HESSIAN DETERMINANTS OF COMPOSITE FUNCTIONS WITH APPLICATIONS FOR PRODUCTION FUNCTIONS IN ECONOMICS

M. E. AYDIN¹ AND M. ERGUT²

ABSTRACT. B.-Y. Chen [7] derived an explicit formula for the Hessian determinants of composite functions defined by

\[f = F(h_1(x_1) + \cdots + h_n(x_n)) \]

In this paper, we introduce a new formula for the Hessian determinants of composite functions of the form

\[f = F(h_1(x_1) \times \cdots \times h_n(x_n)) \]

Several applications of the new formula to the well-known Cobb-Douglas production functions in economics are also given.

1. INTRODUCTION

Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}, \ f = f(x_1, \ldots, x_n) \), be a twice differentiable function. Then the Hessian matrix \(\mathcal{H}(f) \) is the square matrix \((f_{x_ix_j}) \) of second-order partial derivatives of the function \(f \). If the second-order partial derivatives of \(f \) are all continuous in a neighborhood \(D \), then the Hessian of \(f \) is a symmetric matrix throughout \(D \) (cf. [7]).

For applications of Hessian matrices to production models in economics, we refer the reader to B.-Y. Chen’s papers [7, 8]. In addition, the Hessian matrices have an important geometric interpretation as following.

Let \(f = f(x_1, \ldots, x_n) \) be a twice differentiable real valued function. Then the Hessian matrix \(\mathcal{H}(f) \) of \(f \) is singular if and only if the graph of \(f \) in \(\mathbb{R}^{n+1} \) has null Gauss-Kronecker curvature [7].

Key words and phrases. Hessian matrix, Hessian determinant, Production function, Generalized Cobb-Douglas production function, Composite function.

2010 Mathematics Subject Classification. Primary: 91B38. Secondary: 15A15.

Received: July 28, 2013
Accepted: September 28, 2014.

259
On the other hand, the bordered Hessian matrix of the function f is given by

$$
\mathcal{H}^B (f) = \begin{pmatrix}
0 & f_{x_1} & \cdots & f_{x_n} \\
f_{x_1} & f_{x_1x_1} & \cdots & f_{x_1x_n} \\
\vdots & \vdots & \ddots & \vdots \\
f_{x_n} & f_{x_nx_1} & \cdots & f_{x_nx_n}
\end{pmatrix},
$$

where $f_{x_i} = \frac{\partial f}{\partial x_i}$ and $f_{x_i x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$ for all $i, j \in \{1, \ldots, n\}$.

The bordered Hessian matrices of functions have important applications in many areas of mathematics. For instance, the bordered Hessian matrices are used to analyze quasi-convexity and quasi-concavity of the functions. If the signs of the bordered principal diagonal determinants of the bordered Hessian matrix of a function are alternate (resp. negative), then the function is quasi-concave (resp. quasi-convex). For more detailed properties see [4, 12, 13, 14].

Another example is the application of the bordered Hessian matrices to elasticity of substitutions of production functions in economics. Explicitly, let $f = f (x_1, \ldots, x_n)$ be a production function. Then the Allen’s elasticity of substitution of the i–th production variable with respect to the j–th production variable is defined by

$$
A_{ij} (x) = - \frac{(x_1 f_{x_1} + x_2 f_{x_2} + \cdots + x_n f_{x_n})}{x_i x_j} \frac{\mathcal{H}^B (f)_{ij}}{\det \mathcal{H}^B (f)}
$$

for $x = (x_1, \ldots, x_n) \in \mathbb{R}^n_+$, $i, j \in \{1, \ldots, n\}$, $i \neq j$, where $\mathcal{H}^B (f)_{ij}$ is the co-factor of the element $f_{x_i x_j}$ in the determinant of $\mathcal{H}^B (f)$ [15, 17]. The authors [2, 3] called the bordered Hessian matrix $\mathcal{H}^B (f)$ by Allen’s matrix and $\det \mathcal{H}^B (f)$ by Allen determinant.

