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NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS SHARING
A HOLOMORPHIC FUNCTION

CHENG-XIONG SUN

Abstract. Let k be a positive integer, and m be an even number. Suppose that
a(z)(6≡ 0) is a holomorphic function with zeros of multiplicity m in a domain D.
Let F be a family of meromorphic functions in a domain D such that each f ∈ F

have zeros of multiplicity at least k+ 1 +m and poles of multiplicity at least m+ 1.
It is mainly proved that for each pair (f, g) ∈ F, if ff (k) and gg(k) share a(z) IM,
then F is normal in D. This result improves Hu and Meng’s results published in
Journal of Mathematical Analysis and Applications (2009, 2011), and also Jiang
and Gao’s result in Acta Matematica Scientia (2012).

1. Introduction and main results

Let D be a domain in C, and F be a family of meromorphic functions defined in the
domain D. F is said to be normal in D, in the sense of Montel, if for every sequence
{fn} ⊂ F there exists a subsequence {fnj

} converges spherically locally uniformly to
a meromorphic function or ∞.

Let f and g be two meromorphic functions in D, and let φ(z) be a function. If the
two equations f(z) = φ(z) and g(z) = φ(z) have the same solutions in D(ignoring
multiplicity), then we say that f and g share a function φ(z) IM.

Now, we introduce a normality criterion related to a Hayman normal conjecture.

Theorem 1.1. [1] Let F be a family of meromorphic function in D, and a( 6= 0) ∈ C.
If fnf ′ 6= a, for each function f ∈ F, then F is normal in D, where n is a positive
integer.

The result is due to L. Yang and G. Zhang [2] (for n ≥ 5), Y. X. Gu [3] (for
n = 4, 3), X. C. Pang [4] (for n ≥ 2) and Chen and Fang [5] (for n = 1).
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In 2009, Q. Lu and Y. X. Gu [6] considered the general order derivative in Theorem
1.1 for n = 1 and proved the following result.

Theorem 1.2. [6] Let F be a family of meromorphic function in D, and a( 6= 0) ∈ C.
If ff (k) 6= a, for each function f ∈ F, the zeros of f have multiplicities at least k+ 2,
then F is normal in D, where n is a positive integer.

In 2010, J. Xu and W. Cao [7] improved Theorem 1.2 by including meromorphic
functions having zeros with multiplicities at least k + 1.

In 2011 D. W. Meng and P. Ch. Hu proved the following normality criteria.

Theorem 1.3. [8] Take a ∈ C−{0} and take a positive integer k. Let F be a family
of mreomorphic functions in the plane domain D such that each f ∈ F has only zeros
of multiplicity at least k + 1. For each pair (f, g) ∈ F, if ff (k) and gg(k) share a IM,
then F is normal in D.

In 2009 D. W. Meng and P. Ch. Hu proved the following normality criteria.

Theorem 1.4. [9] Take a ∈ C−{0} and take positive integers n and k with n, k ≥ 2.
Let F be a family of mreomorphic functions in the plane domain D such that each
f ∈ F has only zeros of multiplicity at least k. For each pair (f, g) ∈ F, if f(f (k))n

and g(g(k))n share a IM, then F is normal in D.

Recently, Jiang and Gao improved Theorem 1.4 in the following manner.

Theorem 1.5. [10] Let n, k ≥ 2,m ≥ 0 be three positive integers, and m be divisible
by n+ 1. Suppose that a(z)(6≡ 0) is a holomorphic function with zeros of multiplicity
m in a domain D. Let F be a family of meromorphic functions in a domain D such
that each f ∈ F have zeros of multiplicity at least max{k+m, 2m+ 2}. For each pair
(f, g) ∈ F, if f(f (k))n and g(g(k))n share a(z) IM, then F is normal in D.

Here, we want to generalize Theorem 1.3 by replacing the constant a by a function.
In this direction we prove the following result.

Theorem 1.6. Let k be a positive integer, and m be an even number. Suppose that
a(z)(6≡ 0) is a holomorphic function with zeros of multiplicity m in a domain D. Let
F be a family of meromorphic functions in a domain D such that each f ∈ F have
zeros of multiplicity at least k + 1 + m and poles of multiplicity at least m + 1. For
each pair (f, g) ∈ F, if ff (k) and gg(k) share a(z) IM, then F is normal in D.

