POTENTIALLY GRAPHIC SEQUENCES OF SPLIT GRAPHS

S. PIRZADA and BILAL A. CHAT

Abstract. A sequence $\pi = (d_1, d_2, \ldots, d_n)$ of non-negative integers is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is referred to as a realization of π. The set of all non-increasing non-negative integer sequences $\pi = (d_1, d_2, \ldots, d_n)$ is denoted by NS_n. A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π. The set of all graphic sequences in NS_n is denoted by GS_n. A graphic sequence π is potentially H-graphic if there is a realization of π containing H as a subgraph. In this paper, we determine the graphic sequences of subgraphs H, where H is $S_{r_1,s_1} + S_{r_2,s_2} + S_{r_3,s_3} + \ldots + S_{r_m,s_m}$, $S_{r_1,s_1} \vee S_{r_2,s_2} \vee \ldots \vee S_{r_m,s_m}$, and $S_{r_1,s_1} \times S_{r_2,s_2} \times \ldots \times S_{r_m,s_m}$ and $+$, \vee and \times denotes the standard join operation, the normal join operation and the cartesian product in these graphs respectively.

1. Introduction

Let G be an undirected simple graph (graph without multiple edges and loops) with n vertices and m edges having vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. Any undefined notations follows that of Bondy and Murty [1]. Throughout the paper, we denote such a graph by $G(n,m)$. The set of all non-increasing non-negative integer sequences $\pi = (d_1, d_2, \ldots, d_n)$ is denoted by NS_n. There are several famous results, Havel and Hakimi [5, 6] and Erdős and Gallai [3] which give necessary and sufficient conditions for a sequence $\pi = (d_1, d_2, \ldots, d_n)$ to be the degree sequence of a simple graph G. Unfortunately, knowing that a sequence has a realization gives no information about the properties that such a graph might have. In this paper, we explore this question of properties of a graph which is related to work originally introduced by A. R. Rao [9]. A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π. The sequence

Key words and phrases. Graph, Split graph, Potentially H-graphical sequences.

2010 Mathematics Subject Classification. Primary: 05C07.

Received: November, 19, 2013

Revised: October 24, 2013.
\[\pi = (d_1, d_2, \ldots, d_n) \] is graphic if and only if the sequence \(\pi' \) obtained from \(\pi \) by laying off an element is graphic \([7]\). Also \(d^{r_1 \times r_2} \) means \(d \) occurs \(r_1 \times r_2 \) times in \(\pi \). The set of all graphic sequences in \(NS_n \) is denoted by \(GS_n \). A graphic sequence \(\pi \) is potentially \(H \)-graphic if there is a realization of \(\pi \) containing \(H \) as a subgraph, while \(\pi \) is forcibly \(H \)-graphic if every realization of \(\pi \) contains \(H \) as a subgraph. If \(\pi \) has a realization in which the \(r + 1 \) vertices of largest degree induce a clique, then \(\pi \) is said to be potentially \(A_{r+1} \)-graphic. The graphic sequence \(\pi \) is potentially \(K_{k+1} \)-graphic if and only if \(\pi \) is potentially \(A_{k+1} \)-graphic \([10]\). Let \(\sigma(\pi) = d_1 + d_2 + \ldots + d_n \). If \(G \) and \(G_1 \) are graphs, then \(G \cup G_1 \) is the disjoint union of \(G \) and \(G_1 \). If \(G = G_1 \), we abbreviate \(G \cup G_1 \) as \(2G \). We denote \(G + H \) as the graph with \(V(G + H) = V(G) \cup V(H) \) and \(E(G + H) = E(G) \cup E(H) \cup \{xy : x \in V(G), y \in V(H)\} \). Let \(K_k, C_k, T_k \) and \(P_k \) respectively denote a complete graph on \(k \) vertices, a cycle on \(k \) vertices, a tree on \(k + 1 \) vertices and a path on \(k + 1 \) vertices. Let \(F_k \) denote the friendship graph on \(2k + 1 \) vertices, that is, the graph of \(k \) triangles intersecting in a single vertex. For \(0 \leq r \leq t \), denote the generalized friendship graph on \(kt - kr + r \) vertices by \(F_{t,r,k} \), where \(F_{t,r,k} \) is the graph of \(k \) copies of \(K_t \) meeting in a common \(r \) set.

