EXPRESSION OF C-MYC PROTO-ONCOGENE IN PREMALIGNANT AND MALIGNANT UTERINE CERVIX LESIONS

Zoran Protkar1, Slobodanka Mitrović2, Nebojša Arsenijević3, Dejan Baskić3, Gordana Radosavljević3, Milos Stanković3, Goran Lukić3 and Slobodan Arsenijević1

1Department of Obstetrics and Gynecology, 2Department of Pathology, Clinical Center Kragujevac and Medical Faculty University of Kragujevac, 3Institute of Microbiology and Immunology, Medical Faculty University of Kragujevac, Kragujevac, Serbia

ABSTRACT

In the aim of studying the expression and clinical significance of C-myc proto-oncogene in the progression of cervical neoplasms, we examined 69 tissue samples of: low grade cervical squamous intraepithelial lesions (SIL) (n=16), high grade SIL (n=11), porto vaginalis uteri (PVU) carcinoma in situ (n=11) and PVU invasive carcinoma, stage IA-IIA (n=13) (study group) and 18 samples without SIL or malignancy (control group), between January 2004 and December 2005. Expression of C-myc was detected immunohistochemically using monoclonal antibodies. Fisher’s exact test was used to assess statistical significance. Sensitivity and specificity of the test, are higher and qualify the test as possible screening method for early detection of changes in the uterine cervix.

In our study, overexpression of C-myc oncogene was found only in patients with PVU invasive carcinoma (3/13–23.0%). Significant difference was not found in the frequency of overexpression in patients with PVU invasive carcinoma in relation to the control group (Fisher’s test; p=0.064). The method’s sensitivity of determining this oncogene was 81% and specificity 72.2%. We confirmed in our research that expression of C-myc oncogene was increased only in patients with PVU invasive carcinoma. However, a more extensive series of samples and additional tests are required to establish prognostic significance of C-myc in cervical carcinogenesis.

Key words: C-myc proteins, immunohistochemistry, carcinoma, cervix uteri.

SAŽETAK

Cilj ovog istraživanja je jesti ekspresiju i klinički značaj C-myc proto-oncogene u promjenama cervicalne prema malignim. U našim istraživanjima utvrdili smo da ekspresija C-myc onkogena je pronađena samo kod pacijentkinja sa Ca PVU invasivum. Analizom učestalosti positivne ekspresije C-myc onkogena između kontrolne grupe i pacijentkinja sa Ca PVU invasivum, nije pronađena statistički značajna razlika (p=0.064). Sensitivnost metode određivanja ovog onkogena u cilju dijagnostikovanja invazivnih promena na grliću materice je 81%, a specifičnost 72.2%. U našim istraživanjima utvrdili smo da ekspresija C-myc onkogena je povećana samo kod Ca PVU invasivum.

Rukovodstvene reči: C-myc proteini, immunohistohemija, karcinom, grlić materice.

INTRODUCTION

Carcinogenesis is known to involve aberrant expression of genes involved in cell proliferation and differentiation. In mammalian cells, several independent lines of evidence have implicated the proto-oncogene C-myc in the control of cell proliferation and entry into the cell cycle (1). This gene was discovered as a cellular homologue of the transforming oncogene of avian viruses (2) and its product was subsequently found to be activated and its product was subsequently found to be activated in various human cancers, including lung, breast, colon and uterine cervix (3, 4). The theory that C-myc acts as a central oncogenic switch in human cancers has been demonstrated by the ability of the oncogenic viral V-myc gene to induce rapid development of a variety of tumors in infected chickens (5). Chlamydia trachomatis and HPV high-risk types may contribute to neoplastic changes in the transformation of uterine cervix and also might modulate expression of C-myc oncogene (6). The C-myc gene belongs to the myc family that includes B-myc, L-myc, N-myc and S-myc. However, only C-myc, L-myc and N-myc have neoplastic potential (7). The ability of myc to promote cell proliferation indicates that its de-regulation leads to de-regulated DNA synthesis and genomic instability (8). De-regulated myc expression is linked to increase in both cyclin A and cyclin E levels (9). Many studies demonstrated that poor prognosis is in positive correlation with the expression degree of this oncogene (ovarium, uterus, cervix, lungs, prostate, breast, colon) (10–13). Amplification and/or overexpression of C-myc gene were frequently found in the advanced stages of cervical cancers and were shown to be associated with tumor progression (14, 15) and with aggressive, poorly differentiated phenotype. Moreover, myc overexpression was related to a 6.1 time higher risk of distant metastases suggesting that activation of this proto-oncogene may lead to the greater metastatic ability of tumor cells (16). A different distribution of myc expression has been reported in premalignant SIL lesions. While several studies have demonstrated that higher myc expression was positively related to all stages of pre-can-
cereous lesions (17), others have observed higher levels of this proto-oncogene only in invasive cancers (18).

