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ABSTRACT.  In the present paper we rely on the so called u-model of the dynamics of 
microtubules. We demonstrate how a crucial differential equation can be solved using the 
method of factorization. It was shown that the solutions match the ones obtained using the 
standard procedure.  
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INTRODUCTION 

 
Cell cytoskeleton of eukaryotes has a dynamic nature and is composed of three types of 

filaments: actin filaments, intermediate filaments and microtubules [1]. Microtubules are the 
most stiff of the three types of filaments. They are composed of heterodimers consisting of α and 
β tubulins. The heterodimers have the same orientation all along microtubules and their α and β 
ends are called minus (-) and plus (+) end, respectively. 

A row of αβ heterodimers represents a protofilament, while 11-16 protofilaments form a 
hollow tube (cylinder) which is a microtubule. If the number of protofilaments in microtubule is 
13 they all lie parallel to the microtubule axis. Otherwise, they wind slowly helicoidally around 
the microtubule axis. The length of the αβ heterodimer is nm8=l  [2,3] and its dipole moment is 

Debye337=p  [2,3]. α tubulin is positively and β tubulin is negatively charged [2]. 
The minus (-) end of microtubule usually starts at an organizing center of microtubules in 

the cell represented with the so called centrosome, usually with a pair of centrioles [4]. In the 
interphase cells the centrosome is approximately at the center of the cell. The other, (+) end of 
microtubule, radiates to the periphery of the cell. An exception to that rule is a neuron, where 
about 40% of microtubules in their dendrites are oriented with their (-) ends towards the neuron’s 
periphery [4]. 

Outer and inner diameters of a microtubule are nm25  and 5nm1 , respectively. Both α 
and β monomers bind one GTP molecule. Soon after polymerization into a microtubule the β 
monomer hydrolyses its GTP molecule to GDP and phosphate Pi [4]. This hydrolysis makes the 
microtubules unstable and prone to disintegration (which happens always from the ends, never 
from the walls of the microtubule). Microtubules with slowly hydrolysable analogs of GTP are 
much more stable [4]. Microtubules can be as long as µm20  in vivo and mm3  in vitro [4]. 
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In this paper we consider the so called u-model of the microtubule dynamics. A crucial 
partial differential equation, which describes this dynamics, can be transformed into an ordinary 
differential equation. It is demonstrated that the latter one can be solved using the method of 
factorization. Finally, we compare solutions obtained by the method of factorization with the 
solutions obtained by the standard procedure. Of course, the same procedure can be applied for 
solving similar equation, i.e. to different models explaining dynamics of microtubules. 
 
 

THE U-MODEL OF DYNAMICS OF MICROTUBULES 
 

The u-model [2] has the same form as the z-model [3] and we get the same crucial 
ordinary differential equation, but the corresponding coordinates nu  and nz  of an n-th αβ 

heterodimer have different meaning. In the u-model αβ heterodimers rotate but nu  is the 

projection of the tip of the n-th dimer on the protofilament direction [2]. Hence, it is common to 
call the model as the longitudinal one. In the z-model αβ heterodimers have a longitudinal degree 
of freedom and nz  is the longitudinal displacement of the αβ heterodimer along protofilament 

direction [3]. 
Interaction between αβ heterodimers in one protofilament is much stronger than 

interaction between αβ heterodimers belonging to neighboring protofilaments [5,6]. Influence of 
neighboring protofilaments is included through a potential )( nuV : 
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where A , B  and C are positive model parameters and EqC = , where 0>E  is the intrinsic 
electric field and 0>q  is the surplus of charge of the αβ heterodimer. 

We assume that αβ heterodimer has only one degree of freedom [2,3,5]. From now on we 
choose the label nu . The Hamiltonian for one protofilament of the microtubule reads [2,3,5] (the 

Hamiltonian in the z-model is the same except for nz  playing the role of nu ):     
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where dot means the first derivative with respect to time, m is a mass of the αβ heterodimer, k  
is an interdimer stiffness constant and n counts αβ heterodimers in the protofilament. 
 Taking 
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the Hamiltonian becomes 
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   Equations of motion of the αβ heterodimers are 
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where NP
nQ
)

  is a nonpotential generalized force. Our nonpotential generalized force is viscous 

force 
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where γ is a viscosity coefficient. 
Combining (4), (5) and (6) we get:  
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   Now we apply the continuum approximation ),()( txutun →  аnd use a series expansion   
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where l  is the length of the αβ heterodimer. All this brings about a following partial differential 
equation [2]:  
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   We are interested in the solutions of the above equation which have the form of the traveling 
wave )(ξu , where ξ  is a unified dimensionless variable 
 

tx ωκξ −= ,                                                                                                                 (10) 
 

and κ  and ω  are constants. We straightforwardly obtain an ordinary differential equation 
 

( ) 03222 =−+−′−′′− qEBuAuuulkm γωκω ,                                                           (11)  
 

where 
ξd

du
u =′ . Introducing a dimensionless function ψ  defined as 
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we finally get 
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Equation (13) is the crucial ordinary differential equation that we want to solve using the 
method of factorization. 

