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ABSTRACT. In the existing literature various numerical techniques have been devel oped
to quantize the confined harmonic oscillator in higher dimensions. In obtaining the energy
eigenvalues, such methods often involve indirect approaches such as searching for the
roots of hypergeometric functions or numerically solving a differential equation. In this
paper, however, we derive an explicit matrix representation for the Hamiltonian of a
confined quantum harmonic oscillator in higher dimensions, thus facilitating direct
diagonalization.
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INTRODUCTION

The d - dimensional confined harmonic oscillator (cho) of mass m and frequency « is
described by the Hamiltonian

— hz 2 1 2
H(x) = —— 0%+ = maw’x?,
2m 2

where X = (X, X%,,...,%;) with |[x |<L, xX*=x'x and O is the d - dimensiona cartesian
gradient operator. H(x) being a Kronecker sum, we can aso write

H(x)= 2 H (%),
where

n? 0* 1
Hi(xi):_%a—xiz'FEmsziz, | % | L.

We dso notethat H(x) =T (x) +V(x), where

T()=2T(x) and V() = DV (x),
with

2 2

he 0 1 :
T.(%) :_%a_ﬁ and V,(x) :Ema)zxf, (i=1.2,...,d).
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Various techniques have been employed by researchers to numerically diagonalize the
Hamiltonian of a confined oscillator. These methods usually involve searching for roots of
hypergeometric functions, as can be seen for example in references (AL-JABER, 2008) and
(MONTGOMERY et al. 2010). In (CamPOY et al. 2002) a method based on the expansion of the
wavefunction aswell as numerical integration of an ordinary differential equation were used to
obtain the energy eigenvalues and wavefunctions of a one-dimensional confined oscillator.

In this paper we will derive an explicit matrix representation for the Hamiltonian of the
confined d —dimensiona harmonic oscillator.

MATRIX REPRESENTATION OF THE OPERATORS

If we consider each operator T,(x) as living in an N — dimensional Hilbert space, then the
functions
1 T L(rm) (r+1)7x
)=,|]—cos — — |-——, r=01.2,...,N-1, 1
5,00= {an(zj e @

constitute a set of basis vectors of this N — dimensional Hilbert space since they are the
non-degenerate, mutually orthogonal and normalized eigenstates of the Hermitian operator T,
with corresponding eigenvalues

2
n2h2. )
8mL
Thus the operator T(x) livesin an N dimensional Hilbert space whose basis vectors can be
taken as the direct product vectors

0.9 =006 %0 %) =[]0, (), 52012, N* -1 ©

g =(r+1)%¢, r=012,...,N-1, wheree=

where

s:{NiJnmdN,izlzwqd, 4)
where |, the floor of q, isthe nearest integer not greater than q.

Thus each state (_(x) is uniquely characterized or |abelled by avector s=(s,s,,...,s,) such
that s 0[0,1,2,...,N —1].
Denoting the eigenvalues of T(x) by e,, we have

d d
€ ZZ_;‘% =£;(§ +1)?, s=012,...,N%-1,

with s asdefinedin (4) and £ asgivenin (2).

Since the cho Hamiltonian H (x) livesin the same Hilbert space as T(x) , the complete set of
functions {¢} , with ¢, as given in (3), will be used as the basis vectors for the matrix
representation of H .

Thus, for s=0,1,2,...,N° -1 and t =0,1,2,...,N® =1 and with s and t, as given in (4), the
N matrix elementsof H are given by
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=Z{|‘!< e O L[], 06 )>}

; ®)
:; ,»D Jsj‘j (<¢5i ‘Hi 4, >)
= d G Hi]¢I )
i s

where we have introduced a d — dimensiona vector ¢ whose components are N x N¢
symmetric binary matrices, ¢ with elements given by

|‘| o ©)

so that ¢, =1 if either the two vectors s and t are one and the same vector, s=t, or they

differ only at the i™ component, otherwise C, = 0.

