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UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING
THREE VALUES

ARINDAM SARKAR1 AND PAULOMI CHATTOPADHYAY2

Abstract. We prove four uniqueness theorems for meromorphic functions f and
g sharing values 0, 1, ∞ which improve results of I. Lahiri, X. M. Li, H. X. Yi, C.
Meng and others.

1. Introduction, Definitions and Results

Let f and g be two non constant meromorphic functions defined in the open com-
plex plane C. If for some a ∈ C ∪ {∞}, f and g have the same set of a-points with
the same multiplicities we say that f and g share the value a CM (Counting Multi-
plicities) and if we do not consider the multiplicities, then f and g are said to share
the value a IM (Ignoring Multiplicities). We do not explain the standard notations
and definitions of the value distribution theory as these are available in [2]. It will be
convenient to let E denote any set of positive real numbers of finite linear measure,
not necessary the same at each occurrence. For a non-constant meromorphic function
h, we denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any quantity
satisfying S(r, h) = o{T (r, h)}, as r →∞ and r 6∈ E.

Definition 1.1. [1] Let p be a positive integer and a ∈ C ∪ {∞}. We denote by
N(r, a; f |= p) the counting function of those a-points of f whose multiplicities are
exactly equal to p, where an a-point is counted only once.

In 1976, Ozawa [17] proved the following theorem.

Theorem 1.1. [17] Let f and g be two non constant entire functions of finite order.
If f , g share 0, 1 CM and 2δ(0, f) > 1 then either f ≡ g or fg ≡ 1.
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Ueda [18] extended the above result to meromorphic functions and freed it from
order restriction in the following theorem.

Theorem 1.2. [18] Let f , g share 0, 1, ∞ CM. If

lim sup
r→∞

N(r, 0; f) +N(r,∞; f)

T (r, f)
<

1

2

then either f ≡ g or fg ≡ 1.

Yi further improved Theorem 1.2 and proved the following.

Theorem 1.3. [19] Let f , g share 0, 1, ∞ CM. If

N(r, 0; f |= 1) +N(r,∞; f |= 1) < {λ+ o(1)}T (r, f)

for r ∈ I, where 0 < λ < 1
2

and I is a set of infinite linear measure, then either f ≡ g
or fg ≡ 1.

We recall the following example from Lahiri [9]: If f = (ez − 1)2 and g = ez − 1,
then we see that in Theorem 1.3 the sharing of 0 cannot be relaxed from CM to IM.

In 2001 Lahiri [5] considered the following problem: Is it possible to relax the
nature of sharing of the value 0 in Theorem 1.3 and if possible how far? To this end
Lahiri employed the notion of weighted sharing introduced by him in 2001 expressed
in the following definition.

Definition 1.2. [4, 5] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m
is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z0 is a zero
of f − a with multiplicity m(≤ k) if and only if it is a zero of g − a with multiplicity
m(≤ k) and z0 is a zero of f − a of multiplicity m(> k) if and only if it is a zero of
g − a with multiplicity n(> k) where m is not necessarily equal to n.

We write f , g share (a, k) to mean f, g share the value a with weight k. Clearly if
f, g share (a, k) then f, g share (a, p) for all integers p, 0 ≤ p < k. Also we note that
f , g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞) respectively.

Below we state Lahiri’s result which improves Theorem 1.3.

Theorem 1.4. [5] Let f, g share (0, 1), (1,∞), (∞,∞). If

N(r, 0; f |= 1) +N(r,∞; f |= 1) < {λ+ o(1)}T (r, f)

for r ∈ I, where 0 < λ < 1
2

and I is a set of infinite linear measure then either f ≡ g
or fg ≡ 1.

We need the following definitions to proceed further.
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Definition 1.3. [8] Let p be a positive integer and a ∈ C ∪ {∞}. We denote by
N(r, a; f |≥ p), (N(r, a; f |≥ p)) the counting function(reduced counting function)
of those a-points of f whose multiplicities are greater than or equal to p, where an
a-point is counted according to its multiplicity (only once). Similarly we denote by
N(r, a; f |≤ p), (N(r, a; f |≤ p)) the counting function(reduced counting function) of
those a-points of f whose multiplicities are less than or equal to p, where an a-point
is counted according to its multiplicity (only once).

Definition 1.4. For a ∈ C ∪ {∞}, we define

Θ(a; f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)

δ1)(a; f) = 1− lim sup
r→∞

N(r, a; f |= 1)

T (r, f)
;

δ2)(a; f) = 1− lim sup
r→∞

N(r, a; f |≤ 2)

T (r, f)
;

δ2(a, f) = 1− lim sup
r→∞

N2(r, a; f)

T (r, f)

where by N2(r, a; f) we denote the sum N(r, a; f) +N(r, a; f |≥ 2).

Following are the chronological improvements by Lahiri of Theorem 1.4 in 2002
and 2003 respectively.

Theorem 1.5. [8] If f and g are two non constant meromorphic functions sharing
(0, 1), (1,∞), (∞,∞) and

(1.1) 2δ1)(0; f) + 2δ1)(∞; f) + min

{ ∑
a6=0,1,∞

δ2)(a; f),
∑

a6=0,1,∞

δ2)(a, g)

}
> 3,

then either f ≡ g or fg ≡ 1. If f has at least one zero or pole the case fg ≡ 1 dose
not arise.

Theorem 1.6. [9] Theorem 1.5 holds if f , g share (0, 1), (1,m), (∞, k), where

(m− 1)(mk − 1) > (1 +m)2.

Regarding Theorem 1.6 it is natural to raise the following questions.

Question 1.1. What can be said about the relationship between f and g if we relax
in any way the condition (1.1)?

Question 1.2. What can be said about the relationship, if we relax the nature of
sharing of the values 0, 1,∞ in any way?

In this direction following results were established with gradual improvements by
Q. C. Zhang [25] in 2006, by C. Meng [15] in 2008 and most recently by Li-Yi [14] in
2010.
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Theorem 1.7. [25] Let f and g be two nonconstant meromorphic functions sharing
(a1, k1), (a2, k2) and (a3, k3) where {a1, a2, a3} = {0, 1,∞} and k1, k2, k3 are three
positive integers satisfying the condition

(1.2) k1k2k3 > k1 + k2 + k3 + 2.