The potential which describes the influence of the neighboring protofilaments is 
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which can be obtained according to equations (4) and (12). The values of ψ  for which the 
potential )(ψV  has extreme values are the solutions of the following equation  
 

0)( 3 =−−=′ σψψψf .                                                                                                    (16) 
 

Equation (16) may have 3 solutions, 
1ψ , 

2ψ  and 
3ψ  and they will be of our interest in further 

discussions. For 
33

2
0 =< σσ  equation (16) has 3 real solutions, and for 0σσ ≥  only one real 

solution. The solutions for 0σσ <  are [2]: 
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where 
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The function )(ψf  is shown in Fig. 1 for two values of the parameter σ . One can see 

that 1ψ , 2ψ  and 3ψ  describe a right minimum, a maximum and a left minimum, respectively. 

For 0σσ =  the left minimum and the maximum disappear, coalescing in the saddle point. 
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Fig. 1. The function )(ψf  for: (a) 03.0 σσ =   and  (b) 08.0 σσ =  
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For 0σσ ≥  the only one real solution of equation (16) is [2]: 
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SOLVING EQUATION (13) BY THE METHOD OF FACTORIZATIO N 
  
   Our ordinary differential equation that should be solved in this Section is equation (13). 
Because of the free term σ− , the method of factorization cannot be immediately applied [7]. To 
get rid of this free term we introduce the following substitution [7]:  
 

δϕψ += ,                                                                                                                     (22) 
    

where δ  is a constant to be determined. 
   Inserting equation (22) into (13) we obtain:   
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which indicates 
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We should notice that equation (24) is the same as (16). Hence, because of (24) equation 
(23) becomes 
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We seek (25) in the form [7]:  
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where 1f  and 2f  are functions of ϕ  to be determined. This yields:  
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   Comparing equations (25) and (27) we see that )(1 ϕf  and )(2 ϕf  satisfy:  
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It was pointed out that equations (24) and (16) were equal, which means that δ  can have 

the values given by equations (17)-(20). As 0σσ <  has been assumed we can check that 

0
4

3
1 2 ≥− δ , which means that both 1ϕ  and 2ϕ  are real. 

Equation (29) indicates that we should look for the functions 1f  and 2f  in the form: 
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where the parameters a  and α  should be determined, while k  is the “working” parameter and, 
of course, the final result should not depend on it.  

From (28) and (31) we easily obtain 
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                . 
which gives the following system of equations: 
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Equation (33) can be written in a more convenient form 
 

1222 −−= ka α .                                                                                                                      (35) 
 

   It was pointed out that k  was a “working” parameter in a sense that the final result will not 
depend on it. Hence, we can safely assume an integer. According to (35) we see that 
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We can easily check that  
 

02 21 >− ϕϕ                                                                                                                         (38) 
 

for any 0σσ < . For example, this can be seen from the graph showing the function in equation 

(38) as a function of σ . Of course, the expressions for 1ϕ  and 2ϕ  are given by (30), while the 
values for δ  are given by equations (17)-(20). Hence, equations (34), (37) and (38) yield to the 
following important formula: 
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Also, equations (31) and (37) bring about 
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The functions 1f  and 2f  could have been sought in the form:  
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which was studied recently [10]. Of course, both procedures should give the same results, as was 
explained above. 

A next step is to obtain the function )(ξϕ . Equations (26) and (40) indicate [7]: 
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Its direct integration brings about  
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where 0ξ  is a constant of integration. A solution, having physical meaning, is 
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where 00 =ξ  is assumed. Notice that 1ϕ  is negative for 1ψδ =  and positive for 2ψδ =  and 

3ψδ = . Expressions and signs of 1ϕ  and 2ϕ  are shown in Table 1. Obviously, the expressions 

for 21 2ϕϕ −  are crucial as can be seen from equations (39) and (45). The importance of 12 2ϕϕ −  
will be explained later. 
 

Table 1. Important expressions for all three values of δ . 
 