We note that

3, G =0s. (7

In(5), H,,i=12,...d are N® x N, symmetric matrices with elements

Hi%ti :<¢ ‘H' ¢t>
=(4, 1|0, )+(#s M|#,) (®)
=T +V
so that (5) can now bewrittenas Hy =T +T/St witTli
T, =f’21c>.gTi%t .V =f’zlqg\4%t 9

We introduce yet another d —dimensional vector, @, whose components, a; , are N x N*
symmetric binary matrices, in terms of which the ¢ matrices may also be expressed. The g,
matrices are defined through their elementsby a; =4, .

Properties of theauxilliary matrices ¢ and g,
It is straightforward to verify the following property for the a; matrices:

aa; =a;a =NTga +NTH(1-G)d 4, (10)
where
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isthe N xN® all-ones matrix. The a, matrices are singular and have trace equal to N® . The
eigenvalues of a, are N repeated N times and O repeated N - N times. Finaly using
multinomial expansion theorem and (10), it is readily established that the matrix a = Zid:lai
satisfies

a’=N""g+N"*d(d-1)J _,.
From (6) it follows that

G, = Oy "'(:L_a'ist )5ast,d—l (11)
and
d
Co =20, =0d+3, o
i=1
Explicitly
2( : —q_
cos aistn‘Z) if ag=d-1
0 if a,<d-1
Cl =
st
1 if s=t
and
0 ifay<d-1
1 ifa,=d-1
Cy = e
d if s=t

From the definition of the ¢, matrices the following further properties are evident:
1. ¢"=N""c,for nOZ".
2. Theeigenvaluesof ¢ are 0 and N, each being N —fold degenerate.
3. The ¢ matrices are singular and have trace N°.

Representation for T

Since TiSiti = <¢Si ‘Ti ¢ti > , from (9) we have

d
Ta = iz=1:c'st£(S +1)255iti

= 68,35 +1)"

i=1

(12)

where we have used (1), (2) and (7).
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Representation for V

Since Vi%ti = <¢Si ’V.
and noting that the only non-zero matrix elements of V, arethose for which s and t; are of the

same parity, we obtain
_ = Ke (1_5%ti ) - (1_5%% ) COSZ[(S _t_)l_-[}
54 2 (Sﬁ -t )2 + 5s.|ti (51 G+ 2)2 2

Ne Vg 1
R
8 1| 6 (s+1)
where A =ahle =€, /€.

Substituting for V,  in the second of (9) and using (7) and (11), we obtain

Ne _|md & 1
vg=8o;[6—z }

= (s +1)

12{[( ! )5+)a ‘(s@;jf'z))z}os{(s _ti)]ﬂ}'

We therefore see that off-diagonal survival of Vg is possible (but not guarranteed due to the

¢ti>' performing the indicated integrations, with ¢Si and ¢ti asgivenin (1)

presence of the cos” term) only if a, =d -1, that is only if there exists a kD[l,d] such that
s =t if izk but s #t,, sothat thevectors r and s differ only at the k™ entry.

Thus,
e _|md & 1
V, = 0. -
, =X {6 ;(wy}
Ne 1 1 T
285 - 2 (s -t )2 |
2 ”S"d_l{(&—tk)z (sK+tk+z)2}°°S[(‘°‘< k)z}
where

k= 21(1 )21(1 .

Representation for H
Adding the matrix elements T, and V, wefind that the matrix elements for the Hamiltonian of

the d — dimensional oscillator, with the direct product of eigenstates of the particle in a one
dimensional box as basis, are given by

H. =gdgg(s+1)2+/18£ { : Zd:(sﬂ)}

i=1

Ne 1 1 T
—0J - 2 -1, )=,
+ > ag,d—l{(% _tk)2 (S(+tk+2)2}003 [(Sk k)z}
where



APPLICATION: APPROXIMATE ANALYTIC EXPRESSION
FOR THE ENERGY SPECTRUM OF THE 1-DIMENSIONAL CHO

Based on our discussion in the previous sections culminating in the derivation of the explicit
matrix elements of the d — dimensional confined harmonic oscillator, it isnow straightforward,
in principle, to find the eigenvalues of the oscillator. In practice however, the quantization
remains a formidable task because of the exponential growth of the size of the Hamiltonian
matrix with d . However, since the matrix elements are available in explicit form, they can be
gainfully employed, for example in perturbation calculations, to obtain approximate anal ytical
results.

