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ABSTRACT. In the present paper we rely on the so called uanofl the dynamics of
microtubules. We demonstrate how a crucial difféekrequation can be solved using the

method of factorization. It was shown that the 8ohs match the ones obtained using the
standard procedure.
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INTRODUCTION

Cell cytoskeleton of eukaryotes has a dynamic eatmd is composed of three types of
filaments: actin filaments, intermediate filamemtsd microtubules [1]. Microtubules are the
most stiff of the three types of filaments. Theg aomposed of heterodimers consisting ahd
B tubulins. The heterodimers have the same ori@matil along microtubules and theirandf
ends are called minus (-) and plus (+) end, respygt

A row of oy heterodimers represents a protofilament, whild @ protofilaments form a
hollow tube (cylinder) which is a microtubule. K& number of protofilaments in microtubule is
13 they all lie parallel to the microtubule axigh€@wise, they wind slowly helicoidally around
the microtubule axis. The length of thg heterodimer id = 8m [2,3] and its dipole moment is
p = 337Debye [2,3]. o tubulin is positively ang@ tubulin is negatively charged [2].

The minus (-) end of microtubule usually startamiorganizing center of microtubules in
the cell represented with the so called centrosarseally with a pair of centrioles [4]. In the
interphase cells the centrosome is approximatethetcenter of the cell. The other, (+) end of
microtubule, radiates to the periphery of the c&h. exception to that rule is a neuron, where
about 40% of microtubules in their dendrites aierded with their (-) ends towards the neuron’s
periphery [4].

Outer and inner diameters of a microtubule 262 andl 5nm respectively. Botlu
and B monomers bind one GTP molecule. Soon after polaton into a microtubule thg
monomer hydrolyses its GTP molecule to GDP and mpinate P[4]. This hydrolysis makes the
microtubules unstable and prone to disintegratishi¢h happens always from the ends, never
from the walls of the microtubule). Microtubulestlwislowly hydrolysable analogs of GTP are
much more stable [4]. Microtubules can be as lg8@m in vivo and 3mm in vitro [4].
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In this paper we consider the so called u-modehefmicrotubule dynamics. A crucial
partial differential equation, which describes tty;amics, can be transformed into an ordinary
differential equation. It is demonstrated that ber one can be solved using the method of
factorization. Finally, we compare solutions obéairby the method of factorization with the
solutions obtained by the standard procedure. Qfsey the same procedure can be applied for
solving similar equation, i.e. to different modebglaining dynamics of microtubules.

THE U-MODEL OF DYNAMICS OF MICROTUBULES

The u-model [2] has the same form as the z-modebf@ we get the same crucial
ordinary differential equation, but the correspargdicoordinatesu, and z, of an n-thof
heterodimer have different meaning. In the u-modg&lheterodimers rotate but, is the

projection of the tip of the n-th dimer on the mfdament direction [2]. Hence, it is common to
call the model as the longitudinal one. In the zelap heterodimers have a longitudinal degree
of freedom andz, is the longitudinal displacement of thf heterodimer along protofilament
direction [3].

Interaction betweenufy heterodimers in one protofilament is much strongjesn
interaction betweenf heterodimers belonging to neighboring protofilatsgb,6]. Influence of
neighboring protofilaments is included through gepaial V (u,, ):

V(u,) = —% Au? +% Bu! -Cu,, 1)

where A, B and Care positive model parameters a@d= Eq, where E >0 is the intrinsic
electric field andg > 0 is the surplus of charge of thf heterodimer.