If

2δ1)(0; f) + 2δ1)(∞; f) +
∑

a6=0,1,∞

δ2)(a; f) + max{δ1)(1, f), δ1)(1, g)} > 3,

and

2δ1)(0; g) + 2δ1)(∞; g) +
∑

a6=0,1,∞

δ2)(a; g) + max{δ1)(1, f), δ1)(1, g)} > 3,

then either f ≡ g or fg ≡ 1.

Theorem 1.8. [25] Let f and g be two transcendental meromorphic functions such
that f and g share (0, k1), (1, k2), (∞, k3) where k1, k2, k3 are three positive integers
satisfying (1.2). If both

2δ1)(0; f)+2δ1)(∞; f)+
∑

a6=0,1,∞

δ2)(a; f)+
∑

a6=0,1,∞

δ2)(a; g)+max{δ1)(1, f), δ1)(1, g)} > 3,

and

2δ1)(0; g)+2δ1)(∞; g)+
∑

a6=0,1,∞

δ2)(a; f)+
∑

a6=0,1,∞

δ2)(a; g)+max{δ1)(1, f), δ1)(1, g)} > 3,

hold, then one of the following four equalities hold:

(i) f ≡ g;
(ii) fg ≡ 1;

(iii) f − 1 ≡ A(g − 1);
(iv) 1

f
− 1 ≡ A(1

g
− 1);

where A(6= 0, 1) is a finite complex number.

Theorem 1.9. [15] Let f and g be two non constant meromorphic functions sharing
(0,m), (∞, 0) and (1, 1) where m ≥ 2. If

(1.3) 2δ2(0; f) +
4m

m− 1
δ2(∞; f) + min

{ ∑
a6=0,1,∞

δ2(a; f),
∑

a6=0,1,∞

δ2(a, g)

}
>

5m− 1

m− 1
,

then either f ≡ g or fg ≡ 1.

Corollary 1.1. Let f and g be two non constant meromorphic functions sharing
(0, 2), (∞, 0) and (1, 1). If

(1.4) 2δ2(0; f) + 8δ2(∞; f) + min

{ ∑
a6=0,1,∞

δ2(a; f),
∑

a6=0,1,∞

δ2(a, g)

}
> 9,

then either f ≡ g or fg ≡ 1.
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Corollary 1.2. [15] Let f and g be two non constant meromorphic functions sharing
(0, 3), (∞, 0) and (1, 1). If

2δ2(0; f) + 6δ2(∞; f) + min

{ ∑
a6=0,1,∞

δ2(a; f),
∑

a6=0,1,∞

δ2(a, g)

}
> 7,

then either f ≡ g or fg ≡ 1.

Theorem 1.10. [14] Let f and g be two nonconstant entire functions such that f
and g share (a1, 1), (a2, 2) where {a1, a2} = {0, 1}. If

2δ1)(0; f) + max

{ ∑
a6=0,1,∞

δ2)(a; f),
∑

a6=0,1,∞

δ2)(a, g)

}
+ max{δ1)(1, f), δ1)(1, g)} > 1,

then either f ≡ g or fg ≡ 1.

Theorem 1.11. [14] Let f and g be two transcendental meromorphic functions such
that f and g share (0, k1), (1, k2), (∞, k3) where k1, k2, k3 are three positive integers
satisfying (1.2). If

(1.5) 2δ1)(0; f) + 2δ1)(∞; f) + max

{ ∑
a6=0,1,∞

δ2)(a; f),
∑

a6=0,1,∞

δ2)(a, g)

}
> 3,

then either f ≡ g or fg ≡ 1.

Theorem 1.12. [14] Let f and g be two transcendental meromorphic functions such
that f and g share (0, k1), (1, k2), (∞, k3) where k1, k2, k3 are three positive integers
satisfying k1k2k3 > k1 + k2 + k3 + 2. If

2δ1)(0; f) + 2δ1)(∞; f) + 2δ1)(0; g) + 2δ1)(∞; g) +
∑

a6=0,1,∞

δ2)(a; f)

+
∑

a6=0,1,∞

δ2)(a; g) + δ1)(1, f) + δ1)(1, g) > 6

hold, then either f ≡ g or fg ≡ 1.

Theorem 1.13. [15] Let f and g be two transcendental meromorphic functions such
that f and g share (0, k1), (1, k2), (∞, k3), where k1, k2, k3 are three positive integers
satisfying (1.2). If

2δ1)(0; f) + 2δ1)(∞; f) + max

{ ∑
a6=0,1,∞

δ2)(a; f),
∑

a6=0,1,∞

δ2)(a; g)

}
+ δ1)(1, f)

+ δ1)(1, g) > 3
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and

2δ1)(0; g) + 2δ1)(∞; g) + max

{ ∑
a6=0,1,∞

δ2)(a; f),
∑

a6=0,1,∞

δ2)(a; g)

}
+ δ1)(1, f)

+ δ1)(1, g) > 3

hold, then one of the following four equalities holds:

(i) f ≡ g;
(ii) fg ≡ 1;

(iii) (f − 1)(g − 1) ≡ 1;
(iv) f + g ≡ 1.

Remark 1.1. Theorem 1.6 holds for mk ≥ 12, where m ≥ 2 and k ≥ 2. A set of
possible values of m and k may be as follows: (i) m = 2, k = 6, (ii) m = 3, k =
4, (iii) m = 4, k = 3, (iv) m = 6, k = 2. Similarly in Theorem 1.7 or Theorem
1.11 if k1 = 1, then k2, k3 must be at least 2 and 6 or 3 and 4 or 4 and 3 or 6
and 2 respectively. Therefore it is natural to investigate situation under which the
conclusions of Theorems 1.6 and 1.7 or 1.11 are true while m = 1, k = 1 or k1 = k2 =
k3 = 1 respectively.

Thus above theorems lead us to the following questions.

Question 1.3. What can be said about the conclusion of Theorem 1.9, if m = 1 and
if we relax the assumption 1.3 in any way?

Question 1.4. What can be said about the conclusions of Theorems 1.6 and 1.7, if f
and g share (0, 1), (1, 1), (∞, 1)?

Question 1.5. What can be said about the conclusions of Theorem 1.11, if fand g are
non-constant meromorphic functions and if we relax the assumption 1.5 in any way?

