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Solving Benjamin-Bona-Mahony equation by
using the sn-ns method and the tanh-coth method

Hamı̇ Gündoğdu and Ömer Faruk Gözükızıl

Abstract. In this study, we consider the Benjamin Bona Mahony
equation which is in the form of ut + ux + uux − uxxt = 0. The sn-ns
method and the tanh-coth method have been applied to this equation.
And then, exact solutions have been obtained.

1. Introduction

Nonlinear phenomena generally occurs in most fields of modern sciences
and engineering. Most of the encountered problems in these areas are mod-
eled by nonlinear partial differentail equations (NLPDEs shortly). There-
fore, finding solutions to NLPDEs has an important role in nonlinear science
problems. In this respect, a great deal of research has been made in order
to handle NLPDEs during the past decades. And then, many methods have
been established and used for obtaining exact solutions to NPLDEs. Some
of the powerful methods are the generalized tanh method [1], the tanh-coth
method (extended tanh method) [2], the tanh-sech method [3, 4], sine-cosine
method [5]-[6], the exp-function method [7], the projective Ricatti equations
method [8], the generalized projective Ricatti equations method [9], the
(G’/G)-expansion method [10], and the sn-ns method[11].

This work is related to generalized Benjamin Bona Mahony equation
(BBM) given by

(1) unux − uxxt + ut − αuxx + ux = 0, 0 ≤ α ≤ 1, n ∈ N

where u(x, t) is the solution of equation (1) and considered as a class of
non-periodic functions defined on −∞ ≤ x ≤ ∞ and t ≥ 0.

In our work, the case of α = 0 and n = 1 has been investigated and the
equation (1) has taken the following form

(2) ut + ux + uux − uxxt = 0.
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The equation (2) is called Benjamin Bona Mahony equation (BBM). It is
also known as the regularized long-wave equation. For the first time, it
was introduced in 1970s by Benjamin et al. [12] as an alternative to the
well-known Korteweg de Vries (KdV) equation [13] given by

(3) ut + ux + uxxx + uux = 0.

The KdV equation has been used for modelling water waves of small am-
plitude and large wavelength. For more detail about BBM equation, it is
referred to [14]-[17] and the references therein.

This work is arranged as follows. Firstly, we have mentioned about the
methods in Section 2. After that, we have applied these methods to equation
(2) in Section 3. Then, we have introduced new traveling wave solutions in
Section 4. Finally, some conclusions have been given.

2. Outline of the Methods

In this section, summary of the methods has been given.

2.1. The tanh-coth method. Wazwaz has given the tanh method in [2]
as in the following manner.

First, let us consider a general form of the nonlinear partial differential
equation (NLPDE)

(4) P (u, ut, ux, uxx, uxt, utt, uxxt, . . .) = 0.

To obtain the traveling wave solutions of equation (4), the wave variable,
ξ = x−Vt, is introduced so that u(x, t) = U(µξ).

Now we can give the partial derivatives of u(x, t) in the form of ordinary
derivatives of U(µξ) as follows:

∂u

∂t
= −V µdU

dξ
,

∂u

∂x
= µ

dU

dξ
,

∂u2

∂x2
= µ

d2U

dξ2
,

and so on for higher derivatives.
After this step, the equation (4) is converted into the following ordinary

differential equation (ODE)

(5) Q
(
U,U ′, U ′′, . . .

)
= 0.

Then, if each terms of the resulting ODE contains derivatives with respect to
ξ, by integrating this equation and by considering the constant of integration
to be zero, we get a simplified ODE as in (5).

Here we introduce a new independent variable

(6) Y = tanh(µξ)
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so that it leads to the change of derivatives as in the followings:
d

dξ
= µ

(
1− Y 2

) d

dY
,

d2

dξ2
= µ2

(
1− Y 2

) d2

dY 2
− 2µ2Y

(
1− Y 2

) d

dY
,

d3

dξ3
= µ3

(
1− Y 2

)3 d3

dY 3
− 6µ3Y

(
1− Y 2

)2 d2

dY 2

+ 2µ3
(
1− Y 2

) (
3Y 2 − 1

) d

dY
.

where other derivatives can be derived in a similar way. Now the approach
of the form

(7) U(µξ) = S(Y ) =
M∑
k=0

akY
k +

M∑
k=0

bkY
−k

is introduced, whereM is usually a positive integer that we must determine.
Putting (7) into the equation (5) gives an equation in power of Y . To obtain
the parameter M , the linear terms of highest order in the resulting equation
with the highest-order nonlinear terms are equalized. AfterM is determined,
all the coefficients of same power of Y in the resulting equation are collected
respectively. Then, these coefficients have to vanish.