We assume thatf} heterodimer has only one degree of freedom [2,Bf8m now on we
choose the labal, . The Hamiltonian for one protofilament of the neerbule reads [2,3,5] (the

Hamiltonian in the z-model is the same exceptZpmplaying the role ol ):

H = ZB m 4 Lk, -u)’ +V(un)] @)

where dot means the first derivative with respedirhe, m is a mass of thefy heterodimerk
is an interdimer stiffness constant and n coufiteeterodimers in the protofilament.
Taking

p, = mu,, ©))

the Hamiltonian becomes

2
P, .1 2 1., 1_ 4
H= " +=Kk(U,, —Uu,) —Cu, -=Au,” +=Bu," |. 4
; om Tt "2 a4t @

Equations of motion of the heterodimers are

=P, o e (5)
op, m ou

n
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where Qrﬂ“P is a nonpotential generalized force. Our nonpodémgeneralized force is viscous
force

Q" =Fy, =4, (6)
wherey is a viscosity coefficient.

Combining (4), (5) and (6) we get:
mi_ =k(u,, +u_, —2u )+qE+Au -Bu’ -, . (7)

Now we apply the continuum approximation(t) — u x t( and use a series expansion

2
o +6un|+16 Uy 2

u., + , 8
nel "Tax 2 ox? ®)

wherel is the length of thef heterodimer. All this brings about a following palk differential
equation [2]:

2 2
mg—ldzg

ou
-gE- Au+Bu® +y— =0. 9
az " ooax O Vot ©

We are interested in the solutions of the abeyaation which have the form of the traveling
wave u(£), whereé is a unified dimensionless variable

& =KrX—at, (20)
and x and a are constants. We straightforwardly obtain anradi differential equation

(mwz—klzkz)u"—ywu'—Au+ Bu’-qE=0, (11)

whereu' = j—; Introducing a dimensionless functign defined as

Y= Fu, (12)
B

we finally get

ay"-py' -y +y®-o=0, (13)

where

_ ma’” - kl*k? _ gE
a=—, g=——,
: NE

B
dy
andy' =——.
[/ 0

Equation (13) is the crucial ordinary differentegjuation that we want to solve using the
method of factorization.

The potential which describes the influence ofrtbgghboring protofilaments is
61
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(14)
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Ly o) =% ), (15)

V) =Gyt -2

which can be obtained according to equations (4) @2). The values ofy for which the
potentialV () has extreme values are the solutions of the fatigwequation

f'@)=¢°-y-o=0. 16}
Equation (16) may have 3 solutiong,, ¢, and ¢, and they will be of our interest in further
discussions. Fou < g, :i equation (16) has 3 real solutions, anddoe g, only one real

33

solution. The solutions for < g, are [2]:

W, = %COSF , (17)
-2 an
W, = 3008(F t3 ), (18)
=2 osE + 21
Y, = 3cos(F + 3 ), (19
where
arccos(g)
F :—3 Yo . (20)

The function f (¢) is shown in Fig. 1 for two values of the parameterOne can see
that ¢,, ¢, and ¢, describe a right minimum, a maximum and a leftimirm, respectively.
For o = g, the left minimum and the maximum disappear, caahesin the saddle point.

I/

Fig. 1. The functionf (¢) for: (a) o = 0.30, and (b)o = 080,
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For o = g, the only one real solution of equation (16) is [2]

. {Zarcta { #ta{;arcs@ﬂ}

SOLVING EQUATION (13) BY THE METHOD OF FACTORIZATIO N

(21)

Our ordinary differential equation that should bolved in this Section is equation (13).
Because of the free termo , the method of factorization cannot be immediasgplied [7]. To
get rid of this free term we introduce the follogisubstitution [7]:

Y=¢+9J, (22)

where d is a constant to be determined.
Inserting equation (22) into (13) we obtain:

ag" - pg' —(1L-30°)p +30p* +¢*+0°-0-0 =0, 23)
which indicates
0°-0-0=0. (24)

We should notice that equation (24) is the sam@ @s Hence, because of (24) equation
(23) becomes

O 35)¢ ¢ +§¢3=o. (25)

o -Ly -
a

We seek (25) in the form [7]:

d d
(d_f fj(df }¢ 0, (26)

where f, and f, are functions ofp to be determined. This yields:

d’¢ (df, d¢ _

ae? (d¢¢ f+fjdf+ff2¢_0' (27)
Comparing equations (25) and (27) we see th@) and f,(¢) satisfy:

df, _P

d¢¢+fl+f2_a’ (28)

and

f.f, =§[- (1-35%) +35¢+¢2]=§(¢-¢1)(¢-¢2), §29

where
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¢ :_7"' 1—252 ; 9, :_?_ 1_252 : (30)