Given a graph \(H \), what is the maximum number of edges of a graph with \(n \) vertices not containing \(H \) as subgraph? This number is denoted by \(ex(n, H) \), and is known as the Turan number. In terms of graphic sequences, the number \(2ex(n, H) + 2 \) is the minimum even integer \(l \) such that every \(n \)-term graphic sequence \(\pi \) with \(\sigma(\pi) \geq l \) is forcibly \(H \)-graphic. Erdős, Jacobson and Lehel \([2]\) first considered the following variant: determine the minimum even integer \(l \) such that every \(n \)-term graphic sequence \(\pi \) with \(\sigma(\pi) \geq l \) is potentially \(H \)-graphic. We denote this minimum \(l \) by \(\sigma(H, n) \). A sequence \(\pi = (d_1, d_2, \ldots, d_n) \) is said to be potentially \(K_{r+1} \)-graphic if there is a realization \(G \) of \(\pi \) containing \(K_{r+1} \) as a subgraph. If \(\pi \) is a graphic sequence with a realization \(G \) containing \(H \) as a subgraph, then there is a realization \(G' \) of \(\pi \) containing \(H \) with the vertices of \(H \) having \(|V(H)| \) largest degree of \(\pi \) \([4]\). Let \(S_{r,s} = K_r + \overline{K}_s \) be split graph on \(r + s \) vertices, where \(\overline{K}_s \) is the complement of \(K_s \) and \(+ \) denotes the standard join operation. As seen in \([11]\), \(S_{r,1} = K_{r+1} \) and so the graph \(S_{r,s} \) is an extension of the graph \(K_{r+1} \). A sequence \(\pi = (d_1, d_2, \ldots, d_n) \) is said to be potentially \(S_{r,s} \)-graphic if there is a realization \(G \) of \(\pi \) containing \(S_{r,s} \) as a subgraph. Yin Jain Hua and Haikou \([11]\) obtained a Havel-Hakimi type procedure and a simple sufficient condition for \(\pi \) to be potentially \(S_{r,s} \)-graphic. We have the following definitions.

Definition 1.1. \([3]\) For the graphs \(G_1, G_2 \) with disjoint vertex set \(V(G_1), V(G_2) \) the cartesian product is a graph \(G = G_1 \times G_2 \) with vertex set \(V(G_1) \times V(G_2) \) and an edge \((u_1, v_1), (u_2, v_2) \) iff \(u_1 = u_2 \) and \(v_1 v_2 \) is an edge of \(G_2 \).

Definition 1.2. \([11]\) The standard join of \(S_{r_1,s_1}, S_{r_2,s_2} \) is a graph \(S = S_{r_1,s_1} \cup S_{r_2,s_2} \) with vertex set \(V(S_{r_1,s_1}) \cup V(S_{r_2,s_2}) \) and an edge set consisting of all edges of \(S_{r_1,s_1} \) and \(S_{r_2,s_2} \) together with the edges joining each vertex of \(K_{r_1} \) of \(S_{r_1,s_1} \) with every vertex of \(S_{r_2,s_2} \) and \(s_1 \) vertices of \(S_{r_1,s_1} \) are joined with only vertices of \(K_{r_2} \) in \(S_{r_2,s_2} \).
Definition 1.3. [3] The join (complete product) of G_1 and G_2 is a graph $G = G_1 \cup G_2$ with vertex set $V(G_1) \cup V(G_2)$ and an edge set consisting of all edges of G_1 and G_2 together with the edges joining each vertex of G_1 with every vertex of G_2.

Definition 1.4. [9] The split graph $K_r + \overline{K_s}$ on $r+s$ vertices is denoted by $S_{r,s}$ where $+$ denotes the standard join operation and $\overline{K_s}$ is the complement of K_s. A non-increasing sequence $\pi = (d_1, d_2, \ldots, d_n)$ of non-negative integers is said to be potentially $S_{r,s}$-graphic if there exists a realization G of π containing $S_{r,s}$ as a subgraph.