Example 1.1. Let D = {z : |z| < 1}. Let F = {fn(z)} where fn(z) = enz, z ∈ D,

n = 1, 2, . . .. Then for distinct positive integers n, l, fnf
(k)
n and flf

(k)
l share 0 IM, but

F fails to be normal at z = 0.

Example 1.2. Let D = {z : |z| < 1}. Let F = {fn(z)} where fn(z) = z4

4(z2− 1
n
)2

,

z ∈ D, n = 1, 2, . . .. Then fnf
′
n(z) = − z7

4n(z2− 1
n
)5

. Thus for distinct positive integers

n, l, fnf
′
n and flf

′
l share 0 IM, but F fails to be normal at z = 0, since fn(0) = 0 and

fn( 1√
n
) =∞.
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Remark 1.1. Examples 1.1 and 1.2 show the condition that a(z)(6≡ 0) is necessary
and Example 1.2 shows that the even number m is sharp in Theorem 1.6.

Remark 1.2. It seems reasonable to conjecture that the conclusion of Theorem 1.6
still holds when m is odd number.

Let us set some notations. we use −→ to stand for convergence,
χ⇒ to stand for

spherical local uniform convergence in D ⊂ C.

2. Some lemmas

To prove Theorem 1.6, we require the following lemmas.

Lemma 2.1. [11] Let F be a family of functions meromorphic in the unit disc ∆ , all
of whose zeros have multiplicity at least k; Suppose that there exists A > 1 such that∣∣f (k)(z)

∣∣ 6 A whenever f(z) = 0. Then if F is not normal at z0 ∈ D, there exist, for
each 0 6 α 6 k,

(i) points zn, zn → z0, z0 ∈ ∆,
(ii) functions fn ∈ F, and

(iii) positive numbers ρn → 0+

such that ρ−αn fn(zn+ρnξ) = gn(ξ)→ g(ξ) locally uniformly with respect to the spheri-
cal metric, where g(ξ) is a nonconstant meromorphic function on C, all of whose zeros
of g(ξ) are of multiplicity at least k, such that g#(ξ) ≤ g#(0) = kA + 1.Moreover, g
has order at most 2.

Lemma 2.2. Let function f(z) be meromorphic and transcendental in the plane, all
of whose zeros have multiplicity k + 1 at least, and a(z)(6≡ 0) be a polynomial. Then
the differential monomial f(z)f (k)(z)−a(z) has infinitely zeros, where k is an integer
number.

Proof. Set

(2.1) F := F (z) = f(z)f (k)(z)− a(z)

and

(2.2) F1 :=
F

a
=
f(z)f (k)(z)

a(z)
− 1.

By differentiating the equation (2.2), we get fβ =
F ′
1

F1
where

(2.3) β =
F ′1
F1

f (k)

a
− (

1

a
)′f (k) − 1

a

f ′

f
f (k) − 1

a
f (k+1).

Noting a(z)(6≡ 0) is a polynomial and the zeros of f are of multiplicity at least k+ 1,
then N(r, 1

a
) = O(logr) and Nk)(r,

1
f
) = S(r, f). As the preceding of proof of Lemma

2.2 from [12], we can get the conclusion of Lemma 2.2. �
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Lemma 2.3. [13] Let R = A
B

be a rational function and B be non-constant. Let

(R)∞ = deg(A)− deg(B), and k be a positive integer. Then (R(k))∞ ≤ (R)∞ − k.

Lemma 2.4. Let a(z) be a non-zero polynomial of degree m, and k be a positive
integer. Let f be a non-constant rational function, all of whose zeros and poles(if
exists)have multiplicity at least k +m+ 1 and m+ 1, then the function ff (k) − a(z)
has at least one zero.