It was pointed out that equations (24) and (16)evezrual, which means that can have
the values given by equations (17)-(20). &s<og, has been assumed we can check that

1-357 > 0, which means that bot#, and ¢, are real.
Equation (29) indicates that we should look for fitmectionsf, and f, in the form:

=2 (-9, f,=— = _(p-9,), (31)
a aqa

where the parametei® and @ should be determined, while is the “working” parameter and,
of course, the final result should not depend on it
From (28) and (31) we easily obtain

2a 1 a 1 _p
[?+Wj¢_?¢1_m¢z—;, (32)

which gives the following system of equations:

2a 1

—+—— =0, 33

a* aa"™* (33)
a 1 _p

_?¢1 - aal_k ¢2 - ; : 346

Equation (33) can be written in a more convenientf

2a® = —g*7*, (35)

It was pointed out thalt was a “working” parameter in a sense that thel fiegault will not
depend on it. Hence, we can safely assume an mt&geording to (35) we see that

a<0 (36)
and

o, =219 (37)
1,2 —@'

We can easily check that
¢1 - 2¢2 >0 (38)

for any o < g, For example, this can be seen from the graph stwpthie function in equation

(38) as a function oty . Of course, the expressions fgy and ¢, are given by (30), while the
values ford are given by equations (17)-(20). Hence, equat{@d3}, (37) and (38) yield to the
following important formula:
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2
Fa= P2 (39)
¢1 - 2¢2
Also, equations (31) and (37) bring about
L=t 2 (4-4,), 40§
N-2a
and
S
f,=F|—(@-¢,). (41)
-a
The functionsf, and f, could have been sought in the form:
h=-Pe(@-),  f=——(p-4)) (42)
1 m 1/ 2 aﬁ 27

which was studied recently [10]. Of course, bothgedures should give the same results, as was
explained above.
A next step is to obtain the functigi(¢) . Equations (26) and (40) indicate [7]:

% = 1 —
Its direct integration brings about
|09¢;¢1 :i\/%(f—fo), (44)

where ¢, is a constant of integration. A solution, haviritygical meaning, is

pe=—"2 (45)

L b
1+e V2
where é, = 0is assumed. Notice that, is negative ford =¢, and positive foro =¢, and
0 =y,. Expressions and signs ¢f and ¢, are shown in Table 1. Obviously, the expressions

for ¢, —2¢, are crucial as can be seen from equations (39§4%)d The importance ap, — 2¢,
will be explained later.

Table 1. Important expressions for all three vahfes .

0 2 v, (178

¢ ~/3cosF +sinF <0 | +/3cosF —sinF >0 | ¥/3cosF +sinF >0

@, —/3cosF -sinF <0 - 2sinF <0 2sinF >0
¢1_2¢2 _‘?"//3>0 ‘3lﬂ3>0 _3‘/’2>0
¢2_2¢1 _&/’2>O _3‘/’1<0 _3‘/’1<0
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Finally, we can straightforwardly construct the d¢tian ¢(¢) using equations (17)-(19),
(22) and (45). To understand the physical meaninghe solutions we should look for the
asymptotic valueg/(+ e .)For example, fod =, and for the positive sign in (45) we obtain

Y(o) =g, YlHo)=y,. (46)

This obviously represents a transition from thdtigiinimum to the maximum (See Fig. 1). If
we had chosen the minus sign in (45) we would heitainedy/(—wo) =¢, and ¢(+o) =y, ,
representing the same transition but in oppositection. Following the same procedure we
obtain the remaining two pairs of the asymptotituga. All this is shown in the upper half of
Table 2.