These questions are the motivations of this paper, which we answer in affirmative.
Next we state the main results, where Theorem 1.14 answers Question 1.4,Theorem
1.15 answers Question 1.5 and Question 1.3 is answered by Theorem 1.16 that is a
two-fold improvement of Theorem 1.9 as it is proved under the assumption m = 1
and a weaker assumption than condition (1.3). Finally we give Theorem 1.17 which
supplements Theorem 1.13.

Theorem 1.14. Let f and g be two nonconstant meromorphic functions sharing
(0, 1), (1, 1), (∞, 1). If

(1.6) A1 = 2δ2(0; f) + 2δ2(∞; f) +
∑

a6=0,1,∞

δ2(a; f) + lim inf
r→∞

m(r, 1; g)

T (r, f)
> 3,

then either f ≡ g or fg ≡ 1.
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Theorem 1.15. Let f and g be two nonconstant meromorphic functions sharing
(0, k1), (1, k2), (∞, k3) where k1k2k3 > k1 + k2 + k3 + 2. If

A2 =2δ1)(0; f) + 2δ1)(∞; f) + max

{ ∑
a6=0,1,∞

δ2)(a; f),
∑

a6=0,1,∞

δ2)(a; g)

}
(1.7)

+ max{δ1)(1; f), δ1)(1; g)} > 3,

then either f ≡ g or fg ≡ 1.

Theorem 1.16. Let f and g be two nonconstant meromorphic functions sharing
(0, 1),(1, 1),(∞, 0). If

A3 = 2δ2(0; f) + 4Θ(∞; f) +
∑

a6=0,1,∞

δ2(a; f) + lim inf
r→∞

m(r, 1; g)

T (r, f)
> 5(1.8)

then either f ≡ g or fg ≡ 1.

Theorem 1.17. Let f and g be two nonconstant meromorphic functions such that f
and g share (0, k1), (1, k2), (∞, k3) where k1, k2, k3 are three positive integers satisfying
(1.2). If

2δ1)(0; f) + 2δ1)(∞; f) +
∑

a6=0,1,∞

δ2)(a; f) +
∑

a6=0,1,∞

δ2)(a; g) + δ1)(1, f)(1.9)

+ δ1)(1, g) > 3

and

2δ1)(0; g) + 2δ1)(∞; g) +
∑

a6=0,1,∞

δ2)(a; f) +
∑

a6=0,1,∞

δ2)(a; g) + δ1)(1, f)(1.10)

+ δ1)(1, g) > 3

hold, then f is a bilinear transformation of g and one of the following equalities holds:

(i) f ≡ g;
(ii) fg ≡ 1;

(iii) (f − 1)(g − 1) ≡ 1;
(iv) f + g ≡ 1;
(v) f ≡ cg;
(vi) f − 1 ≡ c(g − 1);

(vii) [(c− 1)f + 1][(c− 1)g − c] + c ≡ 1, where c(6= 0, 1,∞)

is a constant.

From Theorem 1.14 we obtain the following corollary.

Corollary 1.3. Let f and g be two nonconstant entire functions sharing (0, 1), (1, 1).
If

2δ2(0; f) +
∑

a6=0,1,∞

δ2(a; f) + lim inf
r→∞

m(r, 1; g)

T (r, f)
> 1
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then either f ≡ g or fg ≡ 1.

We illustrate some examples to show that the condition in Theorem 1.14 is sharp.

Example 1.1. [7] Let f = ez − 1 and g = 2− 2
ez

. Then f and g share (0,∞), (1,∞),
(∞,∞) and therefore (0, 1), (1, 1), (∞, 1). An easy calculation shows that A1 = 3,
but neither f ≡ g or fg ≡ 1.

Example 1.2. Let f = 4ez(ez−1)2
(ez+1)4

, g = − (ez−1)4
4ez(ez+1)2

. Clearly f, g share (0,1), (∞, 1) and

(1,∞) and T (r, f) = 4T (r, ez) + O(1), N(r,∞; f |≥ 2) ∼ T (r, ez), N(r,∞; f) ∼
T (r, ez), N(r, 0; f |≥ 2) ∼ T (r, ez), N(r, 0; f) ∼ T (r, ez), N(r, 1; g) ∼ 4T (r, ez).
Therefore δ2(0, f) = δ2(∞, f) = 1

2
. Similarly δ2(1, f) = 1

2
. Thus the maximum value

of
∑

a6=0,1,∞ δ2(a; f) is 2 − 3
2

= 1
2
. Therefore the maximum value of A1 = 5

2
and we

observe that neither f ≡ g nor fg ≡ 1.

Remark 1.2. From Theorem 1.15 we can get Theorem 1.10 directly.

Remark 1.3. We first notice that the inequality (1.4) in Corollary 1.1 can be re-
written as 2δ2(0; f)+4δ2(∞; f)+min{

∑
a6=0,1,∞ δ2(a; f),

∑
a6=0,1,∞ δ2(a, g)} > 5+4(1−

δ2(∞; f)). This implies that our Theorem 1.16 is a two-fold improvement of Corollary
1.1. One is due to reduction of weight and another is due to weaker condition than
(1.4). Similar conclusion can be drawn regarding Corollary 1.2 and Theorem 1.16.

Definition 1.5. Let f and g share the value 1 IM. Let z0 be a 1-point of f and g
with multiplicities p and q respectively. Let s be a positive integer. We denote by
N f>s(r, 1; g) the reduced counting function of those 1-points of f and g such that
p > q = s. Similarly N f<s(r, 1; g) will denote the reduced counting function of those
1-points of f and g where p < q = s.

Definition 1.6. Let f and g be two nonconstant meromorphic functions such that
f and g share (a, k) where a ∈ C ∪ {∞}. Let z0 be an a-point of f with multiplicity
p,an a-point of g of multiplicity q. We denote by NL(r, a; f)(NL(r, a; g)) the counting

function of those a-points of f and g where p > q(q > p), by N
(k+1

E (r, a; f) the
counting functions of those a-points of f and g where p = q ≥ k + 1 each point
in these counting functions is counted only once. In the same way we can define

N
(k+1

E (r, a; g). Clearly N
(k+1

E (r, a; f) = N
(k+1

E (r, a; g).

Definition 1.7. [4, 5] Let f, g share the value a IM. We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from the
corresponding a-points of g. Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and N∗(r, a; f, g) =
NL(r, a; f) +NL(r, a; g).

