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AN UPPER BOUND ON THE DOUBLE DOMINATION NUMBER
OF TREES

J. AMJADI1

Abstract. In a graph G, a vertex dominates itself and its neighbors. A set S of
vertices in a graph G is a double dominating set if S dominates every vertex of G at
least twice. The double domination number γ×2(G) is the minimum cardinality of a
double dominating set in G. The annihilation number a(G) is the largest integer k
such that the sum of the first k terms of the non-decreasing degree sequence of G
is at most the number of edges in G. In this paper, we show that for any tree T of
order n ≥ 2, different from P4, γ×2(T ) ≤ 3a(T )+1

2 .

1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E = E(G).
The order |V | of G is denoted by n = n(G). For every vertex v ∈ V (G), the open
neighborhood of v is the set NG(v) = N(v) = {u ∈ V (G) | uv ∈ E(G)} and the
closed neighborhood of v is the set NG[v] = N [v] = N(v)∪ {v}. The degree of a vertex
v ∈ V is degG(v) = deg(v) = |N(v)|. The minimum degree of a graph G is denoted
by δ = δ(G). A leaf of a tree T is a vertex of degree 1, a support vertex is a vertex
adjacent to a leaf and a strong support vertex is a vertex adjacent to at least two
leaves. A strong support vertex is said to be end-stem if all its neighbors except one
of them are leaves. We write Pn for a path of order n. For a subset S ⊆ V (G), we let∑

(S,G) =
∑

v∈S degG(v). For notation and graph theory terminology, we in general
follow [10].

The concept of domination in graphs, with its many variations, is now well studied
in graph theory and the literature on this subject has been surveyed and detailed
in the two books by Haynes, Hedetniemi, and Slater [10, 11]. A dominating set of a
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graph G is a set S of vertices of G such that every vertex in V (G) − S is adjacent
to at least one vertex in S. The domination number of G, denoted by γ(G), is the
minimum cardinality of a dominating set of G.

Harary and Haynes [9] defined a generalization of domination as follows: a subset S
of V is a k-tuple dominating set of G if for every vertex v ∈ V , |N [v]∩S| ≥ k. The k-
tuple domination number γ×k(G) is the minimum cardinality of a k-tuple dominating
set of G. Obviously, γ(G) = γ×1(G) ≤ γ×k(G). For a graph to have a k-tuple
dominating set, its minimum degree must be at least k − 1. Hence for trees, we have
k ≤ 2. A 2-tuple dominating set is called a double dominating set (DDS). A γ×2(G)-
set is a DDS of cardinality γ×2(G). The redundancy involved in k-tuple domination
makes it useful in many applications.

Let d1, d2, . . . , dn be the degree sequence of a graph G arranged in non-decreasing
order, and so d1 ≤ d2 ≤ · · · ≤ dn. The annihilation number of G, denoted a(G), is
the largest integer k such that the sum of the first k terms of the degree sequence is
at most half the sum of the degrees in the sequence. Equivalently, the annihilation
number is the largest integer k satisfying the condition that

∑k
i=1 di ≤

∑n
i=k+1 di. It is

immediate from the definition that if G has m edges and annihilation number k, then∑k
i=1 di ≤ m. The annihilation number was introduced by Pepper in [15] and has

been studied by several authors [2, 6, 7, 8, 13, 14, 16]. As an immediate consequence
of the definition of the annihilation number, Larson and Pepper [14] observed that
for any graph G of order n, a(G) ≥ bn

2
c.

In [15] and [16], Pepper proved that the annihilation number is an upper bound on
the independence number of a graph and in [14] the case for equality of the upper
bound was characterized by Larson and Pepper.

The relation between annihilation number and some graph parameters have been
studied by several authors. For instance, DeLaViña et al. presented an upper bound
on 2-domination number in terms of annihilation number for some classes of graphs
[6], Dehgardi et al. investigated the relation between some domination parameters
and the annihilation number of trees [3, 4, 5], Desormeaux et al. proved that for any
tree T , a(T ) + 1 is an upper bound on the total domination number [8].

