
Kragujevac J. Sci. 38 (2016) 29-40.      UDC 530.145:538.9 

 
 
 
 

EXACT DIAGONALIZATION OF THE −d DIMENSIONAL  
SPATIALLY CONFINED QUANTUM HARMONIC OSCILLATOR 

 
Kunle Adegoke*, Adenike Olatinwo, Henry Otobrise, Funmi Akintujoye, 

Afees Tiamiyu 
 

Department of Physics and Engineering Physics, Obafemi Awolowo University, 
220005 Ile-Ife, Nigeria 

*Corresponding author, E -mail: adegoke00@gmail.com 
 

(Received April 8, 2016) 
 
 

ABSTRACT. In the existing literature various numerical techniques have been developed 
to quantize the confined harmonic oscillator in higher dimensions. In obtaining the energy 
eigenvalues, such methods often involve indirect approaches such as searching for the 
roots of hypergeometric functions or numerically solving a differential equation. In this 
paper, however, we derive an explicit matrix representation for the Hamiltonian of a 
confined quantum harmonic oscillator in higher dimensions, thus facilitating direct 
diagonalization. 
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INTRODUCTION 
 

The −d dimensional confined harmonic oscillator (cho) of mass m  and frequency ω  is 
described by the Hamiltonian  

,
2

1

2
=)( 222

2

xx ωm
m

H +∇− h
 

where ),,,(= 21 dxxx Kx  with Lxi ≤|| , xxx t=2  and ∇  is the −d dimensional cartesian 

gradient operator. )(xH  being a Kronecker sum, we can also write 

,)(=)(
1=

ii

d

i

xHH ∑x  

where 

.||,
2

1

2
=)( 22

2

22

Lxxm
xm

xH ii
i

ii ≤+
∂
∂− ωh

 

We also note that )()(=)( xxx VTH + , where  

,)(=)()(=)(
1=1=

ii

d

i
ii

d

i

xVVandxTT ∑∑ xx  

with  

.),1,2,=(,
2

1
=)(

2
=)( 22

2

22

dixmxVand
xm

xT iii
i

ii K
h ω

∂
∂−  



30 
 

Various techniques have been employed by researchers to numerically diagonalize the 
Hamiltonian of a confined oscillator. These methods usually involve searching for roots of 
hypergeometric functions, as can be seen for example in references (AL-JABER, 2008) and 
(MONTGOMERY et al. 2010). In (CAMPOY et al. 2002) a method based on the expansion of the 
wavefunction as well as numerical integration of an ordinary differential equation were used to 
obtain the energy eigenvalues and wavefunctions of a one-dimensional confined oscillator. 

 
In this paper we will derive an explicit matrix representation for the Hamiltonian of the 

confined −d dimensional harmonic oscillator. 
 
 

MATRIX REPRESENTATION OF THE OPERATORS 
 

If we consider each operator )( ii xT  as living in an −N  dimensional Hilbert space, then the 
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constitute a set of basis vectors of this −N  dimensional Hilbert space since they are the 
non-degenerate, mutually orthogonal and normalized eigenstates of the Hermitian operator iT , 

with corresponding eigenvalues 

.
8

=1,,0,1,2,=,1)(=
2

22
2

mL
whereNrrr

h
K

πεεε −+  (2) 

Thus the operator )(xT  lives in an dN  dimensional Hilbert space whose basis vectors can be 
taken as the direct product vectors  
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where q , the  floor of q , is the nearest integer not greater than q . 
 

Thus each state )(xsψ  is uniquely characterized or labelled by a vector ( )dsss ,,,= 21 Ks  such 

that 1],[0,1,2, −∈ Nsi K . 

Denoting the eigenvalues of )(xT  by se , we have  
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with is  as defined in (4) and ε  as given in (2). 