Definition 1.8. Let f, g share (1,0) and z0 be a common 1-point of f and g with
multiplicities p and q respectively. By N f<g(r, 1; g |≥ 4), we denote the reduced
counting function of those 1-points of f and g such that q ≥ 4 and p < q. Similarly
N f>g(r, 1; g |≥ 3) denote the reduced counting function of those common 1-points of
f and g with q ≥ 3 and p > q.
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel. In the
lemmas several times we use the function H defined by H = f ′′

f ′
− 2f ′

f−1 −
g′′

g′
+ 2g′

g−1 .

Lemma 2.1. [3] If f, g share (0, 0), (1, 0), (∞, 0) then

(i) T (r, f) ≤ 3T (r, g) + S(r, f),
(ii) T (r, g) ≤ 3T (r, f) + S(r, g).

Lemma 2.1 shows that S(r, f) = S(r, g) and we denote it by S(r).

Lemma 2.2. If f and g share (1, 1) then

N(r, 1; g)−N(r, 1; g) ≥2NL(r, 1; g) +NL(r, 1; f) +N
(2

E (r, 1; f) +N
(3

E (r, 1; f)

+N f<g(r, 1; g |≥ 4) +N f>g(r, 1; g |≥ 3).

Proof. Let z0 be a 1-point of f and g of multiplicities p and q respectively. We
denote by N1(r), N2(r) and N3(r) the counting functions of those 1-points of f and
g with 2 ≤ q < p, 2 ≤ q = p and 2 ≤ p < q respectively where each point in
these counting functions is counted q − 2 times. Since f, g share (1, 1) we have

N(r, 1; g)−N(r, 1; g) = N
(2

E (r, 1; f)+N2(r)+NL(r, 1; g)+N3(r)+NL(r, 1; f)+N1(r).

Now N3(r) ≥ NL(r, 1; g) + N f<g(r, 1; g |≥ 4), N2(r) ≥ N
(3

E (r, 1; f) and N1(r) ≥
N f>g(r, 1; g |≥ 3) and the lemma follows from above. �

Lemma 2.3. [7] If f and g share (1, 1) and H 6≡ 0 then N(r, 1; f |= 1) = N(r, 1; g |=
1) ≤ N(r,H) + S(r, f) + S(r, g).

Lemma 2.4. [10] If f and g share (0, 0), (1, 0), (∞, 0) and H 6≡ 0 then

N(r,H) ≤ N∗(r, 0; f, g) +N∗(r, 1; f, g) +N∗(r,∞; f, g) +N0(r, 0; f ′) +N0(r, 0; g′),

where N0(r, 0; f ′) is the reduced counting function of those zeros of f ′ which are not
the zeros of f(f − 1) and N0(r, 0; g′) is similarly defined.

Lemma 2.5. If f and g share (0, 0), (1, 1), (∞, k) and H 6≡ 0 then

N(r, 1; f) +N(r, 1; g) ≤N∗(r, 0; f, g) +N∗(r,∞; f, g) +N0(r, 0; f ′) +N0(r, 0; g′)

+ T (r; g)−m(r, 1; g)−NL(r, 1; g)−N (3

E (r, 1; f)

+N g>2(r, 1; f) +N f>2(r, 1; g) + S(r),

where N0(r, 0; f ′) and N0(r, 0; g′) are same as Lemma 2.4.
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Proof. By Lemmas 2.3, 2.4 and 2.2 we have

N(r, 1; f) +N(r, 1; g) ≤ N(r,H) +N(r, 1; g) +N(r, 1; f |≥ 2) + S(r)

≤ N∗(r, 0; f, g) +N∗(r, 1; f, g) +N∗(r,∞; f, g) +N0(r, 0; f ′)

+N0(r, 0; g′) +N(r, 1; g) +N(r, 1; f |≥ 2) + S(r)

≤ N∗(r, 0; f, g) +N∗(r, 1; f, g) +N∗(r,∞; f, g) +N0(r, 0; f ′)

+N0(r, 0; g′) +N(r, 1; g)− 2NL(r, 1; g)−NL(r, 1; f)

−N (2

E (r, 1; f)−N (3

E (r, 1; f)−N f<g(r, 1; g |≥ 4)

−N f>g(r, 1; g |≥ 3) +N(r, 1; f |≥ 2) + S(r).

Now we observe that f, g share (1, 1) and N(r, 1; f |≥ 2) = NL(r, 1; g) +NL(r, 1; f) +

N
(2

E (r, 1; f), and NL(r, 1; g) − N f<g(r, 1; g |≥ 4) ≤ N g>2(r, 1; f) and NL(r, 1; f) −
N f>g(r, 1; g |≥ 3) ≤ N f>2(r, 1; g). Thus from above we obtain

N(r, 1; f) +N(r, 1; g) ≤ N∗(r, 0; f, g) +N∗(r,∞; f, g)−NL(r, 1; g) + T (r, g)

−m(r, 1; g) +N0(r, 0; g′) +N0(r, 0; f ′)−N (3

E (r, 1; f)

+N g>2(r, 1; f) +N f>2(r, 1; g) + S(r).

This completes the proof. �

Lemma 2.6. If f and g share (0, 1), (1, 1), (∞, k) and H 6≡ 0, then

(i) N∗(r, 0; f, g) ≤ N(r, 0; f |≥ 2) ≤ N∗(r, 1; f, g) +N(r,∞; f |≥ k + 1),
(ii) N∗(r, 1; f, g) ≤ N(r, 0; f |≥ 2) +N(r,∞; f |≥ k + 1).

Proof. Let φ1 = f ′

f−1 −
g′

g−1 ,φ2 = f ′

f
− g′

g
. Since H 6≡ 0, we have f 6≡ g and hence it

follows that φi 6≡ 0 for i = 1, 2. Now

N∗(r, 0; f, g) ≤ N(r, 0; f |≥ 2) ≤ N(r, 0;φ1) ≤ T (r, f) +O(1) = N(r,∞;φ1) + S(r)

≤ N∗(r, 1; f, g) +N(r,∞; f |≥ k + 1) + S(r)

which is (i). Again

N∗(r, 1; f, g) ≤ N(r, 0;φ2) ≤ T (r, φ2) + S(r) = N(r,∞;φ2) + S(r)

≤ N(r, 0; f |≥ 2) +N(r,∞; f |≥ k + 1) + S(r),

which is (ii). �

Lemma 2.7. [21] If f and g share (0, 0), (1, 0), (∞, 0) and H ≡ 0, then f and g share
(0,∞), (1,∞), (∞,∞).