If G is a connected graph, different from C5, of order n with minimum degree at least
two, then it is known [12] that γ×2(G) ≤ 3n

4
. Hence, if G 6= C5 is a connected graph

of order n with minimum degree at least 2, then γ×2(G) ≤ 3a(T )
2

because a(G) ≥ bn
2
c.

On the other hand, we have γ×2(C5) = 4 = 3a(C5)+2
2

.
In this paper we continue the study of double domination in trees and we prove

that for any tree T of order at least two γ×2(T ) ≤ 3a(T )+2
2

and the equality holds if
and only if T = P4.

The value of γ×2(Pn) for a path Pn is established in [1].

Proposition 1.1. γ×2(Pn) = 2
⌈
n
3

⌉
+ 1 if n ≡ 0 (mod 3) and γ×2(Pn) = 2

⌈
n
3

⌉
otherwise.
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The annihilation number is easy to compute for paths and we have the following
observation.

Observation 1.1. For n ≥ 2, a(Pn) =
⌈
n
2

⌉
.

The next result is an immediate consequence of Proposition 1.1 and Observation
1.1.

Proposition 1.2. For n ≥ 3, γ×2(Pn) ≤ 3a(T )+2
2

with equality if and only if n = 4.

The next result is immediate from definitions.

Observation 1.2. Every leaf and every support vertex of a graph G is in every γ×2(G)-
set.

A subdivision of an edge uv is obtained by replacing the edge uv with a path uwv,
where w is a new vertex. The subdivision graph S(G) is the graph obtained from G
by subdividing each edge of G. The subdivision star S(K1,t) for t ≥ 2, is called a
healthy spider St,t. A wounded spider St,q is the graph formed by subdividing q of the
edges of a star K1,t for t ≥ 2 where q ≤ t− 1. Note that stars are wounded spiders.
A spider is a healthy or wounded spider.

Proposition 1.3. If T is a spider different from P4, then γ×2(T ) ≤ 3a(T )+1
2

with
equality if and only if T ∼= S3,1 or S4,3.

Proof. If T = St,t is a healthy spider for some t ≥ 2, then obviously γ×2(T ) = 2t and
a(T ) = t+ b t

2
c, and we have γ×2(T ) ≤ 3a(T )

2
.

Now let T = St,q be a wounded spider obtained from K1,t (t ≥ 2) by subdividing
0 ≤ q ≤ t− 1 edges. Then γ×2(T ) = n(T ) by Observation 1.2. If q = 0, then T is a
star and clearly a(T ) = t implying that γ×2(T ) ≤ 3a(T )

2
. Assume q > 0. Since T 6= P4,

we have q 6= 1 or t 6= 2. It is easy to see that a(T ) = t+ b q
2
c and so γ×2(T ) ≤ 3a(T )+1

2

with equality if and only if T ∼= S3,1 or S4,3. This completes the proof. �

For p, q ≥ 1, a double star DSp,q is a tree with exactly two vertices that are not
leaves, with one adjacent to p leaves and the other to q leaves.

Proposition 1.4. For the double star DSp,q, different from P4,

γ×2(DSp,q) ≤
3a(T ) + 1

2

with equality if and only if T = DS1,2.

Proof. We may assume without loss of generality that p ≤ q. Since T 6= P4, q ≥ 2.
By Observation 1.2, γ×2(DSp,q) = p + q + 2. On the other hand, a(DSp,q) = p + q.
This implies that γ×2(DSp,q) ≤ 3a(T )+1

2
with equality if and only if p = 1 and q = 2,

that is, T = DS1,2. �
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2. An Upper Bound

In this section we establish an upper bound on the double domination number of
trees in terms of their annihilation number.

For a vertex v in a rooted tree T , let C(v) denote the set of children of v, D(v)
denote the set of descendants of v and D[v] = D(v)∪{v}, and the depth of v, depth(v),
is the largest distance from v to a vertex in D(v). The maximal subtree at v is the
subtree of T induced by D[v], and is denoted by Tv. In the sequel, we denote by
T − Tv, the tree obtained from a rooted tree T by deleting all vertices of D[v].