It is our am in the remaining part of this paper to derive an approximate analytic
expression for the energy spectrum of the 1-dimensional confined harmonic oscillator. We
will treat the potential energy of the confined oscillator as a perturbation of the kinetic energy
term, the latter being the exactly solvable particle in a box Hamiltonian, with the
non-degenerate eigenstates given in (1). Results from perturbation calculations, in the one
dimensional case, can aso be found in references BA1JAL and SINGH (1955), PADNOS (1965)
and GUEORGUIEV et al. (2006).

Energy spectrum of the 1-dimensional cho
For the discussion of the confined harmonic oscillator in one dimension, it is convenient to drop
the subscriptson s and t. Alsoweshall referto H,, V,, T, and x simplyas H,V, T and x

respectively. The eigenvalue problem is therefore
H|E)=E|E) r=012..N-1
Since the eigenstates of T(x) are known, being the ¢, (x) of (1), it is convenient, for small
values of the classical oscillator frequency, «, to treat V(x) as a perturbation of the exactly
solvable particle in abox Hamiltonian, T(X), with «/ as the perturbation parameter.
By noting that 9, 4, =9, o=1-94 wehave

VSt :&5St i—#
8 6 (s+1)

+/]2£{ i-s,) (-9, }COSZ[(S_t)%T}

2 |(s-tf+a, (s+t+2)

(13)

and

_ 2 Azf 772_ 1
H, =e&d,(s+17+ 5 5{ 5 —(s+1)2}

je{ (i-5.) _ (1-59)2}032[(54)’_;}

2 | (s-tf+a, (s+t+2)
Since the states | E,) are non-degenerate, E, can be approximated, using standard perturbation
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theory, as

E =E?+EY+EP+EY.
The zeroth order correction to the energy of the one dimensional confined harmonic oscillator,
E®, being the energy of the one dimensiona particle in a box and the first order correction,
E® , being the expectation value of the perturbation V(x), in each state ¢, (X) , are
straightforward to calcul ate:

E© =g =¢g(r+1)% from
and
)
E® =V, Aoy 1 ~ |, from
8|6 (r+1)
Xe| 1
= 2)————|,
8 _Z() (r+1)2}

where {(m) isthe Riemann zetafunction defined by
> 1
¢(m)= zr_m
r=1
The second order correction to the energy of the one dimensional confined harmonic oscillator,

E®, isgiven by

(o]

2 — VrsVsr —_ < VrsVsr S VrsVsr
Er S=0Z grs ; grs * S=Zr+l grs ’ (14)
SEIr
where
E =& —&E,=&(r+s+2)(r-s), (15)
so that
2¢(r+1) 1 N 1
Es (r +S+2) (r _S)
and (16)
25(s+1) __ 1 N 1
£ (r+s+2) (r-s)

SinceV isarea symmetric matrix, (14) issimply
I‘—lV2 0 V2
gr =3 Vg 3 Ve, a7)
s=0 grs s=r+1 grs
We note that the matrix elements occuring in (17) are necessarily off-diagonal (s#r ).
Furthermore the only surviving elements V., according to (13), are those for which r and s

rs?