Lemma 2.8. [23] If f and g share (0, k1),(1, k2) and (∞, k3), where k1, k2, k3 are
three positive integers satisfying k1k2k3 > k1 +k2 +k3 + 2 and f 6≡ g then N(r, a; f |≥
2) +N(r, a; g |≥ 2) = S(r) for a ∈ {0, 1,∞}.
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Lemma 2.9. Suppose that f and g are two distinct nonconstant meromorphic func-
tions that share 0, 1, ∞ CM. Then N(r, 0; f |≥ 2) + N(r, 1; f |≥ 2) + N(r,∞; f |≥
2) = S(r, f), which is Lemma 4 in [20].

Lemma 2.10. [23] If f and g share (0, k1),(1, k2) and (∞, k3) where k1, k2, k3 are
three positive integers satisfying k1k2k3 > k1 + k2 + k3 + 2 and f 6≡ g then for any
a(6= 0, 1,∞), N(r, a; f |≥ 3) +N(r, a; g |≥ 3) = S(r).

Lemma 2.11. [13] If f and g share (0, k1),(1, k2) and (∞, k3) where k1, k2, k3 are
three positive integers satisfying k1k2k3 > k1 + k2 + k3 + 2 and f 6≡ g. Let α = f−1

g−1
and h = g

h
, then N(r, 0;α) +N(r,∞;α) +N(r, 0;h) +N(r,∞;h) = S(r).

Lemma 2.12. [12] Let f and g be two distinct nonconstant meromorphic functions
sharing (0, 0), (1, 0), (∞, 0). If f is a bilinear transformation of g then any one of
the following holds:

(i) fg ≡ 1;
(ii) (f − 1)(g − 1) ≡ 1;

(iii) f + g ≡ 1;
(iv) f ≡ cg,(v) f − 1 ≡ c(g − 1);
(vi) [(c− 1)f + 1][(c− 1)g − c] + c ≡ 1;

where c(6= 0, 1,∞) is a constant.

Lemma 2.13. [13] Let f and g be two nonconstant meromorphic functions shar-
ing (0, k1), (1, k2) and (∞, k3) where k1, k2, k3 are three positive integers satisfying

k1k2k3 > k1 +k2 +k3 +2. If lim supr→∞
N0(r)
T (r,f)

> 1
2
, then f is a bilinear transformation

of g, where N0(r) is the counting function of the zeros of f − g not containing the
zeros of f, f − 1 and 1

f
.

Lemma 2.14. If f and g share (0, k1), (1, k2) and (∞, k3)where k1, k2, k3 are three
positive integers satisfying k1k2k3 > k1 + k2 + k3 + 2 and f is not a bilinear transfor-
mation of g, then for any a(6= 0, 1,∞) each of the following holds:

(i) T (r, f) + T (r, g) =
∑

i=0,1,∞N(r, i; f |= 1) +N1
0 (r) + S(r);

(ii) N(r, a; f |≥ 3) = S(r, f), N(r, a; g |≥ 3) = S(r, g);
(iii) T (r, f) = N(r, a; f |≤ 2) + S(r, f), T (r, g) = N(r, a; g |≤ 2) + S(r, g);
(iv) N(r, 0; f − g | g =∞) +N(r, 0; f − g | f =∞) = S(r);
(v) N(r, 0; f − g |≥ 2) = S(r);

where N1
0 (r) denotes the counting function of those simple zeros of f − g which are

not the zeros of f(f − 1) and 1
f

and N(r, 0; f − g | g = ∞) denotes the counting

function of those zeros of f − g which are poles of g.

Proof. Using Lemmas 2.8 and 2.9 the above Lemma can be proved in the line of the
proof of Lemma 2.5 [11]. �
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Lemma 2.15. [16] Let f be a nonconstant meromorphic function and R(f) =
∑m
i=0 aif

i∑n
j=0 bjf

j

be a nonconstant irreducible rational in f with constant coefficients ai and bj satisfying
am 6= 0 and bn 6= 0. Then T (r, R(f)) = max{m,n}T (r, f) +O(1).

Lemma 2.16. [24] Let f1 and f2 be two nonconstant meromorphic functions satisfying
N(r, fj) + N(r, 1

fj
) = S(r)(j = 1, 2). Then either N0(r, 1; f1, f2) = S(r) or there

exist two integers s, t(| s | + | t |> 0) such that f s1f
t
2 ≡ 1, where N0(r, 1; f1, f2)

denotes the reduced counting function related to 1-points of f1 and f2 and T (r) =
T (r, f1) + T (r, f2), S(r) = o{T (r)}(r →∞, r 6∈ E) depending only on f1 and f2.

Lemma 2.17. [24] Let s and t be relatively prime integers with s > 0. Then xs − 1
and xt − c have one and only one common factor, where c is a constant satisfying
cs = 1.

Lemma 2.18. [13]Let f and g be two distinct nonconstant meromorphic functions
sharing (0, k1), (1, k2) and (∞, k3) where k1, k2, k3 are three positive integers satisfying
k1k2k3 > k1+k2+k3+2 and N0(r) 6= S(r, f). If f is a fractional linear transformation
of g, then N0(r) = T (r, f) + S(r, f). If f is not a fractional linear transformation
of g, then N0(r) ≤ 1

2
T (r, f) + S(r, f) and f and g assume one of the following three

relations:

(i) f ≡ e(k+1)γ−1
e(k+1−s)γ−1 ,g ≡ e−(k+1)γ−1

e−(k+1−s)γ−1 ;

(ii) f ≡ esγ−1
e(k+1)γ−1 , g ≡ e−sγ−1

e−(k+1)γ−1 ;

(iii) f ≡ esγ−1
e−(k+1−s)γ−1 , g ≡ e−sγ−1

e(k+1−s)γ−1 ;

where γ is a nonconstant entire function, s and k(≥ 2) are positive integers such that
s and k + 1 are relatively prime and 1 ≤ s ≤ k.