In the proof of next theorem, we will always consider trees T ′ formed from T by
removing a set of vertices. For such a tree T ′ of order n′, let d′1, d′2, . . . , d′n′ be the
non-decreasing degree sequence of T ′, and let S ′ be a set of vertices corresponding to
the first a(T ′) terms in the degree sequence of T ′. In fact, if u1, u2, . . . , un′ are the
vertices of T ′ such that deg(ui) = d′i for each i, then S ′ = {u1, u2, . . . , ua(T ′)}. We
denote the size of T ′ by m′.

Theorem 2.1. For any nontrivial tree T , different from P4, γ×2(T ) ≤ 3a(T )+1
2

.

Proof. The proof is by induction on n. The statement holds for all trees of order n ≤ 4.
For the induction hypothesis, let n ≥ 5 and suppose that for every nontrivial tree T
of order less than n the result is true. Let T be a tree of order n. By Propositions
1.2, 1.3 and 1.4, we may assume diam(T ) ≥ 4 and that T is not a path. We proceed
further with a series of claims that we may assume satisfied by the tree.

Claim 1. T has no end-steam.

Proof. Let T have an end-stem u and let N(u) = {v, u1, u2, . . . , uk} where v is not
a leaf. Assume T ′ = T − {u, u1, . . . , uk}. If T ′ = P4, then clearly γ×2(T ) = 4 + k

and a(T ) = k + 2 implying that γ×2(T ) ≤ 3a(T )
2

. Let T ′ 6= P4. Then obviously
γ×2(T ) ≤ γ×2(T

′) + k + 1. If v 6∈ S ′, then
∑

(S ′, T ) =
∑

(S ′, T ′) and if v ∈ S ′, then∑
(S ′, T ) =

∑
(S ′, T ′) + 1. Thus,

∑
(S ′, T )− 1 ≤

∑
(S ′, T ′) ≤ m′ = m− k − 1, and

hence
∑

(S ′, T ) ≤ m−k. Let S = S ′∪{u1, . . . , uk}. Then
∑

(S, T ) =
∑

(S ′, T )+k ≤
m implying that a(T ) ≥ a(T ′) + k. By inductive hypothesis, we have

γ×2(T ) ≤ γ×2(T
′)+k+1 ≤ 3a(T ′) + 1

2
+k+1 ≤ 3(a(T )− k) + 1

2
+k+1 ≤ 3a(T ) + 1

2
,

as desired. �

Let v1v2 . . . vD be a diametral path in T . By Claim 1, deg(v2) = deg(vD−1) = 2 and
all neighbors of v3 with exception of v4 (resp. all neighbors of vD−2 with exception of
vD−3), are leaves or support vertices of degree 2. If diam(T ) = 4, then T is a spider
and the result follows by Proposition 1.3. Hence, we assume diam(T ) ≥ 5. Root T at
vD.

Claim 2. degT (v3) ≤ 3.
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Proof. Assume that degT (v3) ≥ 4. Let first v3 be adjacent to a support vertex
w2 6∈ {v2, v4}. By Claim 1, we have degT (w2) = 2. Suppose w1 is the leaf adjacent to
w2 and let T ′ = T −{v1, v2, w1, w2}. If T ′ = P4, then clearly γ×2(T ) ≤ 8 and a(T ) = 5

implying that γ×2(T ) ≤ 8 ≤ 3a(T )+1
2

. Let T ′ 6= P4. Then every double dominating
set of T ′ can be extended to a double dominating set of T by adding v1, w1, v2, w2

and hence γ×2(T ) ≤ γ×2(T
′) + 4. Assume that S = S ′ ∪ {v1, v2, w1} when v3 6∈ S ′

and S = (S ′ − {v3}) ∪ {v1, v2, w1, w2} if v3 ∈ S ′. Clearly
∑

(S, T ) ≤ m that implies
a(T ) ≥ |S| = |S ′|+ 3 = a(T ′) + 3. It follows from the induction hypothesis that

γ×2(T ) ≤ γ×2(T
′) + 4 ≤ 3a(T ′) + 1

2
+ 4 ≤ 3(a(T )− 3) + 1

2
+ 4 <

3a(T ) + 1

2
.