Let f be a composite function of the form

$$
f (x) = F (h_1 (x_1) \times \cdots \times h_n (x_n)).
$$

In [3] for the composite functions of the form (1.1), an Allen Determinant Formula was obtained as follows

$$
\det (\mathcal{H}^B (f)) = -u^{n+1} \left(\tilde{F} \right)^{n+1} \sum_{j=1}^{n} \left(\frac{h_j'}{h_1} \right)^2 \left(\frac{h_{j-1}'}{h_j} \right)^2 \cdots \left(\frac{h_{j+1}'}{h_{j+1}} \right)^2 \left(\frac{h_{n+1}'}{h_n} \right)^2,
$$

where $h_j' = \frac{dh_j}{dx_j}$ and $\tilde{F} = \tilde{F} (u)$ for $u = h_1 (x_1) \times \cdots \times h_n (x_n)$.

In this paper, we obtain a new formula for Hessian determinants $\mathcal{H} (f)$ of composite functions of the form (1.1). Several applications of the new formula to production functions in economics are also given.

2. Production models in economics

In economics, a production function is a mathematical expression which denotes the physical relations between the output generated of a firm, an industry or an economy...
and inputs that have been used. Explicitly, a production function is a map which has non-vanishing first derivatives defined by

$$ f : \mathbb{R}_+^n \rightarrow \mathbb{R}_+, \ f = f(x_1, \ldots, x_n), $$

where f is the quantity of output, n are the number of inputs and x_1, \ldots, x_n are the inputs.

A production function $f(x_1, \ldots, x_n)$ is said to be homogeneous of degree p or p-homogeneous if

$$ f(tx_1, \ldots, tx_n) = t^p f(x_1, \ldots, x_n) $$

holds for each $t \in \mathbb{R}_+$ for which (2.1) is defined. A homogeneous function of degree one is called linearly homogeneous. If $p > 1$, the function exhibits increasing return to scale, and it exhibits decreasing return to scale if $p < 1$. If it is homogeneous of degree 1, it exhibits constant return to scale [5].

Many important properties of homogeneous production functions in economics were interpreted in terms of the geometry of their graphs by [5, 9, 10, 18, 19].

$$ Y = bL^kC^{1-k}, $$

where b presents the total factor productivity, Y the total production, L the labor input and C the capital input. This function is nowadays called Cobb-Douglas production function.

The Cobb–Douglas production function with n–factor, also called generalized Cobb–Douglas production function, is given by

$$ f(x) = \gamma x_1^{\alpha_1} \cdots x_n^{\alpha_n}, $$

where γ is a positive constant and $\alpha_1, \ldots, \alpha_n$ are nonzero constants [6].

3. HESSIAN DETERMINANT FORMULA

Let us denote the first derivative of $h_i(x_i)$ with respect to x_i by a prime ($'$) and that of $F(u)$ with respect to u by a dot (\cdot).

Throughout this article, we assume that $h_1, \ldots, h_n : \mathbb{R} \rightarrow \mathbb{R}$ are thrice differentiable functions with $h'_i(x_i) \neq 0$ and $F : I \subset \mathbb{R} \rightarrow \mathbb{R}$ a twice differentiable function with $F(u) \neq 0$ such that $I \subset \mathbb{R}$ is an interval of positive length.

The following provides an explicit formula for the Hessian determinant of the composite function given by (1.1).
The determinant of the Hessian matrix $\mathcal{H}(f)$ of the composite function $f = F(h_1(x_1) \times \cdots \times h_n(x_n))$ is given by

$$\det(\mathcal{H}(f)) = (uF)^n \left\{ \left(\frac{h'_1}{h_1} \right)' \cdots \left(\frac{h'_n}{h_n} \right)' \right\} \left(1 + u\frac{\ddot{F}}{F} \right) \sum_{j=1}^{n} \left(\frac{h'_{j-1}}{h_{j-1}} \right)' \left(\frac{h'_{j}}{h_{j}} \right) \left(\frac{h'_{j+1}}{h_{j+1}} \right)' \cdots \left(\frac{h'_{n}}{h_{n}} \right)' \right\},$$

(3.1)

where $h'_j = \frac{dh_j}{dx_j}$, $h''_j = \frac{d^2h_j}{dx_j^2}$, $\dot{F} = \frac{dF}{du}$, and $\ddot{F} = \frac{d^2F}{du^2}$ for $u = h_1(x_1) \times \cdots \times h_n(x_n)$.