are both odd or both even. It therefore follows from (13) that

_Ael 1 1 o (e \TT
Vie = 2 {(r—s)2 (r+s+2)2}COS [(S t)z}

:AZE 1 : 1 1 + 1 2[(r_s)7_7:|
2 \(r-s) (r+s+2) \(r-s) (r+s+2) cos 2/

and using (16) we have

V, = 2/1253%@32[0 - s)g} SZT. (18)

rs

From (15) and (18) and noting that
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cos“[(r - S)I—ZT} = cosz{(r - s)g}

we have

Vi _ . (r+1)%(s+1)? 2 (v _ )T
g__M E(r -9)°(r +s+2)° cos [(r s) 2}

and thus (17) now becomes

=0 =t S, (r —s)(f(:1+)5+ 2y COSZ[(r ] 5)7_27}

4 2N (s+1)° 2 ()T
+4A%e(r +1) S;,1 (F=95(r +542)° CoSs {(r S)E}

Classifying the energy correctionsin (19) by parity of r we have
E® = 4x'e(q+1)%(A, +B,) (20)

rs

(19)

with

_& (s+1)? 2| (q— )T
A =L aarers 093]

and
S (s+1)° 2[ ﬂ}
B = -S)— |,
! sgl(q—s)5(q+8+2)5 cos’| 0 )2
where q=2r for evenlevelsand q=2r +1 for odd levels.

Choosing
(s+1)° 2[ ﬂ}
= 2r—s)—
* (2r-9)°@2r+s+2)° cos’|( )2
in the following summation identity (see section 2.1.1 of GouLb 2011) for more general
formulas)

M (M —(Mmod2))/2 (M +(Mmod2))/i2-1
df= > fet Y (21)

=0 s=0 s=0
alows us to write (noting that f,,, =0 with the present choice of f,)
2r-1 (S+1)2 2|: ﬂ:|
= 2r—s)—
& ZO (@2r —s)°(2r +s+2)° (2 -5)7
_ r-1 (23+1)2 (22)
S (2r —25)°(2r +2s+2)°
13 (2s+1)y
- Tz Q5 5
2 (r—s)’(r +s+1)

s=0

1]

and
(23)

1 e (25+1)2
BZr ~ 510 Z _Q\5 5"
20 S (r=9)°(r+s+l)

Similarly, taking identity (21) into consideration, we have
z (5+1)° { n}
a = 2r—-s+1)—
Porn ;(Zr—s+1)5(2r r5+3)° ( )
r-1 2
- G — (24)
<5 (2r —2s)°(2r +2s+4)
_ 48 (s+1)’
20 S (r-9°(r+s+2)°
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and
(s+1)?
2r+l 210 S_ZH-]. (r _ S)5(r +s+ 2)5 ) (25)
We note that the above results can be combined into
3 (2s+1+qmod2)?
Aq - z _ 5 5
< (2r —2s)°(q+2s+2+qmod?2)

and
i (2s+1+qgmod2)®
& (2r —29)°(q+2s+2+qmod2)®’

where q=2r or q=2r +1.

Thefinitesums A, and A, ,, asgivenin(22) and (24) aswell astheinfinite sums B,,
and B,,,, asgivenin (23) and (25) are expressiblein closed form, in terms of the well-studied

polygamma functions; a computer algebra system, such as Waterloo Maple, comesin handy for
this purpose. Putting the results together in (20), the final result is (see the Appendix for the

Maple code)
4
Er(Z) — /1 & Z(4)2 _ 5((2)4 + 7 = r 20,1,2,...
128\ (r +1)° (r+1)" (r+1)
We remark that an equivalent result to ours, for E®, can aso be found in reference BAIJAL and
SINGH (1955). The sum was however |eft unevaluated in that paper.

In standard non-degenerate perturbation theory, the third order correction to the energy
of the one dimensional confined harmonic oscillator, E? | is given by

Er(S) Z ZVVV Z rss

s=0 t=0 rs rt
S#I t#r SEIr

Working exactly as in computing the second order corrections, while taking note of the
following summation identity

we find that E® is expressible in C|O%d form, in terms of the polygamma functions. In the
limit of N - o theresultis

@ _ e J(6) 607 (4)+18GZ (2 242 _
oo2048\ (r+1)* (r+1)°®  (r+1)® (r+1¥
Thus, the energy corrections can be written as
2m (m)
e = 2e S EUCCT I m=0123
2 n=0 (r+1) )

where
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0 —
c®  =-1

¢ =1¢¥=-2
(26)
c? =1c?=5cP =-14
and
¢  =1c? =60,y =186,c = -484.