Definition 1.5. If π has a realization G containing K_{r+1} on those vertices having degree $d_1, d_2, \ldots, d_{r+1}$, then π is potentially A_{r+1}-graphic.

Definition 1.6. [10] The tensor product (conjunction), denoted by $G = G_1 \wedge G_2$, is the graph with vertex set $V = V_1 \times V_2$ and for any two vertices $w_1 = (u_1, v_1)$ and $w_2 = (u_2, v_2)$ in V; $u_1, u_2 \in V_1$ and $v_1, v_2 \in V_2$, there is an edge $w_1w_2 \in E(G)$ if and only if $u_1u_2 \in E_1$ and $v_1v_2 \in E_2$.

2. Main Results

We start with the following result.

Theorem 2.1. If $\pi_1 = (d_1^1, d_2^1, \ldots, d_m^1)$ is potentially K_{p_1}-graphic and $\pi_2 = (d_1^2, d_2^2, \ldots, d_n^2)$ is potentially K_{p_2}-graphic, $p_1 \leq m$ and $p_2 \leq n$, then the graphic sequence π of $G = G_1 \times G_2$ is potentially $p_1 + p_2 - 2$ regular graphic.

Proof. Let $\pi_1 = (d_1^1, d_2^1, \ldots, d_m^1)$ and $\pi_2 = (d_1^2, d_2^2, \ldots, d_n^2)$ be respectively K_{p_1}-graphic and K_{p_2}-graphic. Then there exists graphs G_1 and G_2 respectively realizing π_1 and π_2 and respectively containing K_{p_1} and K_{p_2} as subgraphs. Let $G = G_1 \times G_2$ be the cartesian product of G_1 and G_2 and let $\pi_3 = (d_1, d_2, \ldots, d_m, d_{m+1}, d_{m+2}, \ldots, d_{2m}, \ldots, d_{m^1}, d_{m^2}, \ldots, d_{mn})$ be the graphic sequence of $G_1 \times G_2$. Then $d_{ij} = d_{ij}^1 + d_{ij}^2$ for $1 \leq i \leq m$ and $1 \leq j \leq n$ where d_{ij} is the degree of ijth vertex in G. We have to show that the realization G of π contains $p_1 + p_2 - 2$ as a regular subgraph. To prove this, it is enough to show that sum of degrees of this subgraph is equal to $p_1p_2(p_1 + p_2 - 2)$.

Clearly,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij}^1 + d_{ij}^2 = (d_{1}^1 + d_{1}^2) + \ldots + (d_{m}^1 + d_{m}^2) + \ldots + (d_{m}^1 + d_{n}^2).$$

This is true for all m and n. In particular, it holds for $m = p_1$ and $n = p_2$. Therefore

$$\sum_{i=1}^{p_1} \sum_{j=1}^{p_2} d_{ij} = (d_{1}^1 + d_{1}^2) + (d_{1}^1 + d_{2}^2) + \ldots + (d_{1}^1 + d_{p_2}^2) + \ldots + (d_{p_1}^1 + d_{p_2}^2)$$

$$= (p_1 - 1 + p_2 - 1) + (p_1 - 1 + p_2 - 1) + \ldots + (p_1 - 1 + p_2 - 1)$$

$$+ \ldots + (p_1 - 1 + p_2 - 1)$$

$$= p_1p_2(p_1 + p_2 - 2).$$

□
Theorem 2.1 can be generalized as follows.

Theorem 2.2. If \(\pi_i = (d_{i1}, d_{i2}, \ldots, d_{in_j}) \) is potentially \(K_{p_i} \)-graphic for \(i, j = 1, 2, \ldots, r \) with \(p_i \leq n_j \), then the graphic sequence \(\pi \) of \(G = G_1 \times G_2 \times \ldots \times G_r \) is a potentially \(\sum_{i=1}^{r} p_i - r \) regular graphic.