Proof. We consider the following cases.
Case 1. f is a non-constant polynomial. Since f is a non-constant polynomial

with zeros of multiplicity at least k + m + 1, then deg(ff (k)) ≥ k + 2m + 2, thus
deg(ff (k)) > deg(a(z)), so the function ff (k) − a(z) has at least one zero.
Case 2. f is a non-polynomial rational function. Write

(2.4) f(z) = A
(z − α1)

m1(z − α2)
m2 · · · (z − αs)ms

(z − β1)n1(z − β2)n2 · · · (z − βt)nt
,

where A( 6= 0) is a constant and mi ≥ k + m + 1; nj ≥ m + 1 (i = 1, 2, . . . , s; j =
1, 2, . . . , t) are positive integers.

We put

M = m1 +m2 + · · ·+ms ≥ (k +m+ 1)s,(2.5)

N = n1 + n2 + · · ·+ nt ≥ (m+ 1)t.(2.6)

From (2.4) we get

(2.7) f (k)(z) =
(z − α1)

m1−k(z − α2)
m2−k · · · (z − αs)ms−kg(z)

(z − β1)n1+k(z − β2)n2+k · · · (z − βt)nt+k
,

where g is a polynomial. From (2.4) and (2.7) we get

(2.8) ff (k)(z) =
(z − α1)

2m1−k(z − α2)
2m2−k · · · (z − αs)2ms−kg(z)

(z − β1)2n1+k(z − β2)2n2+k · · · (z − βt)2nt+k
.

Suppose the function ff (k) − a(z) has no zero, this is ff (k) − a(z) 6= 0. Then we
get from (2.8)

(2.9) ff (k)(z) = a(z) +
B

(z − β1)2n1+k(z − β2)2n2+k · · · (z − βt)2nt+k
,

where B(6= 0) is a constant. From (2.8) and (2.9) we obtain respectively

[ff (k)(z)](m+1) =(2.10)

(z − α1)
2m1−k−m−1(z − α2)

2m2−k−m−1 · · · (z − αs)2ms−k−m−1g1(z)

(z − β1)2n1+k+m+1(z − β2)2n2+k+m+1 · · · (z − βt)2nt+k+m+1

and

(2.11) [ff (k)(z)](m+1) =
g2(z)

(z − β1)2n1+k+m+1(z − β2)2n2+k+m+1 · · · (z − βt)2nt+k+m+1
,



NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS 277

where g1, g2 are polynomials. From (2.4) and (2.7) we get (f)∞ = M − N and
(f (k))∞ = M −N − k(s+ t) + deg(g). Since by Lemma 2.3 (f (k))∞ ≤ (f)∞− k, then
deg(g) ≤ k(s+ t− 1). From (2.8) and(2.10) we obtain (ff (k))∞ = 2(M −N)− k(s+
t) + deg(g) and

(ff (k))(m+1)
∞ = 2(M −N)− k(m+ 1)(s+ t) + deg(g1).

By Lemma 2.3, we get deg(g1) ≤ (k +m+ 1)(s+ t− 1).

From (2.9) and (2.11) we get (ff (k))∞ = −2N − kt and (ff (k))
(m+1)
∞ = deg(g1) −

2N − (k +m+ 1)t. By Lemma 2.3, we obtain deg(g2) ≤ (m+ 1)(t− 1).
From (2.1) and (2.11) we see that

(z − α1)
2m1−k−m−1(z − α2)

2m2−k−m−1 · · · (z − αs)2ms−k−m−1

is a factor of g2. Then 2M − (k + m + 1)s ≤ deg(g2) ≤ (m + 1)(t − 1), which
implies 2M ≤ (k + m + 1)s + (m + 1)(t− 1). From (2.5) and (2.6) we obtain 2M ≤
M +N − (m+ 1). This implies

(2.12) M < N.

From (2.8) and (2.9) we can get

2N + kt+m = 2M − ks+ deg(g) ≤ 2M − ks+ k(s+ t− 1),

which implies 2N ≤ 2M − k − m, this is N < M , which contradicts (2.12). This
proves Lemma 2.4. �

Lemma 2.5. Let a(z) be a non-zero polynomial of degree m, and k be a positive
integer. Let f be a non-constant rational function, all of whose zeros and poles(if
exists)have multiplicity at least k +m+ 1 and m+ 1, then the function ff (k) − a(z)
has at least two zeros.

