
that x ∈ f−1(y) ⊂ f−1(U) and xn ∈ f−1(yn) ⊂ f−1(Y \ U) = X \ f−1(U).
Therefore, f−1(U) is not open in X, a contradiction.

Conversely, let every ss-sequentially quotient mapping onto Y be quotient.
For each y ∈ Y , and for each sequence {sn} in Y , s-converges to y, let
SC(S, y) = {sn/n = 1, 2, 3, . . . } ∪ {y} be a topological space, where each sn
is a discrete point and neighborhood U of y is such that {n ∈ N/sn /∈ U} is
a thin subsequence of N. Let Y ∗ =

⊕
S∈S
SC(S, y)× {S} where S be the set
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of all s-convergent sequences. Now we consider a mapping f : Y ∗ → Y by
f((ym, S)) = ym.

(1) f is onto.
For each point y ∈ Y , there is a constant sequence S in Y such
that SC(S, y) = {sn = y/n = 1, 2, 3, ...} ∪ {y} that is, there exists
SC(S, x)× {S} ⊂ Y ∗ and f((y, S)) = y. Therefore, f is onto.

(2) f is continuous.
Let U be an open set in Y and (y′, S) ∈ f−1(U). Then there is a
sequence S in Y such that y′ ∈ SC(S, y) = {sn/n = 1, 2, 3, ...} ∪
{y} and f((y′, S)) = y′. If (y′, S) is an isolated point, then there
is nothing to prove. If (y′, S) = (y, S), then there exists a thin
subsequence N ′ of N such that sn ∈ U for n ∈ N \ N ′ and hence
{(sn, S)/n ∈ N \N ′} ⊂ f−1(U) which is open in SC(S, y) and hence
open in Y ∗. Therefore, f−1(U) is open in Y ∗. Hence f is continuous.

(3) It is clear from the definition of Y ∗ that f is ss-sequentially quotient.
By our assumption f is quotient. Since Y ∗ is an s-sequential space and f is
quotient, Y is an s-sequential space, by Theorem 2.4 in [31]. �

Theorem 3.7. Y is an s-Fréchet-Urysohn space ⇔ every ss-sequentially
quotient mapping onto Y is psuedo open.

Proof. Let Y be an s-Fréchet-Urysohn space and f : X → Y be an ss-
sequentially quotient mapping onto Y. Let y be a point in Y and U an
open neighborhood of f−1(y) such that y /∈ intf(U). Then y ∈ cl(Y \
f(U)). Since Y is s-Fréchet-Urysohn space, there exists a sequence {yn}
in Y \ f(U) s-converges to y. Thus, there exists a sequence {xn} in X s-
converges to x where xn ∈ f−1(yn) for all n and x ∈ f−1(y), that is, xn ∈
f−1(yn) ⊂ f−1(Y \ f(U)) ⊂ X \ U and {xn} s-converges to x ∈ U which is
a contradiction to U is open. Therefore, f is pseudo open.
Conversely, let every ss-sequentially quotient mapping onto Y is pseudo
open.
Let Y ∗ be a space defined in Theorem 3.6 which is an s-Fréchet-Urysohn
space, by Proposition 2.2, and f : Y ∗ → Y mapping defined in the previous
Theorem 3.6. Then f is ss-sequentially quotient mapping and hence pseudo
open. Since Y ∗ is an s-Fréchet-Urysohn space and f is pseudo open, Y is
an s-Fréchet-Urysohn space, by Proposition 2.3. �
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