Proof. Let f be a twice differentiable composite function given by

$$f(x) = F(h_1(x_1) \times \cdots \times h_n(x_n))$$

(3.2)

for $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. It follows from (3.2) that

$$f_{x_i} = \frac{\partial f}{\partial x_i} = \frac{h'_i}{h_i} uF,$$

$$f_{x_ix_j} = \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{h'_ih'_j}{h_ih_j} u \left[\dot{F} + u\ddot{F} \right], \quad 1 \leq i \neq j \leq n,$$

and

$$f_{x_i x_i} = \frac{\partial^2 f}{\partial x_i^2} = \frac{h''_i}{h_i} uF + \left(\frac{h'_i}{h_i} \right)^2 u^2 \ddot{F}.$$

(3.4)

By using (3.3) and (3.4) the determinant of Hessian matrix $\mathcal{H}(f)$ of the composite function given by (3.2) is

$$\det(\mathcal{H}(f)) =$$

$$\begin{vmatrix}
\frac{h''_1}{h_1} uF + \left(\frac{h'_1}{h_1} \right)^2 u^2 \ddot{F} & \frac{h'_1 h'_2}{h'_1 h_2} \frac{h''_1}{h_1} u \left[\dot{F} + u\ddot{F} \right] & \frac{h'_1 h'_3}{h'_1 h_3} \frac{h''_1}{h_1} u \left[\dot{F} + u\ddot{F} \right] & \cdots & \frac{h'_1 h'_{n}}{h'_1 h_n} \frac{h''_1}{h_1} u \left[\dot{F} + u\ddot{F} \right] \\
\frac{h'_1 h'_2}{h'_1 h_2} \frac{h''_2}{h_2} u \left[\dot{F} + u\ddot{F} \right] & \frac{h''_2}{h_2} u \left[\dot{F} + u\ddot{F} \right] + \left(\frac{h'_2}{h_2} \right)^2 u^2 \ddot{F} & \frac{h'_2 h'_3}{h'_2 h_3} \frac{h''_2}{h_2} u \left[\dot{F} + u\ddot{F} \right] & \cdots & \frac{h'_2 h'_{n}}{h'_2 h_n} \frac{h''_2}{h_2} u \left[\dot{F} + u\ddot{F} \right] \\
\frac{h'_1 h'_3}{h'_1 h_3} \frac{h''_3}{h_3} u \left[\dot{F} + u\ddot{F} \right] & \frac{h'_2 h'_3}{h'_2 h_3} \frac{h''_3}{h_3} u \left[\dot{F} + u\ddot{F} \right] & \frac{h''_3}{h_3} u \left[\dot{F} + u\ddot{F} \right] + \left(\frac{h'_3}{h_3} \right)^2 u^2 \ddot{F} & \cdots & \frac{h'_3 h'_{n}}{h'_3 h_n} \frac{h''_3}{h_3} u \left[\dot{F} + u\ddot{F} \right] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{h'_1 h'_{n}}{h'_1 h_n} u \left[\dot{F} + u\ddot{F} \right] & \frac{h'_2 h'_{n}}{h'_2 h_n} u \left[\dot{F} + u\ddot{F} \right] & \frac{h'_3 h'_{n}}{h'_3 h_n} u \left[\dot{F} + u\ddot{F} \right] & \cdots & \frac{h''_{n}}{h_n} u \left[\dot{F} + u\ddot{F} \right] + \left(\frac{h'_n}{h_n} \right)^2 u^2 \ddot{F}
\end{vmatrix}.$$
After calculating the determinant in the previous formula, we obtain
\[
\operatorname{det}(\mathcal{H}(f)) = \left| \begin{array}{cccccc}
\frac{h_1''}{h_1} u \dot{F} + \left(\frac{h_1'}{h_1} \right)^2 u^2 \ddot{F} - \frac{h_1' h_2'}{h_1 h_2} \left(\frac{h_1'}{h_1} \right)' u \ddot{F} & \cdots & \frac{h_1' h_{n-1}'}{h_1 h_{n-1}} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_1' h_n'}{h_1 h_n} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_1' h_n'}{h_1 h_n} u \left[\dddot{F} + u \dddot{F} \right] \\
\frac{h_1' h_2'}{h_1 h_2} u \left[\dddot{F} + u \dddot{F} \right] & \left(\frac{h_2'}{h_2} \right)' u \ddot{F} & \cdots & \frac{h_2' h_{n-1}'}{h_2 h_{n-1}} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_2' h_n'}{h_2 h_n} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_2' h_n'}{h_2 h_n} u \left[\dddot{F} + u \dddot{F} \right] \\
\frac{h_1' h_3'}{h_1 h_3} u \left[\dddot{F} + u \dddot{F} \right] & 0 & \cdots & \frac{h_3' h_{n-1}'}{h_3 h_{n-1}} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_3' h_n'}{h_3 h_n} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_3' h_n'}{h_3 h_n} u \left[\dddot{F} + u \dddot{F} \right] \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\frac{h_1' h_n'}{h_1 h_n} u \left[\dddot{F} + u \dddot{F} \right] & 0 & \cdots & \frac{h_n' h_{n-1}'}{h_n h_{n-1}} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_n' h_n'}{h_n h_n} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_n' h_n'}{h_n h_n} u \left[\dddot{F} + u \dddot{F} \right] \\
\end{array} \right|
\]