δ  
1ψ  2ψ  3ψ  

1ϕ  0sincos3 <+− FF  0sincos3 >− FF  0sincos3 >+ FF  

2ϕ  0sincos3 <−− FF  0sin2 <− F  0sin2 >F  

21 2ϕϕ −  03 3 >− ψ  03 3 >− ψ  03 2 >− ψ  

12 2ϕϕ −  03 2 >− ψ  03 1 <− ψ  03 1 <− ψ  
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Finally, we can straightforwardly construct the function )(ξψ  using equations (17)-(19), 
(22) and (45). To understand the physical meaning of the solutions we should look for the 
asymptotic values )( ∞±ψ . For example, for 1ψδ =  and for the positive sign in (45) we obtain 
 

1)( ψψ =−∞ ,      2)( ψψ =+∞ .                                                                                              (46) 
 

This obviously represents a transition from the right minimum to the maximum (See Fig. 1). If 
we had chosen the minus sign in (45) we would have obtained 2)( ψψ =−∞  and 1)( ψψ =+∞ , 
representing the same transition but in opposite direction. Following the same procedure we 
obtain the remaining two pairs of the asymptotic values. All this is shown in the upper half of 
Table 2.  
 

Table 2. Asymptotic values of the function )(ξψ  for all three values of δ . 
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It is obvious that (31) is not a unique choice for 1f  and 2f . Alternative possibility is  
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Following the procedure explained above we obtain the remaining two rows in Table 2 as well as 
(36) and (37). Also, equation (39) becomes 
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The absolute value exists because the sign of 12 2ϕϕ −  depends on the choice of δ  as shown in 
Table 1. 

Table 2 shows that there are three pairs of the asymptotic values. However, a careful 
inspection of the solutions )(ξψ  shows that that there are actually three pairs of the solutions. 

Namely, 1ψδ =  and 2ψδ =  give the same function )(ξψ  for 1f  determined by (31) and so on. 

All these solutions are shown in Fig. 2 for 1=ρ  and 09.0 σσ = . The corresponding asymptotic 

values are: 14.11 =ψ , 42.02 −=ψ  and 72.03 −=ψ . Hence, there are three possible solutions for 

equation (13). Notice that for the two solutions for which 1)( ψψ =−∞  the positive sign in (45) 
was assumed, while the negative one was used for the remaining solution explaining transition 
from the left minimum to the maximum. Of course, one can say that we can change the sign in 
(45) and obtain three more solutions. This is correct but those new solutions would not represent 
any new physics. Namely, to change the sign in (45) is the same as to replace ξ  by ξ− . 
Obviously, kink and antikink solitons describe nonlinear dynamics of MTs. Of course, Fig. 2 
was done according to equations (17)-(20), (22), (30) or Table 1, (39) and (45).  
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Fig. 2. The function )(ξψ  for 1=ρ  and 09.0 σσ = . 

 
 

CONCLUSIONS AND DISCUSSIONS 
 

In the present paper we showed how the method of factorization can be used to solve 
problems in nonlinear dynamics of MTs. The procedure was demonstrated using u-model of 
MTs. It was shown that nonlinear MT dynamics can be represented by existence of kink and 
antikink solitons in MT chain. The same procedure can be applied to somewhat simpler ϕ -
model [8].  

Of course, equations like (13) can be solved using different methods. Examples could be 
modified extended tanh-function method [2] and the procedure based on Jacobian elliptic 
functions [6]. These two methods require trial functions. In this sense, the procedure used here is 
more general as no trial function is required. 

Finally, we show that the function )(ξψ , derived in this paper, is the same as the one 
obtained more than 20 years ago using different procedure [5,9,10], which we can call as 
standard method. To obtain the function uu ≡)(ξ  we should use equations (12), (22) and (45). 

As an example we pick up the case 3ψδ = , for which one can easily show that  
 

311 ψψϕ −= .                                                                                                                     (49)   
 

Hence, we easily obtain 
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To compare (50) with, for example, equation (22) in Ref. [9], we should comment the expression 
for α . Namely, following [9] we can write 
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where 0c  and v  are sound and solitonic velocities, respectively. It was assumed that vc >>0
 
as 

well as vtxs −=  instead of (10) above. Hence, under these circumstances, equation (50) 
becomes 
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which are equations (21) and (22) in Ref. [9]. Notice that 3u  in this paper corresponds to 2u  in 

Gordon’s notation. 
It is important to point out that our approach is more general as nothing was assumed for 

α . It was shown here and in Ref. [2] that α  is negative. However, different model [8] may 
bring about positive α . This means that )(ξu  represents a supersonic soliton, which is not 
uncommon in physics [11]. 

Finally, one very important point deserves to be discussed. To derive equation (13) the 
continuum approximation was used. A key question in nonlinear biophysics is either an 
essentially discrete system can be considered as a continuum one. As for the MTs this question 
was answered recently [12]. Namely, the initial discrete equation (7) was solved numerically and 
the result excellently matches the one shown here, based on the continuum approximation. This 
proves that the continuum approximation is applicable in MT research.       
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