PATIENTS AND METHODS

This prospective study was carried out during 2004 and 2005, at the Department of Obstetrics and Gynecology, Faculty of Medicine and the experimental part was performed at the Laboratory for Experimental and Clinical Immunology of the Faculty of Medicine and at the Immunological Laboratory of the Public Health Institute, Kragujevac.

In patients operated at the Department of Obstetrics and Gynecology because of premalignant and/or malignant changes of the uterine cervix, some tissue sections were taken from the operative material (hysterectomy, punch biopsy or conization) for pathological verification and used for this research.

The control group consisted of 18 patients in whom ambulatory biopsy of the uterine cervix was performed (Papanicolaou test was indicated) and where malignant changes or SIL were not found by histopathology (cervicitis chronica of mild to moderate degree).

The study group consisted of 16 patients with pathological diagnosis of low grade SIL, 11 with high grade SIL, 11 with PVU carcinoma in situ and 13 with PVU invasive carcinoma, stage IA-IIA.

C-myc oncogene expression was followed in patients and control group.

Cristostat sections were sent for intraoperative diagnosis. Extra sections of cervical lesions were snap-frozen in liquid nitrogen and stored at -70°C until used in immunohistochemistry.

C-myc (clone 100, Calbiochem, Oncogene Research, Cambridge, USA) monoclonal antibody was used, which was diluted with phosphate buffered saline (PBS, pH 7.2).

Four-micrometer frozen sections were fixed in 100% acetone for 5 minutes and the endogenous peroxidase activity was quenched by 10 minutes incubation in 0,5% hydrogen peroxide. For monoclonal antibody C-myc (concentration 10 µg/ml) incubation with primary antibody was carried overnight at 4°C.

Sections of C-myc positive lung carcinoma were used as positive controls. For negative controls, the samples were taken through the procedure with omission of primary antibody.

Slides were evaluated by two of the authors, unaware of immunohistochemical or clinical data by using a semiquantitative method on a Zeiss AXIOSKOP 2 light microscope. The percentage of immunopositive cells in representative areas of the sections was assessed. The intensity of immunostaining was divided into four categories, namely: negative (0–5%); 1+ (5–25%), and positive 2+ (25–50%); 3+ (50–100%).

Sections of tissue from the operative material or biotic material were taken after obtaining the informed consent of patients in accordance with the Declaration of Helsinki and recommendations of the World Health Organization (WHO) for experiments on human material and after getting the approval of the Ethics Committee no.: 01–4885.

Differences between groups were considered significant (Fisher’s exact test) at p<0.05. By establishing sensitivity and specificity of the test, the level of reliability of these analyses was determined as a possible screening method for early detection of changes in the uterine cervix.

Statistics: based on the frequency of the lesions found, patients were split into 4 subgroups and 2x2 contingency tables were formed. Specificity and sensitivity were calculated. Also, based on the ROC (receiver operating characteristic) curve which represents the relation between specificity and sensitivity, the discrimination power of the test was determined. Differences between groups were considered significant (Fisher’s exact test) at p<0.05. On the basis of sensitivity and specificity of the test, these analyses carried become possible screening method for early detection of changes in the uterine cervix.

RESULTS

Table 1 and Figure 1 show expression levels of C-myc oncogene in the control and in the experimental group. Overexpression of C-myc oncogene was found only in patients with PVU invasive carcinoma (3/13–23.0%).

Table 1. Expression of C-myc in the control and experimental group.