Proof. The proof follows by induction on \(r \). \(\square \)

Theorem 2.3. If \(\pi_1 = (d_{11}, d_{12}, \ldots, d_{1m}) \) is potentially \(K_{p_1} \)-graphic and \(\pi_2 = (d_{21}, d_{22}, \ldots, d_{2n}) \) is potentially \(K_{p_2} \)-graphic, \(p_1 \leq m \) and \(p_2 \leq n \), then the graphic sequence \(\pi \) of \(G = G_1 + G_2 \) is potentially \(K_{p_1+p_2} \)-graphic.

Proof. Let \(\pi_1 = (d_{11}, d_{12}, \ldots, d_{1m}) \) be potentially \(K_{p_1} \)-graphic. Then there exists a graph \(G_1 \) which realizes \(\pi_1 \) and will contain \(K_{p_1} \) as a subgraph. Let \(\pi_2 = (d_{21}, d_{22}, \ldots, d_{2n}) \) be potentially \(K_{p_2} \)-graphic, so there exists a graph \(G_2 \) which realizes \(\pi_2 \) and will contain \(K_{p_2} \) as a subgraph. Let \(G = G_1 + G_2 \) be the join of \(G_1 \) and \(G_2 \) and let \(\pi = (d_1, d_2, \ldots, d_{m+n}) \) be the graphic sequence of \(G = G_1 + G_2 \). Then we have

\[
d_i = d_{i1} + n \quad \text{for} \quad i = 1, 2, \ldots, m
\]
\[
d_{m+j} = d_{2j} + m \quad \text{for} \quad j = 1, 2, \ldots, n.
\]

(2.1)

We have to show that the realization of \(\pi \) contains \(K_{p_1+p_2} \) as a subgraph. To prove this it is enough to show that

\[
\sum_{i=1}^{p_1} d_i + \sum_{j=1}^{p_2} d_{m+j} = (p_1 + p_2)(p_1 + p_2 - 1).
\]

We take the summation to the equations in (2.1) respectively from \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \) and get \(\sum_{i=1}^{m} d_i = \sum_{i=1}^{m} d_{i1} + \sum_{i=1}^{m} n \) and \(\sum_{j=1}^{n} d_{m+j} = \sum_{j=1}^{n} d_{2j} + \sum_{j=1}^{n} m \). These two equations imply

(2.2) \[
\sum_{i=1}^{m} d_i = \sum_{i=1}^{m} d_{i1} + mn
\]

and

(2.3) \[
\sum_{j=1}^{n} d_{m+j} = \sum_{j=1}^{n} d_{2j} + nm.
\]

As (2.2) and (2.3) is true for all \(m \) and \(n \), therefore, in particular it is true for \(m = p_1 \) and \(n = p_2 \). So,
Proof. This can be proved by induction on \(r \).

\[p = 1 \]

Theorem 2.3 can be generalized as follows.

Theorem 2.4. If \(\pi_i = (d_{i1}, d_{i2}, \ldots, d_{in_i}) \) is potentially \(K_{p_i} \)-graphic for \(i = 1, 2, \ldots, r \) with \(p_i \leq n_j \). Then the graphic sequence \(\pi \) of \(G = G_1 + G_2 + \ldots + G_r \) is potentially \(K_{\sum_{i=1}^r p_i} \)-graphic.

Proof. This can be proved by induction on \(r \).

\[\sum_{i=1}^{p_1} d_i + \sum_{j=1}^{p_2} d_{m+j} = \sum_{i=1}^{p_1} d_i^1 + \sum_{i=1}^{p_2} d_{m+j}^2 + 2p_1p_2 \]

\[= d_1^1 + d_2^1 + \ldots + d_{p_1}^1 + d_1^2 + d_2^2 + \ldots + d_{p_2}^2 + 2p_1p_2 \]

\[= (p_1 - 1) + \ldots + (p_1 - 1) + (p_2 - 1) + \ldots + (p_2 - 1) + 2p_1p_2 \]

\[= p_1(p_1 - 1) + p_2(p_2 - 1) + p_1p_2 \]

\[= p_1(p_1 + p_2 - 1) + p_2(p_2 + p_1 - 1) \]

\[= (p_1 + p_2)(p_1 + p_2 - 1). \]

\[\square \]

Theorem 2.5. If \(\pi_i \) is potentially \(S_{r_i,s_i} \)-graphic for \(i = 1, 2, \ldots, m \), then

1. The graphic sequence \(\pi \) of \(G = G_1 + G_2 + \ldots + G_m \) is potentially \(\sum_{i=1}^m r_i \sum_{i=1}^m s_i \)-graphic, where \(+ \) denotes the standard join operation in \(S_{r_i,s_i} \).