3. Proofs of the theorems

Proof of Theorem 1.14. We first suppose that H 6≡ 0. Let N∗(r, 0; f ′) denote the
counting function of those zeros of f which are not the zeros of f(f − 1)

∏n
i=1(f − ai)

where ai(6= 0, 1,∞), i = 1, 2, 3, ..n, are distinct complex numbers. Also we define
N0(r, 0; g′) as the counting function those zeros of g′ which are not the zeros of g(g−1).
Then from the second fundamental theorem we obtain using Lemma 2.5 and Lemma
2.6 with k = 1, for any n distinct complex numbers a1, a2, a3, .., an, different from
0, 1,∞,

(n+ 1)T (r, f) + T (r, g) ≤ N(r, 0; f) +N(r, 1; f) +N(r,∞; f) +N(r, 0; g) +N(r, 1; g)

+N(r,∞; g) +
n∑
i=1

N(r, ai; f)−N∗(r, 0; f ′)−N0(r, 0; g′) + S(r, f) + S(r, g)
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≤ 2N(r, 0; f) + 2N(r,∞; f) +N∗(r, 0; f, g) +N∗(r,∞; f, g) +N g>2(r, 1; f)

+N f>2(r, 1; g) +
n∑
i=1

N(r, ai; f)−N∗(r, 0; f ′)−N0(r, 0; g′) + T (r, g)−m(r, 1; g)

+N0(r, 0; f ′) +N0(r, 0; g′) + S(r, f) + S(r, g)

≤ 2N(r, 0; f) + 2N(r,∞; f) +N(r, 0; f |≥ 2) +N(r,∞; f |≥ 2) +
n∑
i=1

N(r, ai; f)

+
n∑
i=1

N(r, ai; f |≥ 2) +N∗(r, 1; f, g) + T (r, g)−m(r, 1; g) + S(r, f) + S(r, g)

≤ 2N(r, 0; f) + 2N(r,∞; f) + 2N(r, 0; f |≥ 2) + 2N(r,∞; f |≥ 2) +
n∑
i=1

N2(r, ai; f)

+ T (r, g)−m(r, 1; g) + S(r, f) + S(r, g).

Thus since by Lemma 2.1, S(r, f) = S(r, g) = S(r), we obtain from above

(n+ 1)T (r, f) ≤ 2N2(r, 0; f) + 2N2(r,∞; f) +
n∑
i=1

N2(r, ai; f)−m(r, 1; g) + S(r),

from which we see that for arbitrary ε > 0 it holds

3 ≥ 2δ2(0; f) + 2δ2(∞; f) +
n∑
i=1

δ2(ai, f) + lim inf
r→∞

m(r, 1; g)

T (r, f)
− ε.

This being true for any distinct complex numbers ai( 6= 0, 1,∞), i = 1, 2, 3, ...n, we
have

3 ≥ 2δ2(0; f) + 2δ2(∞; f) +
∑

a6=0,∞,1

δ2(a, f) + lim inf
r→∞

m(r, 1; g)

T (r, f)
− ε.

Since ε > 0 is arbitrary above leads to a contradiction to (1.6). Hence H ≡ 0.
Therefore by Lemma 2.7 we see that f ,g share (0,∞), (1,∞), (∞,∞). Thus Lemma
2.8 and Lemma 2.9 reduce the inequality 1.6 in the following:

2δ1)(0; f) + 2δ1)(∞; f) +
∑

a6=0,1,∞

δ2)(a; f) + lim inf
r→∞

m(r, 1; g)

T (r, f)
> 3.(3.1)

Now suppose that f is not a bilinear transformation of g. Then since f , g share
(0,∞), (1,∞) and (∞,∞) we have from (iii) of Lemma 2.13, δ(a; f) = δ2)(a; f) = 0
for all a 6= 0, 1,∞. Therefore, from (3.1) we have

N(r, 0; f |= 1) +N(r,∞; f |= 1) < (
1

2
− ε0)T (r, f) +

1

2
m(r, 1; g).(3.2)

Now using (i) of Lemma 2.13, from (3.2) we get

T (r, f) + T (r, g) < (
1

2
− ε0)T (r, f) +

1

2
m(r, 1; g) +N(r, 1; g |= 1) +N0(r).
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That is,

T (r, f) +N(r, 1; g) +m(r, 1; g) < (
1

2
− ε0)T (r, f) +

1

2
m(r, 1; g) +N(r, 1; g |= 1)

+N0(r),

where ε0 is sufficiently small positive number and hence lim supr→∞
N0(r)
T (r,f)

> 1
2
. This,

by Lemma 2.12 leads our assumption that f is not a bilinear transformation of g to
a contradiction. Therefore f must be a bilinear transformation of g and one of the
relations of Lemma 2.11 must be satisfied by f and g. Suppose f 6≡ g.We show that
fg ≡ 1.

If (f − 1)(g − 1) ≡ 1 then 1, ∞ are the evPs (exceptional values of Picard) of f .
Therefore 1 = δ1)(∞, f) = δ(1, f) and hence 0 = δ1)(0, f) = δ2)(a, f) for a 6= 0, 1,∞.
Since 1 is an evP of f , N(r, 1; g) = S(r) and f being a bilinear transformation of g,
T (r, f) ∼ T (r, g) = m(r, 1; g)+S(r). Thus 2δ1)(0; f)+2δ1)(∞; f)+

∑
a6=0,1,∞ δ2)(a; f)+

lim infr→∞
m(r,1;g)
T (r,f)

= 3, contradicting (3.1). If f+g ≡ 1 then 0, 1 are the evPs of f giv-

ing δ1)(0, f) = δ1)(1, f) = 1. Therefore, 2δ1)(0; f) + 2δ1)(∞; f) +
∑

a6=0,1,∞ δ2)(a; f) +

lim infr→∞
m(r,1;g)
T (r,f)

= 3, as before contradicting (3.1). If f ≡ cg then 1 and c are

evPs and 2δ1)(0; f) + 2δ1)(∞; f) +
∑

a6=0,1,∞ δ2)(a; f) + lim infr→∞
m(r,1;g)
T (r,f)

= 2 con-

tradicting (3.1). If f − 1 ≡ c(g − 1), then 0 and 1 − c are the evPs of f which

give 2δ1)(0; f) + 2δ1)(∞; f) +
∑

a6=0,1,∞ δ2)(a; f) + lim infr→∞
m(r,1;g)
T (r,f)