Since the cho Hamiltonian )(xH  lives in the same Hilbert space as )(xT , the complete set of 

functions }{ sψ , with sψ  as given in (3), will be used as the basis vectors for the matrix 

representation of H . 
Thus, for 1,0,1,2,= −dNs K  and 1,0,1,2,= −dNt K  and with is  and it  as given in (4), the 

dN 2  matrix elements of H  are given by 
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where we have introduced a −d dimensional vector c  whose components are dd NN ×  
symmetric binary matrices, ic  with elements given by  
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stic  if either the two vectors s  and t  are one and the same vector, ts = , or they 

differ only at the thi  component, otherwise 0=
stic . 
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We introduce yet another −d dimensional vector, α , whose components, iα , are dd NN ×  

symmetric binary matrices, in terms of which the ic  matrices may also be expressed. The iα  

matrices are defined through their elements by 
itissti δα = . 

 
Properties of the auxilliary matrices ic  and iα  

It is straightforward to verify the following property for the iα  matrices:  
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is the dd NN ×   all-ones matrix. The iα  matrices are singular and have trace equal to dN . The 

eigenvalues of iα  are 1−dN  repeated N  times and 0  repeated NN d −  times. Finally using 

multinomial expansion theorem and (10), it is readily established that the matrix i

d
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From (6) it follows that  
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From the definition of the ic  matrices the following further properties are evident:   

    1.  i
nn

i cNc 1= − , for +∈Zn .  

    2.  The eigenvalues of ic  are 0  and N , each being −−1dN fold degenerate.  

    3.  The ic  matrices are singular and have trace dN .  

 
Representation for T  

Since 
itiis

itis
i TT ϕϕ= , from (9) we have  
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where we have used (1), (2) and (7).  
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Representation for V  

Since 
itiis

itis
i VV ϕϕ= , performing the indicated integrations, with 

isϕ  and 
it

ϕ  as given in (1) 

and noting that the only non-zero matrix elements of iV  are those for which is  and it  are of the 

same parity, we obtain  
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where εεεωλ ω /=/= h . 

Substituting for 
itisi

V  in the second of (9) and using (7) and (11), we obtain  
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We therefore see that off-diagonal survival of stV  is possible (but not guarranteed due to the 

presence of the cos2  term) only if 1= −dstα , that is only if there exists a [ ]dk 1,∈  such that 

ii ts =  if ki ≠  but kk ts ≠ , so that the vectors r  and s  differ  only at the thk  entry. 
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Representation for H  
Adding the matrix elements stT  and stV  we find that the matrix elements for the Hamiltonian of 

the −d dimensional oscillator, with the direct product of eigenstates of the particle in a one 
dimensional box as basis, are given by  
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APPLICATION: APPROXIMATE ANALYTIC EXPRESSION 
FOR THE ENERGY SPECTRUM OF THE −1 DIMENSIONAL CHO 

 
Based on our discussion in the previous sections culminating in the derivation of the explicit 
matrix elements of the −d dimensional confined harmonic oscillator, it is now straightforward, 
in principle, to find the eigenvalues of the oscillator. In practice however, the quantization 
remains a formidable task because of the exponential growth of the size of the Hamiltonian 
matrix with d . However, since the matrix elements are available in explicit form, they can be 
gainfully employed, for example in perturbation calculations, to obtain approximate analytical 
results. 

 
It is our aim in the remaining part of this paper to derive an approximate analytic 

expression for the energy spectrum of the −1 dimensional confined harmonic oscillator. We 
will treat the potential energy of the confined oscillator as a perturbation of the kinetic energy 
term, the latter being the exactly solvable particle in a box Hamiltonian, with the 
non-degenerate eigenstates given in (1). Results from perturbation calculations, in the one 
dimensional case, can also be found in references BAIJAL and SINGH (1955), PADNOS (1965) 
and GUEORGUIEV et al. (2006). 