Proof. By lemma 2.4, we deduce that the function ff (k)− a(z) has at least one zero.
Suppose, to the contrary, the function ff (k) − a(z) has exactly one root.

First we suppose that f is a non-constant polynomial. We set ff (k) − a(z) =
C(z − z0)

n, where C( 6= 0) is a constant and n is a positive integer satisfying n ≥
k + 2 + 2m ≥ 2m+ 3. Then

[ff (k) − a(z)](m+1) = [ff (k)](m+1) = Cn(n− 1) · · · (n−m)(z − z0)n−m−1.
So [ff (k)](m+1) has exactly one zero at z0. Since f is a non-constant polynomial
with zeros of multiplicity at least k + m + 1, then z0 is a zero of f , it follows that
[ff (k)](m)(z0) = 0. Noting that

[ff (k) − a(z)](m) = [ff (k)](m) − [a(z)](m) = Cn(n− 1) · · · (n−m+ 1)(z − z0)n−m.
Then [a(z0)]

(m) = 0, which is a contradiction, since a(z) is a non-zero polynomial with
deg(a(z)) = m. Therefore f is a non-polynomial rational function, We can express f
by (2.4) again. Since the function ff (k)−a(z) has exactly one zero, we get from (2.8)

(2.13) ff (k)(z) = a(z) +
D(z − z0)l

(z − β1)2n1+k(z − β2)2n2+k · · · (z − βt)2nt+k
.
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where D(6= 0) is a constant and l is a positive integer.
We consider the following two cases.
Case 1. m ≥ l. From (2.8) and (2.13) we can get

2N + kt+m = 2M − ks+ deg(g) ≤ 2M − ks+ k(s+ t− 1).

which implies 2N ≤ 2M − k −m, that is N < M, From (2.13) we obtain

(2.14) [ff (k)(z)](m+1) =
g3(z)

(z − β1)2n1+k+m+1(z − β2)2n2+k+m+1 · · · (z − βt)2nt+k+m+1
.

where g3 are polynomials with deg(g3) ≤ (m+ 1)t− (m− l + 1).
From (2.10) and (2.14) we see that

(z − α1)
2m1−k−m−1(z − α2)

2m2−k−m−1 · · · (z − αs)2ms−k−m−1

is a factor of g3. Then (m+ 1)t− (m− l + 1) ≥ 2M − (k +m+ 1)s. From (2.5) and
(2.6) we get M ≤ N − (m− l+ 1)s. Then M ≤ N − (m− l+ 1)s < M − (m− l+ 1).
This implies m < l − 1, a contradiction.
Case 2. m < l. From (2.13) we get

(2.15) [ff (k)(z)](m+1) =
D(z − z0)l−m−1g4(z)

(z − β1)2n1+k+m+1(z − β2)2n2+k+m+1 · · · (z − βt)2nt+k+m+1
.

where g4 are polynomials with deg(g4) ≤ (m+ 1)t.
Since αi 6= z0 for i = 1, 2, . . . , s, from (2.10) and (2.15) we see that

(z − α1)
2m1−k−m−1(z − α2)

2m2−k−m−1 · · · (z − αs)2ms−k−m−1

is a factor of g4. Therefore 2M −ks− (m+ 1)s ≤ deg(g4) ≤ (m+ 1)t, then from (2.5)
and (2.6) we can deduce M ≤ N .

Now we consider the following subcases.
Subcase 2.1. Let l 6= 2N+kt+m. From (2.8) and (2.13) we obtain 2N+kt+m ≤

2M − ks+ deg(g) ≤ 2M + k(t− 1), then 2N ≤ 2M − k −m, which implies N < M ,
a contradiction.