2. The graphic sequence of \(\sum_{i=1}^m r_i \sum_{i=1}^m s_i \) for \(j = 1, 2, \ldots, m \) is

\[\pi' = \left(\left(\sum_{i=1}^m (r_i + s_i - 1) \right)^{r_j}, \left(\sum_{i=1}^m r_i \right)^{s_j} \right), \]

3. Also, \(\sigma(\pi') = \left(\sum_{i=1}^m r_i \right)^2 + 2 \left(\sum_{i=1}^m r_i \right) \left(\sum_{i=1}^m s_i \right) - \left(\sum_{i=1}^m r_i \right). \]

Proof. Let \(\pi \) be potentially \(S_{r_i,s_i} \)-graphic for \(i = 1, 2, \ldots, m \). Then there exists a graph \(G_i \) which realizes \(\pi_i \) and will contain \(S_{r_i,s_i} \) as a subgraph. Let \(G = G_1 + G_2 + \ldots + G_m \) be the graph obtained from \(G_1, G_2, \ldots, G_m \) by using join operation. Therefore, clearly the graphic sequence \(\pi \) of \(G \) is potentially \(\sum_{i=1}^m r_i \sum_{i=1}^m s_i \)-graphic follows from Theorem 2.4. To prove part (2), we use induction on \(m \). For \(k = 1 \), the result is obvious. For \(k = 2 \), we have \(G = G_1 + G_2 \). Therefore, in particular \(S_{r_1+r_2,s_1+s_2} = S_{r_1,s_1} + S_{r_2,s_2} \). Now by Theorem 2.4 we have for every \(i = 1, 2, \ldots, r_1 \) and \(i = 1, 2, 3, \ldots, r_2 \) and \(j = 1, 2, 3, \ldots, s_1 \) and \(j = 1, 2, 3, \ldots, s_2 \)

\[\overline{d}_i = d_i + r_2 + s_1 + s_2 \]
π is the degree of i th vertex in K_{r_1}. Equations (2.4) and (2.5) hold for every i, j. Thus

$$\pi^2 = \left(\left(r_1 + r_2 + s_1 + s_2 - 1 \right)^{r_1}, \left(r_1 + r_2 + s_1 + s_2 - 1 \right)^{r_2}, \left(r_1 + r_2 \right)^{s_1}, \left(r_1 + r_2 \right)^{s_2} \right)$$

This shows that the result is true for $k = 2$. Assume that the result holds for $k = m - 1$, therefore $\pi^{m-1} = \left(\left(\sum_{i=1}^{m-1} (r_i + s_i) \right)^{r_j}, \left(\sum_{i=1}^{m-1} r_i \right)^{s_j} \right)$, for $j = 1, 2, \ldots, m - 1$. Now for $k = m$ we have that $G = S_{r_1,s_1} + S_{r_2,s_2} + \ldots + S_{r_{m-1},s_{m-1}} + S_{r_m,s_m} = A + S_{r_m,s_m}$, where $A = S_{r_1,s_1} + S_{r_2,s_2} + \ldots + S_{r_{m-1},s_{m-1}}$.

Since the result is proved for every $k = m - 1$ and using the fact that the result is proved for each pair and since the result is already proved for $k = 2$, it follows by induction hypothesis that the result holds for $k = m$ also. That is,

$$\pi = \pi^m = \left(\left(\sum_{i=1}^{m} (r_i + s_i - 1) \right)^{r_j}, \left(\sum_{i=1}^{m} r_i \right)^{s_j} \right).$$