To the sixth order in the classical oscillator frequency, « , therefore, the one dimensional cho
has the energy spectrum

em ) e & (-1)"7(2m=2n)c”
Er r;)Er mzzo{ 24m—l ; ((r +1)2)m+n—1 }' (27)

with c™ asgivenin (26).

The form of (27) alows to conjecture the existence of an exact formula for the energy
spectrum of the one dimensional confined harmonic oscillator, in the form

_ e o) e & (1) (2m-2n)c” ")
E, mZ;)E %{2@11; ™ } c™ 0z \{0}.

SUMMARY

We have derived an explicit matrix representation for the d — dimensiona confined harmonic
oscillator, using the eigenstates of the kinetic energy operator as basis vectors.

We showed that the Hami Itoni an
H(x)=— z += mafo, |x <L,

has the explicit N® x N¢ matrix repreﬁentatlon
d e _|md &1
Hst :‘95st2(§ +1)2+ 3 55t|: 6 _z }
i=1

= (s +1

Ne 1 1 Vi
285 - 2| (s, -t )2 |
2 ”S"d'l{(sftk)z (&+tk+2)2}cos[(s“ k)Z}

772h2 d d
= W,A =whle=¢Je,a, = Zaist = _25%‘
i=1 i=1

with

and

where s,t=0,1,2,...,N -1 and
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and

t :[NE_iJmOdN, i=1.2,....d.

In particular, for the one-dimensiona confined harmonic oscillator, we have an NxN
representation with the matrix elements given by
Ne | 1
Hy =é&d,(s+)+5-0,| 7+
s (5+9) 8 S‘[ 6 (s+1)2}

+/12£{ 1 1 }(1_53)(;032[(54)%7}

2 | (s-tf+a, (s+t+2f
for st =0,1,2,...,N-1.

Finally, we derived the following approximate analytic expression for the energy
spectrum of the 1-dimensional cho, to the sixth order in the oscillator frequency «,

S | APMe & (1) (2m- 2n)ct™
E =YE™= n t r=012,...,N,
T r;) T 2{24m—1 ; ((r +1)2)m+n—1 r

m=0

with ¢!™ asgivenin (26).

APPENDIX

M aple code to determine E?

>summand:=g->(2* s+1+modp(q,2))"2/(2* r-2* 5)"5/(q+2* s+2+modp(q,2))5;
(2s+1+modp(q,2))?
(2r — 2s)°(q+ 2s+ 2+ modp(q,2))°
>A2r:=sum(summand(2*r),s=0..r-1):
#replacethelast ":" with ;" to see the polygamma sums
>B2r:=sum(summand(2*r),s=r+1..infinity):
#replace":" with ";" to see the polygamma sums
>E2r:=expand(simplify(4* (2* r+1)"2* (A2r+B2r))):
# we suppress the factor [lambda™4* epsilon]
># collect terms of the same order in Pi
E2r:=collect(%,Pi):
>E2r:=factor(coeff(E2r,Pi*4))* Pir4+factor(coeff (E2r,Pin2))* Pir2+op(3,E2r);
N R R
- 11520(2r +1)°  768(2r +1)*  128(2r +1)°
># we now include the lambda*4* epsilon
E2r:=lambda*4* epsilon* E2r;

summand :=q -

11520(2r +1F  768(2r +1)" * 128(2r +1)°

E2r:= /145( 4 o7 ! j

Since ¢ (2) = 714/6 and ¢(4) = 7190 it follows that
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4
128\ (2r +1)° (2r +1)* (2r +1)
Similarly running the above code with summand(2r +1) gives
4
128( (2r+2)° (2r+2)" (2r+2)

From (A1) and (A2) we conclude that
E@:A“e( @ %@, 71 ]

o128 (r+1)? (r+1)*  (r+1)°
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