Subcase 2.2. Let l = 2N+kt+m. IfN < M , then proceeding as case 1 we arrive at
a contradiction. SoM ≤ N . Since αi 6= z0 for i = 1, 2, . . . , s, from (2.10) and (2.15) we
see that (z−z0)l−m−1 is a factor of g1. Thus l−m−1 ≤ deg(g1) ≤ (k+m+1)(s+t−1),
then 2N + kt+m = l ≤ (k+m+ 1)(s+ t− 1) +m+ 1. From (2.5) and (2.6) we can
deduce 2N ≤ M + N − k ≤ 2N − k, which implies −k ≥ 0, a contradiction. This
proves Lemma 2.5. �

3. Proof of Theorem 1.6.

Proof. For any point z0 ∈ D, either a(z0) = 0 or a(z0) 6= 0. We consider two cases.
Case 1. a(z0) 6= 0. Suppose that F is not normal at z0 ∈ D. Let α = k

2
. Then

by Lemma 2.1, there exists a sequence of complex numbers zn −→ z0, a sequence of
functions fn ∈ F and a sequence of positive numbers ρn −→ 0+ such that

hn(ξ) = ρ
− k

2
n fn(zn + ρnξ)

χ⇒h(ξ),
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where h(ξ) is a non-constant meromorphic functions in C. Also the order of h(ξ)
does not exceed 2 and by Hurwitz’s theorem h(ξ) has no zero of mulitiplicity less
than k +m+ 1.

On every compact subset of C which contains no poles of h, we have

hn(ξ)h(k)n (ξ)− a(ξ) = fn(zn + ρnξ)f
(k)
n (zn + ρnξ)− a(zn + ρnξ)

χ⇒h(ξ)h(k)(ξ)− a(z0).

If hh(k) ≡ a(z0), then h has no poles and zeros, and thus h is entire function.

Noting that 1
h2(ξ)

≡ 1
a(z0)

h(k)(ξ)
h(ξ)

, thus

2T (r, h) = 2m(r, h) ≤ log+
1

|a(z0)|
+m(r,

h(k)

h
) = o{T (r, h)}(r →∞),

which is impossible. Hence hh(k) 6≡ a(z0).
By lemmas 2.2 and 2.5, the function hh(k) − a(z0) has at least two distinct zeros

ξ0, ξ
∗
0 , say. We choose a small δ > 0 such that D1 ∩ D2 = ∅ and hh(k) − a(z0) has

no other zeros in D1 ∪ D2 except for ξ0 and ξ∗0 , where D1 = {ξ : |ξ − ξ0| < δ} and
D2 = {ξ : |ξ−ξ∗0 | < δ}. By Hurwitz’s theorem, there exit points ξn ∈ D1 and ξ∗n ∈ D2

such that

fn(zn + ρnξn)f (k)
n (zn + ρnξn)− a(zn + ρnξn) = 0

and

fn(zn + ρnξ
∗
n)f (k)

n (zn + ρnξ
∗
n)− a(zn + ρnξ

∗
n) = 0

for sufficiently large n.
By the assumption of Theorem 1.6, we see that for any integer l and for all n we

get

fl(zn + ρnξn)f
(k)
l (zn + ρnξn)− a(zn + ρnξn) = 0

and

fl(zn + ρnξ
∗
n)f

(k)
l (zn + ρnξ

∗
n)− a(zn + ρnξ

∗
n) = 0.

Fix l and take n→∞, and note zn + ρnξn → z0, zn + ρnξ
∗
n → z0, then

fl(z0)f
(k)
l (z0)− a(z0) = 0.

Since the zeros of ff (k) − a(ξ) has no accumulation point, so for sufficiently large
n we get zn + ρnξn = z0, zn + ρnξ

∗
n = z0. Hence, ξn = ξ∗n = z0−zn

ρn
.

This contradicts with ξn ∈ D1 and ξ∗n ∈ D2 and D1 ∩D2 = ∅. Thus F is normal at
z0.

Case 2. a(z0) = 0. Let z0 = 0, D = ∆ = {z : |z| < 1} and a(z) = zm+am+1z
m+1+

· · · = zmφ(z), φ(0) = 1, φ(z) 6= 1, z ∈ {z : 0 < |z| < 1}.
Since m is an even number, then we obtain a new family as follows

F1 = {F := F (z) =
f(z)

z
m
2

, f ∈ F}.
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Suppose that F1 is not normal at z0 = 0. Then by Lemma 2.1, there exists a sequence
of complex numbers zn −→ 0, a sequence of functions Fn ∈ F1 and a sequence of
positive numbers ρn −→ 0+ such that

hn(ξ) = ρ
− k

2
n Fn(zn + ρnξ)

χ⇒h(ξ),

where h(ξ) is a non-constant meromorphic functions in C. Also the order of h(ξ)
does not exceed 2 and by Hurwitz’s theorem h(ξ) has no zero of mulitiplicity less
than k +m+ 1.