By similar elementary transformations, we get
\[
\operatorname{det}(\mathcal{H}(f)) = \left| \begin{array}{cccccc}
\frac{h_1''}{h_1} u \dot{F} + \left(\frac{h_1'}{h_1} \right)^2 u^2 \ddot{F} - \frac{h_1' h_2'}{h_1 h_2} \left(\frac{h_1'}{h_1} \right)' u \ddot{F} & \cdots & \frac{h_1' h_{n-1}'}{h_1 h_{n-1}} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_1' h_n'}{h_1 h_n} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_1' h_n'}{h_1 h_n} u \left[\dddot{F} + u \dddot{F} \right] \\
\frac{h_1' h_2'}{h_1 h_2} u \left[\dddot{F} + u \dddot{F} \right] & \left(\frac{h_2'}{h_2} \right)' u \ddot{F} & \cdots & \frac{h_2' h_{n-1}'}{h_2 h_{n-1}} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_2' h_n'}{h_2 h_n} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_2' h_n'}{h_2 h_n} u \left[\dddot{F} + u \dddot{F} \right] \\
\frac{h_1' h_3'}{h_1 h_3} u \left[\dddot{F} + u \dddot{F} \right] & 0 & \cdots & \frac{h_3' h_{n-1}'}{h_3 h_{n-1}} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_3' h_n'}{h_3 h_n} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_3' h_n'}{h_3 h_n} u \left[\dddot{F} + u \dddot{F} \right] \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\frac{h_1' h_n'}{h_1 h_n} u \left[\dddot{F} + u \dddot{F} \right] & 0 & \cdots & \frac{h_n' h_{n-1}'}{h_n h_{n-1}} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_n' h_n'}{h_n h_n} u \left[\dddot{F} + u \dddot{F} \right] & \cdots & \frac{h_n' h_n'}{h_n h_n} u \left[\dddot{F} + u \dddot{F} \right] \\
\end{array} \right|
\]