Table 2. Asymptotic values of the functign(¢) for all three values o8 .

g w, v, W,
Y (~) Y, Y, ¥, f;
Y (+) Y, Y, Y, f;
Y(-) /7 /8 /8 fll
e v, v, v, 3

It is obvious that (31) is not a unique choice forand f, . Alternative possibility is
_a - 1
f; =?(¢-¢2), fa =W(¢-¢1)- (47)

Following the procedure explained above we obtagrémaining two rows in Table 2 as well as
(36) and (37). Also, equation (39) becomes

—_ p2
J-a 6. -20] (48)

The absolute value exists because the sign,of2¢, depends on the choice of as shown in
Table 1.

Table 2 shows that there are three pairs of thenpstic values. However, a careful
inspection of the solutiong ( 3hows that that there are actually three paithefsolutions.
Namely, 0 =¢, and d =¢, give the same functiog ¢( for f, determined by (31) and so on.
All these solutions are shown in Fig. 2 for= afd o = 090,. The corresponding asymptotic
values arey, = 114, ¢, =-042 andy, =— 072 Hence, there are three possible solutions for

equation (13). Notice that for the two solutions ¥ehich ¢/(—) = ¢, the positive sign in (45)
was assumed, while the negative one was used doretinaining solution explaining transition
from the left minimum to the maximum. Of coursegaran say that we can change the sign in
(45) and obtain three more solutions. This is adrbait those new solutions would not represent
any new physics. Namely, to change the sign in {@5he same as to replace by -¢.
Obviously, kink and antikink solitons describe noaar dynamics of MTs. Of course, Fig. 2
was done according to equations (17)-(20), (22)) (8 Table 1, (39) and (45).
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-0.4+ =
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Fig. 2. The functiony(§) for p=1ando = 090,.

CONCLUSIONS AND DISCUSSIONS

In the present paper we showed how the methodabbriaation can be used to solve
problems in nonlinear dynamics of MTs. The procedwas demonstrated using u-model of
MTs. It was shown that nonlinear MT dynamics canrégresented by existence of kink and
antikink solitons in MT chain. The same procedua@ de applied to somewhat simplgr
model [8].

Of course, equations like (13) can be solved udiffgrent methods. Examples could be
modified extended tanh-function method [2] and firecedure based on Jacobian elliptic
functions [6]. These two methods require trial fiiores. In this sense, the procedure used here is
more general as no trial function is required.

Finally, we show that the functiogy & (, derived in this paper, is the same as the one
obtained more than 20 years ago using differentquore [5,9,10], which we can call as
standard method. To obtain the functio€) =u we should use equations (12), (22) and (45).

As an example we pick up the cade ,, for which one can easily show that

¢ =4, ;. (49)

Hence, we easily obtain

(50)

QAT

To compare (50) with, for example, equation (22iRef. [9], we should comment the expression
for a . Namely, following [9] we can write

KI%&? —ma? = k*(kI> - mv?) = k%(mg? - mv?), (51)

67
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where c, andv are sound and solitonic velocities, respectivitlwas assumed thay, >>v as

well as s=x-vt instead of (10) above. Hence, under these cir@amoss, equation (50)
becomes

Uy = U, .1 (B
T edpw we L 'icoJ;’ 9

which are equations (21) and (22) in Ref. [9]. Netihatu, in this paper corresponds tg in
Gordon’s notation.

It is important to point out that our approach isrengeneral as nothing was assumed for

a . It was shown here and in Ref. [2] that is negative. However, different model [8] may
bring about positivea . This means that(é) represents a supersonic soliton, which is not

uncommon in physics [11].

Finally, one very important point deserves to becdssed. To derive equation (13) the

continuum approximation was used. A key questionnanlinear biophysics is either an

essentially discrete system can be consideredcastamuum one. As for the MTs this question
was answered recently [12]. Namely, the initiacdée equation (7) was solved numerically and
the result excellently matches the one shown hersed on the continuum approximation. This
proves that the continuum approximation is appleab MT research.
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