This proves part (2). To prove part (3), we have for $j = 1, 2, \ldots, m$ that

$$\sigma(\pi') = r_j \left(\sum_{i=1}^{m} (r_i + s_i - 1) \right) + s_j \left(\sum_{i=1}^{m} r_i \right)$$

$$= r_j \left(\sum_{i=1}^{m} (r_i + s_i) \right) - r_j + s_j \left(\sum_{i=1}^{m} r_i \right)$$

$$= \sum_{j=1}^{m} r_j \left(\sum_{i=1}^{m} (r_i + s_i) \right) - \sum_{j=1}^{m} r_j + \sum_{j=1}^{m} s_j \sum_{i=1}^{m} r_i$$

$$= \left(\sum_{i=1}^{m} r_i \right)^2 + 2 \left(\sum_{i=1}^{m} r_i \right) \left(\sum_{i=1}^{m} s_i \right) - \left(\sum_{i=1}^{m} r_i \right).$$

\[\square \]

Theorem 2.6. If $\pi_1 = (d_1, d_2, \ldots, d_m)$ is potentially S_{r_1,s_1}-graphic and $\pi_2 = (d_1^2, d_2^2, \ldots, d_m^2)$ is potentially S_{r_2,s_2}-graphic. Then

1. $\pi_{1} \times_{s_2} S_1 \times S_2$ is graphic,
2. the graphic sequence of $S_1 \times S_2$ is $\pi_{1} \times_{s_2} S_1 \times S_2 = (d_1^{r_1 \times r_2}, d_2^{r_1 \times s_2}, d_1^{s_1 \times r_2}, d_2^{s_1 \times s_2})$, where d_{ij} is the degree of ijth vertex in $S_1 \times S_2$.

Proof. Let \(\pi_1 = (d_1^1, d_2^1, \ldots, d_n^1) \) be potentially \(S_{r_1,s_1} \)-graphic. Then there exists a graph \(G_1 \) which realizes \(\pi_1 \) and will contain \(S_{r_1,s_1} \) as a subgraph. Let \(\pi_2 = (d_1^2, d_2^2, \ldots, d_n^2) \) be potentially \(S_{r_2,s_2} \)-graphic so that there exists a graph \(G_2 \) which realizes \(\pi_2 \) and will contain \(S_{r_2,s_2} \) as a subgraph. Let \(G = G_1 \times G_2 \) be the cartesian product of \(G_1 \) and \(G_2 \). Then we have \(d_{ij} = d_i + d_j \) for \(1 \leq i \leq m \) and \(1 \leq j \leq n \). This relation is true for every vertex of the graph \(G \), therefore it also holds for the graph \(S = S_1 \times S_2 \). Thus we can write \(S = S_{r_1,s_1} \times S_{r_2,s_2} \). We have

\[
d_{ij} = d_i + d_j \quad \text{for} \quad 1 \leq i \leq r_1 + s_1 \quad \text{and} \quad 1 \leq j \leq r_2 + s_2.
\]

for \(1 \leq i \leq r_1 + s_1 \) and \(1 \leq j \leq r_2 + s_2 \).

If \(d_i \) is the degree of \(i \)th vertex of \(r_1 \) in \(S_{r_1,s_1} \) and \(d_j \) is the degree of \(j \)th vertex of \(r_2 \) in \(S_{r_2,s_2} \), it can be seen by construction that degree of \(i \)th vertex of \(r_1 \times r_2 \) in \(S \) is \(d_{ij} \), where \(d_{ij} \) is defined above and this term occurs in \(r_1 \times r_2 \) in \(S_{r_1,s_1} \times S_{r_2,s_2} \). Similarly other degree terms of the sequence occurs in \(r_1 \times s_2, s_1 \times r_2, s_1 \times s_2 \) by using definition of cartesian product of graphs. Thus \(\pi_{s_1 \times s_2} = (d_1^{r_1 \times r_2}, d_1^{r_1 \times s_2}, d_1^{r_1 \times r_2}, d_1^{r_1 \times s_2}) \). This completes the proof of the theorem. \(\square \)

The following result is a generalization of Theorem 2.6 whose proof follows simply by induction.