After calculating the determinant in the previous formula, we obtain
\[
\operatorname{det}(\mathcal{H}(f)) = (u \dot{F})^n \frac{h_1''}{h_1} \left(\frac{h_2'}{h_2} \right)' \left(\frac{h_3'}{h_3} \right)' \cdots \left(\frac{h_n'}{h_n} \right)' + (u \dot{F})^n \times
\]
\[
\times \left\{ \left(\frac{h_1'}{h_1} \right)' \left(\frac{h_2'}{h_2} \right)^2 \left(\frac{h_3'}{h_3} \right)' \cdots \left(\frac{h_n'}{h_n} \right)' + \left(\frac{h_1'}{h_1} \right)' \left(\frac{h_2'}{h_2} \right)' \left(\frac{h_3'}{h_3} \right)' \cdots \left(\frac{h_n'}{h_n} \right)' \cdots \right. \\
\left. \cdots + \left(\frac{h_1'}{h_1} \right)' \left(\frac{h_2'}{h_2} \right)' \left(\frac{h_3'}{h_3} \right)' \cdots \left(\frac{h_n'}{h_n} \right)^2 \right\}
\]
\[
+ (u)^{n+1} \left(\frac{h_1'}{h_1} \right)^{n-1} \left(\dddot{F} + u \dddot{F} \right) \left\{ \left(\frac{h_1'}{h_1} \right)^2 \left(\frac{h_2'}{h_2} \right)' \left(\frac{h_3'}{h_3} \right)' \cdots \left(\frac{h_n'}{h_n} \right)' + \left(\frac{h_1'}{h_1} \right)' \left(\frac{h_2'}{h_2} \right)^2 \left(\frac{h_3'}{h_3} \right)' \cdots \left(\frac{h_n'}{h_n} \right)' \right. \\
\left. \cdots + \left(\frac{h_1'}{h_1} \right)' \left(\frac{h_2'}{h_2} \right)' \left(\frac{h_3'}{h_3} \right)' \cdots \left(\frac{h_n'}{h_n} \right)^2 \right\}.
\]
After adding and substracting \((u \dot{F})^n \left(\frac{h'_1}{h_1} \right)^2 \left(\frac{h'_2}{h_2} \right) \cdots \left(\frac{h'_n}{h_n} \right) \) we deduce
\[
\det (\mathcal{H}(f)) = (u \dot{F})^n \left\{ \prod_{j=1}^n \left(\frac{h'_j}{h_j} \right) \right. + \left. \left(1 + \frac{\ddot{F}}{F} \right) \sum_{j=1}^n \left(\frac{h'_1}{h_1} \right) \cdots \left(\frac{h'_{j-1}}{h_{j-1}} \right) \left(\frac{h'_j}{h_j} \right)^2 \left(\frac{h'_{j+1}}{h_{j+1}} \right) \cdots \left(\frac{h'_n}{h_n} \right) \right\}.
\]
This completes the proof of the formula (3.1).

4. CHARACTERIZATIONS OF CD PRODUCTION FUNCTIONS

Next, we provide the following characterization of the generalized Cobb-Douglas production function with constant return to scale via the Theorem 3.1.

Theorem 4.1. Let \(F(u) \) be a twice differentiable function with \(\dot{F}(u) \neq 0 \) and let \(f \) be a composite function given by
\[
(4.1) \quad f = F\left((x_1 + \zeta_1)^{\alpha_1} \times \cdots \times (x_n + \zeta_n)^{\alpha_n}\right)
\]
for some constants \(\alpha, \zeta \). The Hessian matrix \(\mathcal{H}(f) \) of \(f \) is singular if and only if either

(i) at least one of the \(\alpha_1, \ldots, \alpha_n \) vanishes, or

(ii) up to suitable translations of \(x_1, \ldots, x_n \), \(f \) is a generalized Cobb-Douglas production function with constant return to scale.