Now we distinguish the following subcases.
Subcase 2.1. zn

ρn
→∞. By simple calculation, we have

f (k)
n (z) = z

m
2 F (k)

n (z) +
k∑
l=1

C l
k(z

m
2 )

(l)
F (k−l)
n (z)

= z
m
2 F (k)

n (z) +
k∑
l=1

Clz
m
2
−lF (k−l)

n (z),

where

Cl =

{
m
2

(m
2
− 1) · · · (m

2
− l + 1), l ≤ m

2
0 , l > m

2
.

Since fn(z) = z
m
2 Fn(z), then we have

fn(z)f (k)
n (z) = fn(z)z

m
2 F (k)

n (z) + fn(z)
k∑
l=1

C l
k(z

m
2 )

(l)
F (k−l)
n (z)

= zmFn(z)F (k)
n (z) + z

m
2 Fn(z)

k∑
l=1

Clz
m
2
−lF (k−l)

n (z),

and

fn(z)f
(k)
n (z)

zm
= Fn(z)F (k)

n (z) +
k∑
l=1

Cl
Fn(z)F

(k−l)
n (z)

zl
,

fn(z)f
(k)
n (z)

a(z)
=

[
Fn(z)F (k)

n (z) +
k∑
l=1

Cl
Fn(z)F

(k−l)
n (z)

zl

]
1

φ(z)
.

Noting that h
(k−l)
n (ξ) = ρ

k
2
nF

(k−l)
n (zn + ρnξ), l = 0, 1, . . . , k, then

fn(zn + ρnξ)f
(k)
n (zn + ρnξ)

a(zn + ρnξ)
=(3.1) [

hn(ξ)h(k)n (ξ) +
k∑
l=1

Cl
hn(ξ)h

(k−l)
n (ξ)

( zn
ρn

+ ξ)l

]
1

φ(zn + ρnξ)
.
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On the other hand, we have

(3.2) lim
n→∞

Cl

( zn
ρn

+ ξ)l
= 0, lim

n→∞

1

φ(zn + ρnξ)
= 1.

From (3.1) and (3.2) we get

fn(zn + ρnξ)f
(k)
n (zn + ρnξ)

a(zn + ρnξ)

χ⇒h(ξ)h(k)(ξ),

on a every compact subset of C which contains no poles of h(ξ). By lemmas 2.2 and
2.5. With similar discussion to the proof of Case 1, we can get a contradiction.

Subcase 2.2. zn
ρn
→ α, α ∈ C. Then we have

Fn(ρnξ)

ρ
k
2
n

=
Fn(zn + ρn(ξ − zn

ρn
))

ρ
k
2
n

χ⇒h(ξ − α),

on every compact subset of C which contains no poles of h(ξ − α). Clearly, all zeros
of h(ξ − α) have multiplicity at least k +m+ 1, and ξ = 0 is a pole of h(ξ − α) with
multiplicity at least m

2
. Set

Gn(ξ) :=
fn(ρnξ)

ρ
k+m

2
n

=
Fn(ρnξ)

ρ
k
2
n

=
Fn(ρnξ)

ρ
k
2
n

(ρnξ)
m
2

ρ
m
2
n

χ⇒ ξ
m
2 h(ξ − α) = G(ξ),

on every compact subset of C which contains no poles of G(ξ).
Clearly, G(ξ) is a non-constant meromorphic function, which have multiple zeros

at least k+m+ 1. Since ξ = 0 is a pole of h(ξ−α) with multiplicity at least m
2

, then
G(0) 6= 0. Thus we have

Gn(ξn)G(k)
n (ξn)− a(ρnξn)

ρmn

χ⇒G(ξ)G(k)(ξ)− ξm.

With similar discussion to the proof of Case 1, we can conclude G(ξ)G(k)(ξ)−ξm 6≡
0. It follows from lemmas 2.2 and 2.5 that G(ξ)G(k)(ξ)− ξm has two distinct zeros at
least. By the similar arguments in Case 1, we obtain a contradiction.