Theorem 2.7. If \(\pi_i = (d_i^1, d_i^2, \ldots, d_i^n) \) is potentially \(S_{r_i,s_i} \)-graphic, then

1. the sequence \(\pi \) of \(G = S_{r_1,s_1} \times S_{r_2,s_2} \times \cdots \times S_{r_m,s_m} \) is graphic,
2. the graphic sequence of \(\pi \) is \(\pi = \pi_{r_1,s_1} \times \pi_{r_2,s_2} \times \cdots \times \pi_{r_m,s_m} = (d_{ij}^{r_1 \times r_2}, d_{ij}^{r_1 \times s_2}, \ldots, d_{ij}^{r_1 \times r_2}, d_{ij}^{r_1 \times s_2}, \ldots), \) where \(d_{ij}^{r_1 \times s_2} = d_i + d_j + d_k + \cdots + d_m \).

Proof. This can be proved by induction on \(r \). \(\square \)

Theorem 2.8. If \(\pi_i \) is potentially \(S_{r_i,s_i} \)-graphic for \(i = 1, 2, \ldots, m \), then

1. the graphic sequence \(\pi \) of \(G = G_1 \lor G_2 \lor \cdots \lor G_m \) is potentially \(S_{\sum_{i=1}^m r_i, \sum_{i=1}^m s_i} \)-graphic, where \(\lor \) denotes the join operation in \(G_1, G_2, \ldots, G_n \),
2. the graphic sequence of \(S_{\sum_{i=1}^m r_i, \sum_{i=1}^m s_i} \) is

\[
\pi' = \left(\sum_{i=1}^m (r_i + s_i - 1) \right)^{1/r_j}, \left(\sum_{i=1}^m r_i + \sum_{i=1, i \neq j}^m s_i \right)^{1/s_j}, \text{ for } j = 1, 2, \ldots, m,
\]

3. and \(\sigma(\pi') = \left(\sum_{i=1}^m r_i \right)^2 + 2 \sum_{i=1}^m r_i \sum_{j=1}^m s_j + \left(\sum_{i=1}^m s_i \right)^2 + \sum_{j=1}^m s_j \left(\sum_{i=1, i \neq j} s_i \right) - \sum_{i=1}^m r_i \).

Proof. Let \(\pi \) be potentially \(S_{r_1,s_1} \)-graphic for \(i = 1, 2, \ldots, m \). Then there exists a graph \(G_i \) which realizes \(\pi_i \) and will contain \(S_{r_i,s_i} \) as a subgraph. Let \(G = G_1 \lor G_2 \lor \cdots \lor G_m \) be the graph obtained from \(G_1, G_2, \ldots, G_m \) by using join operation. Therefore, clearly the graphic sequence \(\pi \) of \(G \) is potentially \(S_{\sum_{i=1}^m r_i, \sum_{i=1}^m s_i} \)-graphic.
To prove part (2), we use induction on \(m \). For \(k = 1 \), the result is obvious. For \(k = 2 \), we have \(G = G_1 \lor G_2 \), therefore, in particular we take the normal join operation between graphs \(S_{r_1,s_1} \) and \(S_{r_2,s_2} \). Thus we have \(S_{1,2} = S_{r_1,s_1} \lor S_{r_2,s_2} \). Now by Theorem 2.6 we have for every \(i = 1, 2, \ldots, r_1 \) and \(j = 1, 2, 3, \ldots, s_1 \) and \(j = 1, 2, 3, \ldots, s_2 \)

\[
\overline{d}_i = d_i + r_2 + s_1 + s_2
\]

and

\[
\overline{d}_j = r_1 + r_2 + s_2,
\]

where \(\overline{d}_i \) and \(\overline{d}_j \) are respectively the degree of \(v^i_i \) and \(v^j_j \) vertex in \(S_{r_1+r_2,s_1+s_2} \) and \(d_i \) is the degree of \(i^{th} \) vertex in \(K_{r_1} \). Equations (2.7) and (2.8) hold for every \(i, j \). Thus for \(j = 1, 2 \)

\[
\pi^2 = \left(\left(r_1 + r_2 + s_1 + s_2 - 1 \right)^{r_1}, \left(r_1 + r_2 + s_1 + s_2 - 1 \right)^{r_2} \right),
\]

\[
\left(r_1 + r_2 + s_2 \right)^{s_1}, \left(r_1 + r_2 + s_1 \right)^{s_2} \right) = \left(\left(\sum_{i=1}^{r_j} (r_i + s_i - 1) \right)^{r_j}, \left(\sum_{i=1}^{r_j} r_i + \sum_{i=1,i \neq j}^{m-1} s_i \right)^{r_j} \right).
\]