Proof. Let us assume that the Hessian matrix of \(f \) is singular. By the hypothesis of the theorem, we have \(h_j(x_j) = (x_j + \zeta_j)^{\alpha_j} \). Thus we get
\[
h_j'(x_j) = \alpha_j (x_j + \zeta_j)^{\alpha_j-1}, \quad h_j''(x_j) = \alpha_j (\alpha_j - 1) (x_j + \zeta_j)^{\alpha_j-2}
\]
for all \(j \in \{1, \ldots, n\} \). After applying the formula (3.1), we write
\[
(4.2) \quad 0 = (-1)^{n-1} \left(u \tilde{F} \right)^n \prod_{j=1}^n \frac{\alpha_j}{(x_j + \zeta_j)^2} \left\{ -1 + \sum_{j=1}^n \alpha_j \right\} + u \tilde{F} \left(\sum_{j=1}^n \alpha_j \right),
\]
where \(u = (x_1 + \zeta_1)^{\alpha_1} \times \cdots \times (x_n + \zeta_n)^{\alpha_n} \). Since \(u \neq 0 \) and \(\ddot{F} \neq 0 \), the equation (4.2) reduces to
\[
(4.3) \quad 0 = \prod_{j=1}^n \frac{\alpha_j}{(x_j + \zeta_j)^2} \left[-1 + \sum_{j=1}^n \alpha_j + u \frac{\tilde{F}}{F} \sum_{j=1}^n \alpha_j \right].
\]
From the equation (4.3), it is easily seen that either at least one of the \(\alpha_1, \ldots, \alpha_n \) vanishes or
\[
(4.4) \quad 1 - \sum_{j=1}^n \alpha_j = u \frac{\tilde{F}}{F} \sum_{j=1}^n \alpha_j.
\]
For (4.4), if F is a linear function, then $\sum_{j=1}^{n} \alpha_j = 1$, which implies that, up to suitable translations of x_1, \ldots, x_n, f is a generalized Cobb-Douglas production function with constant return to scale. If F is a non-linear function, then by (4.4) we derive
\[
\dot{F} \frac{1 - \sum_{j=1}^{n} \alpha_j}{\sum_{j=1}^{n} \alpha_j} \frac{1}{u} = 0,
\]
which implies that
\[
(4.5) \quad F = \frac{\delta}{\gamma + 1} (u)^{\gamma + 1} + \varepsilon,
\]
where γ, δ are nonzero constants and ε some constant such that
\[
(4.6) \quad \gamma = \frac{1 - \sum_{j=1}^{n} \alpha_j}{\sum_{j=1}^{n} \alpha_j}.
\]
Combining (4.1), (4.5) and (4.6) gives that, up to suitable translations of x_1, \ldots, x_n, f is a generalized Cobb-Douglas production function with constant return to scale.

Conversely, it is straightforward to verify that cases (i) and (ii) imply that f has vanishing Hessian determinant. □

Theorem 4.2. Let $F = u^r$ be a power function such that $r \neq 0, 1$ and let f be a composite function given by
\[
(4.7) \quad f = F (h_1 (x_1) \times \cdots \times h_n (x_n)).
\]
The Hessian matrix $\mathcal{H} (f)$ of f is singular if and only if either
(i) $f = F (\gamma e^{\alpha_1 x_1 + \alpha_2 x_2} x_3 (x_3) \times \cdots \times h_n (x_n))$ for nonzero constants $\gamma, \alpha_1, \alpha_2$, or
(ii) up to suitable translations of x_1, \ldots, x_n, f is a generalized Cobb-Douglas production function with constant return to scale.

Proof. Let us assume that the Hessian matrix of f is singular. Then we have $\det (\mathcal{H} (f)) = 0$. From the hypothesis of theorem, we get
\[
(4.8) \quad \dot{F} = ru^{r-1} \quad \text{and} \quad \ddot{F} = r(r-1)u^{r-2}.
\]
After substituting (4.8) into the formula (3.1), we derive
\[
(4.9) \quad 0 = \prod_{j=1}^{n} \left(\frac{h_j'}{h_j} \right) + r \sum_{j=1}^{n} \left(\frac{h_j'}{h_1} \right) \cdots \left(\frac{h_j'}{h_j-1} \right) \cdots \left(\frac{h_j'}{h_j+1} \right) \cdots \left(\frac{h_j'}{h_n} \right).
\]
For (4.9) we have two cases:
Case (a): At least one of \(\left(\frac{h'_1}{h_1} \right)' , \ldots , \left(\frac{h'_n}{h_n} \right)' \) vanishes. Without loss of generality, we may assume that

\[
\left(\frac{h'_1}{h_1} \right)' = 0.
\]

Then from (4.9), we find

\[
0 = \left(\frac{h'_1}{h_1} \right)^2 \left(\frac{h'_2}{h_2} \right)' \left(\frac{h'_3}{h_3} \right)' \cdots \left(\frac{h'_n}{h_n} \right)' .
\]

Without loss of generality, we may assume from (4.11) that

\[
\left(\frac{h'_2}{h_2} \right)' = 0.
\]

After solving (4.10) and (4.12), we obtain \(h_j(x_j) = \gamma_j e^{\alpha_j x_j}, \) \((j = 1, 2)\) for nonzero constants \(\gamma_j, \alpha_j. \) This gives the statement (i).