 
 

Energy spectrum of the −1 dimensional cho 
For the discussion of the confined harmonic oscillator in one dimension, it is convenient to drop 
the subscripts on s  and t . Also we shall refer to iH , iV , iT  and ix  simply as H , V , T  and x  

respectively. The eigenvalue problem is therefore  
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Since the eigenstates of )(xT  are known, being the )(xrϕ  of (1), it is convenient, for small 
values of the classical oscillator frequency, ω , to treat )(xV  as a perturbation of the exactly 

solvable particle in a box Hamiltonian, )(xT , with 2ω  as the perturbation parameter.  
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Since the states rE  are non-degenerate, rE  can be approximated, using standard perturbation 
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theory, as  
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where )(mζ  is the Riemann zeta function defined by  
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We note that the matrix elements occuring in (17) are necessarily off-diagonal ( rs ≠ ). 
Furthermore the only surviving elements rsV , according to (13), are those for which r  and s  

are both odd or both even. It therefore follows from (13) that  
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 Classifying the energy corrections in (19) by parity of r  we have  
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The finite sums rA2  and 12 +rA  as given in (22) and (24) as well as the infinite sums rB2  

and 12 +rB  as given in (23) and (25) are expressible in closed form, in terms of the well-studied 
polygamma functions; a computer algebra system, such as Waterloo Maple, comes in handy for 
this purpose. Putting the results together in (20), the final result is (see the Appendix for the 
Maple code)  
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We remark that an equivalent result to ours, for (2)
rE , can also be found in reference BAIJAL and 

SINGH (1955). The sum was however left unevaluated in that paper. 
 
In standard non-degenerate perturbation theory, the third order correction to the energy 

of the one dimensional confined harmonic oscillator, (3)
rE , is given by  
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Working exactly as in computing the second order corrections, while taking note of the 
following summation identity  
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we find that (3)
rE  is expressible in closed form, in terms of the polygamma functions. In the 

limit of ∞→N  the result is  
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Thus, the energy corrections can be written as  
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where  
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To the sixth order in the classical oscillator frequency, ω , therefore, the one dimensional cho 
has the energy spectrum  
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 with )(m
nc  as given in (26). 

 
The form of (27) allows to conjecture the existence of an exact formula for the energy 

spectrum of the one dimensional confined harmonic oscillator, in the form  
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SUMMARY 
 

We have derived an explicit matrix representation for the −d dimensional confined harmonic 
oscillator, using the eigenstates of the kinetic energy operator as basis vectors. 

 
We showed that the Hamiltonian  
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and  
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In particular, for the one-dimensional confined harmonic oscillator, we have an NN ×  
representation with the matrix elements given by  
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for 1,0,1,2,=, −Nts K . 
 
Finally, we derived the following approximate analytic expression for the energy 

spectrum of the −1 dimensional cho, to the sixth order in the oscillator frequency ω ,  
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with )(m
nc  as given in (26). 

 
 

APPENDIX 
 
Maple code to determine (2)

rE  
 ================================================= 
>summand:=q->(2*s+1+modp(q,2))^2/(2*r-2*s)^5/(q+2*s+2+modp(q,2))^5;  
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,2))(m22()2(2

,2))(m1(2
:=

qodpsqsr

qodps
qsummand

+++−
++→  

             >A2r:=sum(summand(2*r),s=0..r-1): 
 # replace the last ":" with ";" to see the polygamma sums 
>B2r:=sum(summand(2*r),s=r+1..infinity): 
# replace ":" with ";" to see the polygamma sums 
>E2r:=expand(simplify(4*(2*r+1)^2*(A2r+B2r))): 
# we suppress the factor [lambda^4*epsilon] 
># collect terms of the same order in Pi 
E2r:=collect(%,Pi): 
>E2r:=factor(coeff(E2r,Pi^4))*Pi^4+factor(coeff(E2r,Pi^2))*Pi^2+op(3,E2r);  
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             ># we now include the lambda^4*epsilon 
E2r:=lambda^4*epsilon*E2r;  
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Since /6=(2) 2πζ  and /90=(4) 4πζ  it follows that  
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Similarly running the above code with 1)(2 +rsummand  gives  
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From (A1) and (A2) we conclude that  
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