This shows that the result is true for \(k = 2 \). Assume that the result holds for \(k = m - 1 \), therefore \(\pi^{m-1} = \left(\left(\sum_{i=1}^{m-1} (r_i + s_i - 1) \right)^{r_j}, \left(\sum_{i=1}^{m-1} r_i + \sum_{i=1,i \neq j}^{m-1} s_i \right)^{r_j} \right) \), for all \(j = 1, 2, \ldots, m - 1 \). Now for \(k = m \) we have that \(G = S_{r_1,s_1} \lor S_{r_2,s_2} \lor \ldots \lor S_{r_{m-1},s_{m-1}} \lor S_{r_m,s_m} = A \lor S_{r_m,s_m} \), where \(A = S_{r_1,s_1} \lor S_{r_2,s_2} \lor \ldots \lor S_{r_{m-1},s_{m-1}} \).

Since the result is proved for all \(k = m - 1 \) and using the fact that the result is proved for each pair and since the result is already proved for \(k = 2 \), it follows by induction hypothesis that result holds for \(k = m \) also. That is,

\[
\pi = \pi^m = \left(\left(\sum_{i=1}^{m} (r_i + s_i - 1) \right)^{r_j}, \left(\sum_{i=1}^{m} r_i + \sum_{i=1,i \neq j}^{m} s_i \right)^{s_j} \right).
\]

This proves part (2). To prove part (3), we have for all \(j = 1, 2, \ldots, m \)

\[
\sigma(\pi^j) = r_j \left(\sum_{i=1}^{m} (r_i + s_i - 1) \right) + s_j \left(\sum_{i=1}^{m} r_i + \sum_{i=1,i \neq j}^{m} s_i \right)
\]

\[
= r_j \left(\sum_{i=1}^{m} (r_i + s_i) \right) - r_j + s_j \left(\sum_{i=1}^{m} r_i + \sum_{i=1,i \neq j}^{m} s_j \right).
\]
\[
\left(\sum_{j=1}^{m} r_i \right)^2 + 2 \sum_{i=1}^{m} r_i \sum_{i=1}^{m} s_i + \sum_{i=1}^{m} s_j \left(\sum_{i=1, i \neq j}^{m} s_i \right) - \sum_{i=1}^{m} r_i.
\]

\[\square\]

Remark 2.1. Let \(\pi_1 = (d_1^1, d_2^1, \ldots, d_m^1) \) be potentially \(K_{p_1} \)-graphic \(\pi_2 = (d_1^2, d_2^2, \ldots, d_m^2) \) be potentially \(K_{p_2} \)-graphic. Then the graphic sequence \(\pi \) of \(G = G_1 \land G_2 \) is potentially \(H_p \)-graphic, where \(H_p \) is a \(p \)-regular graph and \(p \) depends upon \(p_1 \) and \(p_2 \). If \(p_1 = 3 \) and \(p_2 = 2 \), then \(\pi \) of \(G = G_1 \land G_2 \) is potentially \(H_2 \)-graphic. If \(p_1 = 3 \) and \(p_2 = 3 \), then \(\pi \) of \(G = G_1 \land G_2 \) is potentially \(H_3 \)-graphic. If \(p_1 = 4 \) and \(p_2 = 4 \), then \(\pi \) of \(G = G_1 \land G_2 \) is potentially \(H_4 \)-graphic. If \(p_1 = 3 \) and \(p_2 = 4 \), then \(\pi \) of \(G = G_1 \land G_2 \) is potentially \(H_6 \)-graphic. From this we conclude that \(p \) depends upon \(p_1 \) and \(p_2 \).

References

1Department Of Mathematics, University of Kashmir, Srinagar, Kashmir, India
E-mail address: pirzadansd@kashmiruniversity.ac.in
E-mail address: sdpirzada@yahoo.co.in

2Department Of Mathematics, University of Kashmir, Srinagar, Kashmir, India
E-mail address: chatbilal@gmail.com