Case (b): \(\left(\frac{h'_1}{h_1} \right)' , \ldots , \left(\frac{h'_n}{h_n} \right)' \) are nonzero. Then from (4.9), by dividing with the product \(\left(\frac{h'_1}{h_1} \right)' \cdots \left(\frac{h'_n}{h_n} \right)' \), we write

\[
0 = 1 + r \left(\left(\frac{h'_1}{h_1} \right)^2 + \cdots + \left(\frac{h'_n}{h_n} \right)^2 \right).
\]

Taking partial derivative of (4.13) with respect to \(x_i \), we find

\[
2 \left(\frac{h'_i}{h_i} \right)^2 = \left(\frac{h'_i}{h_i} \right) \left(\frac{h'_i}{h_i} \right)'' .
\]

By solving (4.14), we get

\[
h_j(x_j) = \gamma_j (x_j + \zeta_j)^{\alpha_j},
\]

where \(\gamma_j, \alpha_j \) are nonzero constants with \(\sum_{j=1}^n \alpha_j = \frac{1}{r} \), and \(\zeta_j \) some constants. Combining (4.7) and (4.15) gives the statement (ii).

Converse is straightforward to verify that cases (i) and (ii) imply that \(f \) has vanishing Hessian determinant. \(\square \)

5. **Further applications**

We provide the following as further applications of Theorem 3.1.

Theorem 5.1. Let \(f \) be a twice differentiable composite function given by

\[
f = \ln (h_1(x_1) \times \cdots \times h_n(x_n)).
\]

The Hessian matrix \(\mathcal{H}(f) \) of \(f \) is singular if and only if at least one of the \(h_1(x_1) , \ldots , h_n(x_n) \) is of the form \(\gamma_j e^{\alpha_j x_j} \) for nonzero constants \(\gamma_j, \alpha_j. \)
Proof. Let assume that the Hessian matrix $H(f)$ of f is singular. Then under the hypothesis of the theorem, we get

$$F(u) = \ln u, \quad \dot{F}(u) = \frac{1}{u}, \quad \ddot{F} = -\frac{1}{u^2}. \tag{3.1}$$

After applying the formula (3.1), we derive $0 = \prod_{j=1}^{n} \left(\frac{h'_j}{h_j} \right)'$. Because of $h'_j (x_j) \neq 0$, at least one of $\left(\frac{h'_j}{h_j} \right)'$ vanishes which implies that at least one of h_j is of the form $\gamma_j e^{\alpha_j x_j}$ for nonzero constants γ_j, α_j.

Converse is easy to verify. \square

Corollary 5.1. Let $f = F(h_1(x_1) \times \cdots \times h_n(x_n))$ be a twice differentiable composite function. If at least two of $h_1(x_1), \ldots, h_n(x_n)$ is of the form $\gamma_j e^{\alpha_j x_j}$ for nonzero constants γ_j, α_j, then the Hessian matrix $H(f)$ of f is singular.

Proof. Let $f = F(h_1(x_1) \times \cdots \times h_n(x_n))$ be a twice differentiable composite function such that at least two of $h_1(x_1), \ldots, h_n(x_n)$ is of the form $\gamma_j e^{\alpha_j x_j}$ for nonzero constants γ_j, α_j. Without lose of generality, we may assume that $h_1 = \gamma_1 e^{\alpha_1 x_1}$ and $h_2 = \gamma_2 e^{\alpha_2 x_2}$.

Thus we get

$$\left(\frac{h'_1}{h_1} \right)' = 0 \quad \text{and} \quad \left(\frac{h'_2}{h_2} \right)' = 0. \tag{5.1}$$

Substituting (5.1) into (3.1) gives the proof. \square

References

1,2Department of Mathematics, Faculty of Science, Firat University, Elazig, 23119, Turkey
E-mail address: 1meaydin@firat.edu.tr
E-mail address: 2mergut@firat.edu.tr