= 3 contradict-

ing (3.1). If [(c − 1)f + 1][(c − 1)g − c] + c ≡ 0, then ∞, 1
1−c are evPs of f . Thus

as before 2δ1)(0; f) + 2δ1)(∞; f) +
∑

a6=0,1,∞ δ2)(a; f) + lim infr→∞
m(r,1;g)
T (r,f)

= 3 con-

tradicting (3.1). However, if fg ≡ 1,0 and ∞ are the evPs of f and we obtain

2δ1)(0; f) + 2δ1)(∞; f) +
∑

a6=0,1,∞ δ2)(a; f) + lim infr→∞
m(r,1;g)
T (r,f)

= 4 which supports

(3.1) and therefore fg ≡ 1. This completes the proof. �

Proof of Theorem 1.15. Let f be not a bilinear transformation of g. Therefore by (iii)
of Lemma 2.13 we have δ2)(a, f) = δ2)(a, g) = 0 for a 6= 0, 1,∞. Thus (1.7) reduces
to

2δ1)(0; f) + 2δ1)(∞; f) + max{δ1)(1; f), δ1)(1; g)} > 3.

Let N∗0 (r) denote the counting function of those zeros of f−g which are not the zeros
of g(g − 1).Then N∗0 (r) − N0(r)(N0(r) is defined in Lemma 2.12 ) is the counting
function of those zeros of f − g which are the poles of f . So by (v) of Lemma 2.13
we obtain

N∗0 (r)−N0(r) = S(r).(3.3)

We now prove that N0(r, 1;α, h) = N0(r)+S(r). To do this we consider the following
cases.
Case 1. Let z0be a common simple zero of f and g such that α(z0) = h(z0) = 1.
Since h− 1 = g−f

f
, it follows thatz0 is a multiple zero of f − g. Hence by Lemma 2.9



SOME UNIQUENESS OF MEROMORPHIC FUNCTIONS 119

and (v) of Lemma 2.13, we see that the reduced counting function of the zeros of f
and g for which α(z) = h(z) = 1 is S(r).
Case 2. Let z1be a common simple 1-point of f and g such that α(z1) = h(z1) = 1.
Since α− 1 = f−g

g−1 , it follows thatz1 is a multiple zero of f − g. Hence by Lemma 2.9

and (v) of Lemma 2.13 we see that the reduced counting function of those 1-points
of f and g for which α(z) = h(z) = 1 is S(r).
Case 3. Let z2 be a common simple pole of f and g such that α(z2) = h(z2) = 1.
Since α− 1 = f−g

g−1 and h− 1 = g−f
f

, it follows that z2 is not a pole of f − g. Hence z2

is a zero of α+h− 2 = (f−g)(f−g+1)
f(g−1) with multiplicity ≥ 2 and so z2is a zero of α′+h′.

Also α′

α
+ h′

h
= (α′+h′)α+h−1

αh
− (α−1)α′+(h−1)h′

αh
. Since f is not a bilinear transformation

of g, α′

α
+ h′

h
6≡ 0. From the preceding identity, we see that z2 is a zero of α′

α
+ h′

h
. Now

by Lemma 2.10, we get

N(r, 0;
α′

α
+
h′

h
) ≤ T (r,

α′

α
+
h′

h
)

= N(r,
α′

α
) +N(r,

h′

h
) + S(r)

= N(r, 0;α) +N(r,∞;α) +N(r, 0;h) +N(r,∞;h) + S(r)

= S(r).

Therefore by Lemma 2.8 we see that the reduced counting function of the poles of
f and g for which α(z) = h(z) = 1 is S(r). Also by (v) of Lemma 2.13 we obtain

N∗0 (r) = N
∗
0(r) + S(r) and N0(r) = N0(r) + S(r).

Hence from above, by (3.3), we get

N0(r, 1;α, h) = N∗0 (r) + S(r) = N0(r) + S(r).(3.4)

Suppose that N0(r) 6= S(r). Then, N0(r, 1;α, h) 6= S(r). Then there exist integers
s, t such that | s | + | t |> 0 and αsht ≡ 1 from which we obtain (f − 1)sgt ≡
f t(g − 1)s. Since f is not a bilinear transformation of g, s 6= 0 and t 6= 0 and
| s |6=| t | and so f , g share 0, 1,∞ CM. Then f and g assumes one of the relations
(i), (ii), (iii) of Lemma 2.17. If (i) holds then since s, k + 1 are relatively prime
k + 1, k + 1 − s are also relatively prime. Thus by Lemmas 2.14 and 2.16 we have
T (r, f) ∼ max{k + 1 − 1, k + 1 − s − 1}T (r, eγ) = kT (r, eγ). Also in this case

g = 1−e(k+1)γ

{1−e(k+1−s)γ}esγ and hence by Lemmas 2.14 and 2.16 we get T (r, g) ∼ max{k +

1 − 1, k + 1 − 1 − s + s}T (r, eγ) = kT (r, eγ). Arguing in same manner we can show
that T (r, f) ∼ kT (r, eγ) and T (r, g) ∼ kT (r, eγ) if either (ii) or (iii) holds. Thus
T (r, f) = T (r, g) + O(1) and this gives δ1)(1, f) = δ1)(1, g). Hence from (1.2) we
obtain (2− ε0)T (r, f) > 2N(r, 0; f |= 1) + 2N(r,∞; f |= 1) + N(r, 1; f |= 1), where
ε0 is a sufficiently small positive number. Combining above with (i) of Lemma 2.13
we have N(r, 0; f |= 1) + N(r,∞; f |= 1) + N(r, 1; f |= 1) + N0(r) − ε0T (r, f) >
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2N(r, 0; f |= 1) + 2N(r,∞; f |= 1) +N(r, 1; f |= 1), and therefore

N0(r) > N(r, 0; f |= 1) +N(r,∞; f |= 1) + ε0T (r, f).(3.5)

Hence again from (i) of Lemma 2.13 and (3.5) we have 2T (r, f) < 2N0(r)+N(r, 1; f |=
1) + ε0T (r, f), that is (1 − ε0)T (r, f) < 2N0(r) which implies by Lemma 2.12 that
f is a bilinear transformation of g. This contradicts our assumption. Next suppose
that N0(r) = S(r). Then (i) of Lemma 2.13 gives

T (r, f) + T (r, g) = N(r, 0; f |= 1) +N(r,∞; f |= 1) +N(r, 1; f |= 1) + S(r).(3.6)