Now let all neighbors of v3 with exception of v2, v4, are leaves. Suppose w is a leaf
adjacent to v3 and let T ′ = T − {v1, v2, w}. Since daim(T ) ≥ 5, we have T ′ 6= P4.
Clearly, every double dominating set of T ′ can be extended to a double domination
set of T by adding the vertices v1, v2, w and hence γ×2(T ) ≤ γ×2(T

′) + 3. Assume
that S = S ′ ∪ {v1, w} when v3 6∈ S ′ and S = (S ′−{v3})∪ {v1, v2, w} if v3 ∈ S ′. Then∑

(S, T ) ≤ m that implies a(T ) ≥ |S| = |S ′| + 2 = a(T ′) + 2. As above, we have
γ×2(T ) ≤ 3a(T )+1

2
. �

Claim 3. degT (v3) = 2.

Proof. Let deg(v3) = 3. Suppose first that v3 is adjacent to a support vertex w2 6∈
{v2, v4}. Let w1 be the leaf adjacent to w2 and T ′ = T − Tv3 . If T ′ = P4, then clearly
γ×2(T ) = 8 and a(T ) = 5 implying that γ×2(T ) = 3a(T )+1

2
. Let T ′ 6= P4. Then every

double dominating set of T ′ can be extended to a double dominating set of T by adding
v1, w1, v2, w2 and hence γ×2(T ) ≤ γ×2(T

′)+4. Assume that S = S ′∪{v1, v2, w1}. Then∑
(S, T ) ≤ m and so a(T ) ≥ |S| = |S ′|+3 = a(T ′) + 3. Now the result follows by the

induction hypothesis.
Now let v3 be adjacent to a leaf w and let T ′ = T − {v1, v2, w}. If T ′ = P4, then

clearly γ×2(T ) = 6 and a(T ) = 5 implying that γ×2(T ) = 6 < 3a(T )+1
2

. Let T ′ 6= P4.
Using an argument similar to that described in Claim 2, we obtain γ×2(T ) ≤ 3a(T )+1

2

as desired. �

Claim 4. There is no path v4z3z2z1 in T such that z3 6∈ {v3, v5}.

Proof. Assume there is a path v4z3z2z1 in T where z3 6∈ {v3, v5}. By Claims 1–3,
we may assume degT (z2) = degT (z3) = 2. Assume T ′ = T − {v1, v2, v3, z1, z2}. If
T ′ = P4, then clearly γ×2(T ) = 7 and a(T ) = 5, implying that γ×2(T ) < 3a(T )+1

2
.

Let T ′ 6= P4. By Observation 1.2, v4 is in every γ×2(T )-set because v4 is a support
vertex. Hence, every γ×2(T ′)-set can be extended to a double dominating set of T
by adding the vertices v1, v2, z1, z2 which implies that γ×2(T ) ≤ γ×2(T

′) + 4. Assume
S = S ′ ∪ {v1, v2, z1} when v4 6∈ S ′ and S = (S ′ − {v4}) ∪ {v1, v2, v3, z1} when v4 ∈ S ′.
Then

∑
(S, T ) ≤ m and hence a(T ) ≥ a(T ′) + 3. Now the result follows by inductive

hypothesis. �
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Claim 5. v4 is not a support vertex.