<table>
<thead>
<tr>
<th>Expression of C-myc</th>
<th>Normal cervix</th>
<th>Low grade SIL</th>
<th>High grade SIL</th>
<th>PVU in situ carcinoma</th>
<th>PVU invasive carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative (-) (N-%)</td>
<td>14/18–77.8%</td>
<td>12/16–75%</td>
<td>8/11–72.8%</td>
<td>9/11–81.9%</td>
<td>6/13–46.2%</td>
</tr>
<tr>
<td>Positive (+) (N-%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive (+) (N-%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis of frequency of patients with positive findings of C-myc oncogene, revealed no statistical differences (p=0.064) when control and PVU invasive carcinoma groups were evaluated. None of the control patients exhibit overexpression of C-myc, while 23% of the patients with PVU invasive carcinoma showed overexpression of C-myc oncogene.

The method’s sensitivity of determining this oncogene with the aim of detecting PVU invasive carcinoma was 23% while specificity was 72.2%. On the basis of the frequency of patients with C-myc overexpression, a 2x2 contingency table of PVU invasive was formed, from which sensitivity and specificity were calculated (Table 2).
Table 2. C-myc expression pattern (PVU invasive carcinoma).

<table>
<thead>
<tr>
<th>Test</th>
<th>Disease present</th>
<th>Disease absent</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-myc overexpression</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>C-myc negative</td>
<td>10</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>18</td>
<td>31</td>
</tr>
</tbody>
</table>

* patients with PVU invasive carcinoma
** patients with normal cervix

On the basis of the obtained values of sensitivity and specificity, discrimination power of negative expression in patients with normal findings in the cervix was greater than discrimination power of overexpression of this oncogene, with the aim of determining the existence of change of this type (Figure 2).

Figure 2. ROC (receiver operating characteristic) curve for over-expression of C-myc oncogene in patients with PVU invasive carcinoma.

The positive predictive value was 100% which, speaking in statistical terms, means that PVU invasive carcinoma may be expected in all patients with overexpression of C-myc. The negative predictive value was 64.34%, implying that at this percentage of patients with negative expression of C-myc oncogene, the existence of this type of change is not expected.
DISCUSSION

This study evaluated expression of C-myc oncogene in a range of tissues obtained from normal, dysplastic and neoplastic conditions of the cervical mucosa, in an attempt to elucidate the expression of this oncoprotein in uterine cervix premalignant and malignant lesions. C-myc is oncogene that have been investigated for prognostic merit in various malignancies, including carcinoma of the cervix. Up to now, conflicting results were obtained. C-myc has been shown in some studies to be an independent predictor of poor prognosis in carcinoma of the cervix (19–20). On the other hand, other studies have not revealed significant correlation with adverse outcome (21–22).

Conflicting results have also been published on the prognostic significance of these oncogenes in other gynecological sites (23–24).

Myc protein is widely distributed in different tissues and is predominantly localised in nuclei of cells where its positivity related to proliferation rate. The conflicting results might be due to differences in institutional treatment standards and due to different subjective interpretations of staining intensity and distribution between centers. Because staining is judged on a continuum, differences in institutional “cut-off” for positive staining may also affect correlation with clinical and pathological results.

Evan et al. (25) found that de-regulated C-myc oncoprotein expression in cervical epithelium may be an initial stage in the progression of lesion through dysplasias towards carcinoma. This event can occur very early in tumorigenesis and may vary to different degrees of the pre-malignant stages.

REFERENCES

Alarcon et al. (26) in their analysis of 72 patients with cervical invasive carcinomas grade I-IIa found that increased expression of C-myc correlated with a worse prognosis.

In our study, overexpression of C-myc oncogene was found only in patients with PVU invasive carcinoma (3/13–23.0%). Analysis of frequency of patients with positive findings of C-myc, revealed no significant differences (p=0.064) when control and PVU invasive carcinoma groups were evaluated. The method's sensitivity of determining this oncogene with the aim of detecting PVU invasive carcinoma was 23% and specificity was 72.2%. On the basis of the obtained values of sensitivity and specificity, discrimination power of negative expression in patients with normal findings in the cervix was greater than discrimination power of overexpression of this oncogene with the aim of determining the existence of change of this type. On the basis of high predictive values, it can be concluded, speaking in statistical terms, that all patients with overexpression of C-myc oncogene will have PVU invasive carcinoma.

However, the substantiation of the claim needs much more extensive research.

The findings presented in this study indicate that the evaluation of C-myc expression may provide additional and independent prognostic information to predict the clinical course of the cervical cancer.

Positive expression of this oncogene suggests with great certainty that there are invasive malignant changes in uterine cervix.

However, new studies and additional tests are required to establish the prognostic significance of C-myc in cervical carcinogenesis.