Combining (3.5) and (3.6) we get

T (r, f) + T (r, g) <

[
1

2
+

1

2
max{δ1)(1; f), δ1)(1; g)}

]
T (r, f)

+N(r, 1; f |= 1) + S(r)

which implies T (r, g) < N(r, 1; f |= 1) + S(r) and therefore T (r, g) < N(r, 1; g |=
1) + S(r) which is a contradiction. Therefore f must be bilinear transformation of g.
For the rest of the part of the proof we proceed exactly as Theorem 1.14. �

Proof of Theorem 1.16. Since f, g share (∞, 0) and (0, 1) we have N∗(r,∞; f, g) =
N(r,∞; f) and N∗(r, 0; f, g) = N(r, 0; f |≥ 2). We first suppose that H 6≡ 0. Pro-
ceeding exactly as Theorem 1.14 we obtain using the second fundamental theorem
and Lemma 2.5 and (ii) of Lemma 2.6

(n+ 1)T (r, f) + T (r, g) ≤ N(r, 0; f) +N(r, 1; f) +N(r,∞; f) +N(r, 0; g) +N(r, 1; g)

+N(r,∞; g) +
n∑
i=1

N(r, ai; f)−N∗(r, 0; f ′)−N0(r, 0; g′) + S(r)

≤ 2N(r, 0; f) + 2N(r,∞; f) +
n∑
i=1

N(r, ai; f) +
n∑
i=1

N(r, ai; f |≥ 2) +N∗(r, 0; f, g)

+N∗(r,∞; f, g) + T (r, g)−m(r, 1; g)−NL(r, 1; g)−N (3

E (r, 1; f) +N g>2(r, 1; f)

+N f>2(r, 1; g) + S(r)

≤ 2N(r, 0; f) + 3N(r,∞; f) +N(r, 0; f |≥ 2) +
n∑
i=1

N2(r, ai; f) + T (r, g)−m(r, 1; g)

+N g>2(r, 1; f) +N f>2(r, 1; g) + S(r)

≤ 2N(r, 0; f) + 3N(r,∞; f) +N(r, 0; f |≥ 2) +
n∑
i=1

N2(r, ai; f) + T (r, g)−m(r, 1; g)

+N(r, 0; f |≥ 2) +N(r,∞; f) + S(r),
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from which we obtain,

(n+ 1)T (r, f) ≤ 2N2(r, 0; f) + 4N(r,∞; f) +
n∑
i=1

N2(r, ai; f)−m(r, 1; g) + S(r).

Therefore, arguing as in the proof of Theorem 1.14, for arbitrary ε > 0 we obtain

5 ≥ 2δ2(0; f)+4Θ(∞; f)+
∑

a6=0,1,∞ δ2(a; f)+lim infr→∞
m(r,1;g)
T (r,f)

−ε, which contradicts

(1.8). Thus H ≡ 0. The rest of the part of our proof can be carried out in the line of
proof of the Theorem 1.14. �

Proof of Theorem 1.17. First suppose that f is not a bilinear transformation of g.
Then by (iii) of Lemma 2.13, (1.9) and (1.10) reduce to

2δ1)(0; f) + 2δ1)(∞; f) + δ1)(1, f) + δ1)(1, g) > 3(3.7)

and

2δ1)(0; g) + 2δ1)(∞; g) + δ1)(1, f) + δ1)(1, g) > 3.(3.8)

Then proceeding exactly as in the proof of Theorem 1.15 we obtain N0(r, 1;α, h) =
N∗0 (r) + S(r) = N0(r) + S(r) {see (3.4)} and then for N0(r) 6= S(r) we obtain as
before T (r, f) ∼ T (r, g) and δ1)(1, f) = δ1)(1, g). Thus from (3.7) and (3.8) we have
δ1)(0; f)+δ1)(∞; f)+δ1)(1, f) > 3

2
, from which we obtain for sufficiently small ε0 > 0,

N(r, 0; f |= 1) +N(r,∞; f |= 1) +N(r, 1; f |= 1) < (
3

2
− ε0)T (r, f).(3.9)

Thus from (3.9) and (i) of Lemma 2.13 we see that (1
2

+ ε0)T (r, f) < N0(r) which
by Lemma 2.12 implies that f is a bilinear transformation of g, contradicting our
assumption. Next we suppose that N0(r) = S(r).Thus From (i) of Lemma 2.13 we
obtain

T (r, f) + T (r, g) = N(r, 0; f |= 1) +N(r,∞; f |= 1) +N(r, 1; f |= 1) + S(r)

= N(r, 0; g |= 1) +N(r,∞; g |= 1) +N(r, 1; g |= 1) + S(r)

≤ 3T (r, g) + S(r),

and hence T (r, f) ≤ 2T (r, g) + S(r). Thus again from (i) of Lemma 2.13 we obtain
3
2
T (r, f) ≤ N(r, 0; f |= 1) + N(r,∞; f |= 1) + N(r, 1; f |= 1) + S(r), from which we

obtain,

3 ≥ 2δ1)(0; f) + 2δ1)(∞; f) + 2δ1)(1, f).(3.10)

Similarly we get,

3 ≥ 2δ1)(0; g) + 2δ1)(∞; g) + 2δ1)(1, g).(3.11)

Then the sum of (3.10) and (3.11) contradicts the sum of (3.7) and (3.8).
Hence f must be a bilinear transformation of g. Then f, g satisfy any one of the

relations (i)–(vi) of Lemma 2.11. If f, g satisfy any one of the conditions (i)–(iii),
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then any two of the values 0, 1,∞ will be two exceptional values of Picard(evP) of f
and g and hence 0 =

∑
a6=0,1,∞ δ2)(a; f) =

∑
a6=0,1,∞ δ2)(a; g) and

2δ1)(0; f) + 2δ1)(∞; f) + δ1)(1, f) + δ1)(1, g) > 3,

2δ1)(0; g) + 2δ1)(∞; g) + δ1)(1, f) + δ1)(1, g) > 3,

which imply (1.9) and (1.10). Similarly if f, g satisfy any one of (iv)–(vi), then 1, c; 1, 1
c

or, 0, 1− c; 0, 1− 1
c

or ∞, 1
1−c ;∞,

c
c−1 are the respective evPs of f and g from which

we obtain (1.9) and (1.10) and therefore the conclusion of our Theorem is true. �
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