Proof. Assume v4 is a support vertex. Let T ′ = T − {v1, v2, v3}. If T ′ = P4, then it
is easy to verify that γ×2(T ) ≤ 3a(T )+1

2
. Let T ′ 6= P4. By Observation 1.2, v4 is in

every γ×2(T ′)-set and so every γ×2(T ′)-set can be extended to a double dominating
set of T by adding the vertices v1, v2 implying that γ×2(T ) ≤ γ×2(T

′) + 2. Assume
S = S ′∪{v1, v2} when v4 6∈ S ′ and S = (S ′−{v4})∪{v1, v2, v3} when v4 ∈ S ′. Clearly∑

(S, T ) ≤ m and hence a(T ) ≥ a(T ′) + 2. Applying the induction hypothesis we
obtain γ×2(T ) < 3a(T )+1

2
. �

Claim 6. v4 is not adjacent to a support vertex other than v5.

Proof. Let v4 be adjacent to a support vertex, say w and let T ′ = T−{v1, v2}. Suppose
D is a γ×2(T ′)-set. Then v3, v4, w ∈ D and obviously (D−{v3})∪{v1, v2} is a DDS of
T and hence γ×2(T ) ≤ γ×2(T

′) + 1. Assume S = S ′ ∪ {v1}. Then
∑

(S, T ) ≤ m that
implies a(T ) ≥ a(T ′) + 1. By the induction hypothesis we have γ×2(T ) < 3a(T )+1

2
. �

By Claims 4, 5, and 6 we may assume degT (v4) = 2. Similarly, by rooting T at v1,
we may assume that deg(vD−1) = deg(vD−2) = deg(vD−3) = 2.

We now return to the proof of theorem. If diam(T ) = 5, 6 or 7 then T is a
path of order 6, 7 and 8, respectively, and the result is immediate by Proposition
1.2. Let diam(T ) ≥ 8 and T ′ = T − {v1, v2, v3, vD, vD−1, vD−2}. If T ′ = P4, then
obviously T is a path of order 10 and the result follows by Proposition 1.2. Assume
T ′ 6= P4. Since degT ′(v4) = degT ′(vD−3) = 1, every γ×2(T ′)-set contains v4, vD−3 and
can be extended to a dominating set of T by adding v1, v2, vD, vD−1 which implies
that γ×2(T ) ≤ γ×2(T

′) + 4. Suppose S = S ′ ∪ {v1, v2, vD}. Then
∑

(S, T ) ≤ m
and so a(T ) ≥ a(T ′) + 3. Applying the induction hypothesis, we obtain γ×2(T ) ≤
γ×2(T

′) + 4 ≤ 3a(T ′)+1
2

+ 4 ≤ 3(a(T )−3)+1
2

+ 4 < 3a(T )+1
2

. This completes the proof. �

The coronal of two graphs G1 and G2, is the graph G = G1 ◦G2 formed from one
copy of G1 and |V (G1)| copies of G2 where the ith vertex of G1 is adjacent to every
vertex in the ith copy of G2.

Assume that Pn = v1v2 . . . vn is a path on n vertices and let Gn = Pn ◦K1. Suppose
ui is the leaf adjacent to vi for each i.

Theorem 2.2. For k ≥ 3, there exists a tree T with daim(T ) = k and
γ×2(T ) =

3a(T )+1
2

.

Proof. Let k ≥ 3 be an integer. If k ≡ 2 (mod 3), then let T = Gk−1. It is easy
to see that γ×2(T ) = 2k − 2 and a(T ) = 4(k−2)

3
+ 1, and so γ×2(T ) = 3a(T )+1

2
. If

k ≡ 0 (mod 3), then let T be the tree obtained from Gk−1 by adding a pendant edge
at v1. It is not hard to see that γ×2(T ) = 2k − 1 and a(T ) = 4k

3
− 1, and hence

γ×2(T ) = 3a(T )+1
2

. Finally, if k ≡ 1 (mod 3), then let T be the tree obtained from
Gk−1 by adding a pendant edge at v1 and a pendant edge at vk−1. It is easy to see
that γ×2(T ) = 2k and a(T ) = 4(k−1)

3
+ 1, and hence γ×2(T ) = 3a(T )+1

2
. This completes

the proof. �
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We conclude this paper with an open problem.

Conjecture 1. For any connected graph G of order n ≥ 2 with δ(G) = 1,
γ×2(G) ≤ 3a(G)+2

2
.
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