This will give us a system of algebraic equations involving the ak and bk,
(k = 0, . . . ,M), V and µ.

Now, these ak, bk, V and µ should be determined by solving the alge-
braic system. After that, putting these parameters into (7) provide us with
analytic solutions in a closed form.

2.2. The sn-ns method. This method has been introduced by H. S. Alvaro
[11] in detail. With the aid of this method, we have searched for the traveling
wave solutions to nonlinear partial differential equation of the form

(8) P (u, ut, ux, uxx, uxt, utt, uxxt, . . . ) = 0.

Let us consider the wave transformation

(9) u(x, t) = v(θ(ξ)), ξ = x+ λt+ ξ0

where λ is a constant and ξ0 is an arbitrary constant. And, θ = θ(ξ) is a
suitable function that makes the transformation simple. For this purpose,
we take θ(ξ) as the identity function, i.e. θ(ξ) = ξ.

Using the transformation (9) and putting ordinary derivative of v(ξ) in-
stead of the partial derivatives of u(x, t), (8) converts to an ordinary differ-
ential equation (ODE) with respect to the function v(ξ)

(10) Q
(
v, v′, v′′, . . .

)
= 0

with Q being a polynomial with respect to variables v, v′, v′′, . . .
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In this method, we seek the traveling wave solutions to (10) in the form

(11) v(ξ) = a0 +
n∑

j=1

aj sn
j(kξ|m) +

n∑
j=1

bj ns
j(kξ|m).

To determine the coefficients (a0, aj , bj), the balancing constant (n), λ
and k, the same process above can be followed. Generally, we find n = 1, 2
and then v(ξ) takes the forms

(12) v(ξ) = a0 + a1 sn(kξ|m) + b1 ns(kξ|m),

(13) v(ξ) = a0+a1 sn(kξ|m))+ b1 ns(kξ|m)+a2 sn
2(kξ|m)+ b2 ns

2(kξ|m).

For some special values of m, the following equalities are yielded.
For m = 1,

sn(kξ, 1) = tanh(kξ) and ns(kξ, 1) = coth(kξ),
and for m = 0,

sn(kξ, 0) = sin(kξ) and ns(kξ, 0) = csc(kξ).
Throughout the work, Mathematica has been used to deal with the tedious

algebraic operations.

3. Application of the Methods

In this part, the methods mentioned above has been applied to the Benjamin-
Bona-Mahony (BBM) equation given in (2).

3.1. Solving BBM equation by tanh-coth method. Using the wave
variable ξ = x−Vt carries (2) into the ODE

(14) Vv′′ +
v2

2
− vV+ v = 0.

To determine balancing constant M , we use the transformation v = φM ,
v′ = MφM+1, v′′ = M(M + 1)φM+2, . . . and v2 = φ2M , . . . , vk = φkM .
Putting these into the equation (14) and balancing the power of v2 with v′′
gives M = 2. So, the tanh method admits the use of the finite expansion

(15) U(µξ) = S(Y ) =
2∑

k=0

akY
k +

2∑
k=0

bkY
−k

where Y = tanh(µξ). Substituting (15) into (14), collecting the coefficients
of same powers of Y , and setting it equal to zero, we have found the system
of equations:

Y 8 : 12a2Vµ
2 + a22 = 0,

Y 7 : 4a1Vµ
2 + 2a1a2 = 0,

Y 6 : −16a2Vµ2 + a21 + 2a0a2 + 2a2 − 2Va2 = 0,
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Y 5 : 2a2b1 − 4a1Vµ
2 + 2a0a1 + 2a1 − 2V1 = 0,

Y 4 : 2a1b1 + 2a2b2 + 4a2Vµ
2 + a20 + 2a0 + 4b2Vµ

2 − 2Va0 = 0,

Y 3 : 2a0b1 + 2a1b2 + 2b1 − 4µ2Vb1 − 2Vb1 = 0,

Y 2 : 2a0b2 + b21 + 2b2 − 16µ2Vb2 − 2Vb2 = 0,

Y 1 : 2b1b2 + 4µ2Vb1 = 0,

Y 0 : 12b2Vµ
2 + b22 = 0.