Hence F1 is normal at z0 = 0.
It remains to show that F is normal at z0 = 0. For fn(z) ∈ F, let Fn(z) = fn(z)

z
m
2

,

then {Fn(z)} ⊂ F1. Since F1 is normal at z0 = 0, then there exists ∆δ = {z : |z| < δ}
and a subsequence of {Fn(z)}(still express it as {Fn(z)}) such that {Fn(z)} converges
spherically locally uniformly to a meromorphic function F (z) or ∞.

Here, we discuss the following two cases.
Case A. When n is large enough, fn(z) 6= 0. Then F (0) =∞, then we have δ1 > 0

such that Fn(z) ≥ 1 for each z ∈ ∆(0, δ1). So 1
fn

is a holomorphic function in ∆(0, δ1).

Thus when z = δ1
2

, we get

| 1

fn(z)
| = | 1

Fn(z)

1

z
m
2

| ≤ (
2

δ1
)
m
2 .



282 CHENG-XIONG SUN

By the maximum principle and Montel’s theorem, there exists subsequence of {fn(z)}
(still express it as {fn(z)}) converges spherically locally uniformly.

Therefore F is normal at z0 = 0.

Case B. fn(z) = 0. Then we get F (0) = 0, since Fn(z) = fn(z)

z
m
2

χ⇒F (z), and hence

there exists a positive number r with 0 < r < δ such that F (z) is holomorphic in ∆r

and has a unique zero z = 0 in ∆r. Therefore, we have fn(z)⇒ z
m
2 F (z) in ∆r since

Fn(z) converges spherically locally uniformly to a holomorphic function F (z) in ∆r.
Thus F is normal at z0 = 0.

These shows that F is normal in D. �

Acknowledgment: The author would like to thank the referee for several helpful
suggestions toward this paper. This research is supported by the NNSF of China
(Grant No. 11071064).

References

[1] W. K. Hayman, Research Problems of Function Theory, London: Athlone Press of Univ of
London, 1967.

[2] L. Yang and G. Zhang, Recherches sur la normalité des familles de fonctions analytiques à des
valeurs multiples, Un nouveau critère et quelques applications, Sci. Sinica Ser, A 14 (1965),
1258–1271.

[3] Y. X. Gu, On normal families of meromorphic functions, Sci. Sinica Ser, A 4 (1978), 373–384.
[4] X. C. Pang, Bloch’s principle and normal criterion, Sci. Sinica Ser, A 11 (1988), 1153–1159.
[5] H. H. Chen and M. L. Fang, On the value distribution of fnf ′, Sci. China Ser, A 38 (1995),

789–798.
[6] Q. Lu and Y. X. Gu, Zeros of differential polynomial ff (k)−a and its normality, Chinese Quart.

J. Math, 24 (2009), 75–80.
[7] J. F. Xu and W. S. Cao, Some normality criteria of meromorphic functions, J. Inequal. Appl,

(2010), art ID 926302,10pp.
[8] D. W. Meng and P. Ch. Hu, Normality criteria of meromorphic functions sharing one value, J.

Math. Anal. Appl, 381 (2011), 724–731.
[9] D. W. Meng and P. Ch. Hu, Normal criteria of meromorphic functions with multiple zeros, J.

Math. Anal. Appl, 357 (2009), 323–329.
[10] Y. B. Jiang and Z. S. Gao, Normal families of meromorphic functions sharing a holomorphic

function and the converse of the Bloch principle, Acta Math. Sci, 4 (2012), 1503–1512.
[11] X. C. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc, 32

(2000), 325–331.
[12] J. F. Xu and Z. L. Zhang, Note on the normal family, Journal of Inequalities and Applications,

7(4) Art.133 (2006), 1–9.
[13] S. P. Zeng and I. Lahiri, A normality criterion for meromorphic functions, Kodia Math. J, 35

(2012), 105–114.

Department of Mathematics,
Xuanwei Senior School,
Yunnan Xuanwei 655400,PR China
E-mail address: ynxwjz@hotmail.com