Use of Mathematica gives the coefficients, V and µ as follow:
(i) a0 = 1

2 , a1 = 0, b1 = 0, a2 = −3
2 , b2 = 0, V = 1

2 , µ = ±1
2 ,

(ii) a0 = 1
2 , a1 = 0, b1 = 0, a2 = 0, b2 = −3

2 , V = 1
2 , µ = ±1

2 ,
(iii) a0 = −1

4 , a1 = 0, b1 = 0, a2 = −3
8 , b2 = −

3
8 , V = 1

2 , µ = ±1
4 .

Putting these into (15) gives the following hyperbolic solutions:

u1(x, t) =
1
2 −

3
2 tanh

2
(
1
2

(
x− t

2

))
,

u2(x, t) =
1
2 −

3
2 coth

2
(
1
2

(
x− t

2

))
,

u3(x, t) = −1
4 −

3
8 tanh

2
(
1
4

(
x− t

2

))
− 3

8 coth
2
(
1
4

(
x− t

2

))
.

3.2. Solving BBM equation by sn-ns method. Let us consider the
BBM equation given in (2). After using the wave transformation, it converts
to the following ordinary differential equation w.r.t ξ.

Vv′′ + 1
2v

2 − vV+ v = 0.
This ODE can be written as follows:

v′′ =
(
− 1

2V

)
v2 +

(
V−1
V

)
v

which is in the form of Quadratic Duffing Equation.

Remark 3.1. In [11], Quadratic Duffing Equation is given in the form of
v′′ (ξ) = pv2 (ξ) + qv(ξ) + r.

Here, we have p = − 1
2V , q =

(
V−1
V

)
and r = 0.

In the same way above, we can find the balancing constant n = 2. We
seek solutions to (2) in the form (13), that is

v(ξ) = a0 + a1 sn(kξ|m)) + b1 ns(kξ|m) + a2 sn
2(kξ|m) + b2 ns

2(kξ|m).

Inserting this into the equation (2) and setting all coefficients to be zero
gives the following algebraic system:

a1µ
2m2 − a1a2

(−1
2V

)
= 0,

6a2µ
2m2 − a22

(
V−1
V

)
= 0,

4a2µ
2 + 4a2µ

2m2 + a2
(
V−1
V

)
− a21 − 2a0a2

(−1
2V

)
= 0,

2(a2b1 + a0a1)
(−1
2V

)
+ a1µ

2 + a1µ
2m2 + a1

(
V−1
V

)
= 0,

b1µ
2 − b1b2

(−1
2V

)
= 0,



100 Solving Benjamin-Bona-Mahony equation by using the sn-ns method. . .

6b2µ
2 − b22

(−1
2V

)
= 0,

− (2a0b2 + b21)
(−1
2V

)
+ 4b2µ

2 + 4b2µ
2m2 + b2

(
V−1
V

)
= 0,

2(a0b1 + a1b2)
(−1
2V

)
+ b1µ

2 + b1µ
2m2 + b1

(
V−1
V

)
= 0,

− (2a1b1 + 2a2b2 + a20)
(−1
2V

)
+ 2a2µ

2 − a0
(
V−1
V

)
+ 2b2µ

2m2 = 0.

Solving this system, we obtain the coefficients:

(i) a0 =
1

2

(
4m2

√
16m4 − 16m2 + 16

+
4√

16m4 − 16m2 + 16
− 1

)
,

a1 = 0, b1 = 0, a2 = −
3m2

2
√
m4 −m2 + 1

, b2 = 0, v =
1

2
,

µ = ± 1
4
√
16m4 − 16m2 + 16

,

(ii) a0 =
1

2

(
4m2

√
16m4 − 16m2 + 16

+
4√

16m4 − 16m2 + 16
− 1

)
,

a1 = 0, b1 = 0, a2 = 0, b2 = −
3

2
√
m4 −m2 + 1

, v =
1

2
,

µ = ± 1
4
√
16m4 − 16m2 + 16

,

(iii) a0 =
1

2

(
4m2

√
16m4 + 224m2 + 16

+
4√

16m4 + 224m2 + 16
− 1

)
,

a1 = 0, b1 = 0, a2 = −
3m2

2
√
m4 + 14m2 + 1

, b2 = −
3

2
√
m4 + 14m2 + 1

,

v =
1

2
, µ = ± 1

4
√
16m4 + 224m2 + 16

,

(iv) a0 =
1

2

(
− m2

√
m4 −m2 + 1

− 1√
m4 −m2 + 1

− 1

)
,

a1 = 0, b1 = 0, a2 =
6m2

√
16m4 − 16m2 + 16

, b2 = 0, v =
1

2
,

µ = ± i
4
√
16m4 − 16m2 + 16

,

(v) a0 =
1

2

(
− m2

√
m4 −m2 + 1

− 1√
m4 −m2 + 1

− 1

)
,

a1 = 0, b1 = 0, a2 = 0, b2 =
6√

16m4 − 16m2 + 16
, v =

1

2
,

µ = ± i
4
√
16m4 − 16m2 + 16

,
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(vi) a0 =
1

2

(
− m2

√
m4 + 14m2 + 1

− 1√
m4 + 14m2 + 1

− 1

)
,

a1 = 0, b1 = 0, a2 =
6m2

√
16m4 + 224m2 + 16

,

b2 =
6√

16m4 + 224m2 + 16
, v =

1

2
, µ = ± i

4
√
16m4 + 224m2 + 16

.

Putting these into (13), we obtain the Jacobi elliptic function solutions
as follows:

v1(ξ) =
1

2

(
−1 + 4√

16m4 − 16m2 + 16
) +

4m2

√
16m4 − 16m2 + 16

)
−

3m2

2
√
m4 −m2 + 1

sn2
(

1
4
√
16m4 − 16m2 + 16

ξ|m
)
,

v2(ξ) =
1

2

(
−1 + 4√

16m4 − 16m2 + 16
) +

4m2

√
16m4 − 16m2 + 16

)
−

3

2
√
m4 −m2 + 1

ns2
(

1
4
√
16m4 − 16m2 + 16

ξ|m
)
,

v3(ξ) =
1

2

(
−1 + 4√

16m4 + 224m2 + 16
+

4m2

√
16m4 + 224m2 + 16

)
−

3m2

2
√
m4 + 14m2 + 1

sn2
(

1
4
√
16m4 + 224m2 + 16

ξ|m
)
−

3

2
√
m4 + 14m2 + 1

ns2
(

1
4
√
16m4 + 224m2 + 16

ξ|m
)
,

v4(ξ) =
1

2

(
−1− 1√

m4 −m2 + 1
− m2

√
m4 −m2 + 1

)
+

6m2

√
16m4 − 16m2 + 16

sn2
(

i
4
√
16m4 − 16m2 + 16

ξ|m
)
,

v5(ξ) =
1

2

(
−1− 1√

m4 −m2 + 1
− m2

√
m4 −m2 + 1

)
+

6√
16m4 − 16m2 + 16

ns2
(

i
4
√
16m4 − 16m2 + 16

ξ|m
)
,

v6(ξ) = (ξ) =
1

2

(
−1− 1√

m4 + 14m2 + 1
− m2

√
m4 + 14m2 + 1

)
+

6m2

√
16m4 + 224m2 + 16

sn2
(

i
4
√
16m4 + 224m2 + 16

ξ|m
)
+

6√
16m4 + 224m2 + 16

ns2
(

i
4
√
16m4 + 224m2 + 16

ξ|m
)
.
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Letting m −→ 1, we obtain hyperbolic solutions:

v∗1(ξ) =
1

2
− 3

2
tanh2

(
ξ

2

)
,

v∗2(ξ) =
1

2
− 3

2
coth2

(
ξ

2

)
,

v∗3(ξ) = −
1

4
− 3

8
coth2

(
ξ

4

)
− 3

8
tanh2

(
ξ

4

)
.

Also, we have derived trigonometric solutions when m −→ 0:

v∗4(ξ) = −
3

2
sec2

(
ξ

2

)
,

v∗5(ξ) = −
3

2
csc2

(
ξ

2

)
.

4. Conclusion

In this paper, we have found solutions for BBM equation given in (2)
by both the tanh-coth method and the sn-ns method. Our purpose is to
compare the solutions observed by these two methods. If we check the
solutions, it can be seen that same hyperbolic solutions are obtained by
these two methods. Even if we have the same solutions for equation (2)
in terms of the hyperbolic functions, the sn-ns method usually introduces
more solutions than the tanh-coth method. And also, the solutions observed
by the sn-ns method always contains the solutions found by the tanh-coth
method, since the tanh-coth method is a specific case of the sn-ns method.
Moreover, the sn-ns method gives the trigonometric and elliptic function
solutions in addition to the hyperbolic ones. Thus, it can be said that the
sn-ns method is more powerful for getting solutions of the most NPLDEs.
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