TEHNIČKA DIJAGHOSTIKA, 1/2002.

INTELIGENTNI DIJAGNOSTIČKI
SISTEMI I NJIHOVA PRIMENA U
VAZDUHOPLOVSTVU

AN APPLICATION OF
INTELLIGENT DIAGNOSTIC
SYSTEMS IN AIR FORCE

D. Vujić
S. Radojković*

Režime: Date su osnove savremenih dijagnostičkih sistema koji sadrže elemente veštacke inteligencije. Reč je o hibridnim inteligentnim sistemima nastalim integracijom ekspertnih sistema i neuronkih mreža. Pokazano je da se njihovom primenom može postići stopostotna detekcija otkaza sa nultim procentom lažnog alarmiranja. Dati su primjeri korišćenja ovih sistema za ocenu stanja komponenata helikoptera.

Ključne reči: inteligentni dijagnostički sistemi, ekspertni sistemi, neuronske mreže, vazduhoplovstvo, otkazi

Abstract: This paper presents the bases of modern diagnostic systems which contain some elements of the artificial intelligence. These are hybrid intelligent systems developed by integration of expert systems and neural networks. It is indicated that using these systems can be achieved a hundred per cent fault detection rate with zero per cent false alarm rate. Examples using these systems as a means to evaluate the health and usage of helicopter components are presented.

* Dr Dragoljub Vujić, dipl. inž., Vojnotehnički institut VI, Katanićeva 15, 11000 Beograd
Mr Slobodan Radojković, dipl. inž., Teleoptik, Cura Dušana 141, 11080 Zemun.

Key words: intelligent diagnostic systems, expert systems, neural networks, air force, faults

1. UVOD

U [3] su prikazane realizacije monitoring sistema na bazi neuronskih mreža. Predložen je hibridni (digitalno/analogni) neuronski off-line monitoring sistem za smanjenje troškova održavanja reduktora helikoptera. Pored toga, predložena je analogna neuronska mreža kao monitoring greške reduktora helikoptera u realnom vremenu. Rezul-
tati su dobijeni korišćenjem analogne neuronske mreže koja je projektovana i razvijena u Charles Stark Draper laboratoriji. Rezultati su pokazali da je korišćenjem integrisane neuronske računarske arhitekture na bazi dvoslojne neuronske mreže moguće postići stopostotnu detekciju otkaza sa nultim procentom lažnog alarma. Takođe, i u našoj literaturi pojavljuju se interesantni radovi u kojima se ukazuje na potrebu redefinisanja tradicionalnih metoda održavanja, pogotovo kada se radi o obezbedenju visoke pouzdanosti. Tako na primer, u [9] razrađena je eksperimentalna verifikacija metode monitoringa i dijagnostike stanja servo pumpe hidrosistema vazduhoplova, koja zahteva permanentnu kontrolu radnih parametara. U [7], u okviru zaključih razmatranja, autori konstatuju da bi se sistem održavanja borbenih aviona poboljšao nadogradnjom elemenata veštačke inteligencije. U [12], koji se odnosi na proizvodne sisteme, pokazano je kako se na bazi inkorporacije parametara stanja i verovatnoće otkaza u ekspertni sistem, vrši praćenje stanja i predviđanje događaja.

2. PREGLED RAZVOJA EKSPERTNIH SISTEMA

Od Drugog svetskog rata stručnjaci za računare pokušavali su da razviju tehnike koje bi omogućile računarima da učine više, slično kao ljudska bića. Svi ti istraživački napori bili su usmereni u pravcu razvoja sistema koji su bili u stanju da donose odluku, da osmatraju i govore. Takvi sistemi poznati su kao sistemi sa elementima veštačke inteligencije.

Osamdesetih godina istraživanje ekspertnih sistema bilo je još uvek ograničeno na mali broj univerzitetskih istraživačkih laboratorija. Već 1985. godine u Americi, Japanu, Engleskoj i Evropskoj ekonomskoj zajednici, pokrenuli su istraživački programi sa ciljem razvoja i primene ekspertnih programa. Oko 500 korporacija formiralo je odljenja veštačke inteligencije, investiralo u tehnologiju ekspertnih sistema i očekivalo dobar komercijalni uspjeh.

Razvoj mikroračunarske tehnologije doveo je do nove generacije bržih, moćnijih i relativno jef tinijih računara. Razvoj veštačke inteligencije išao
je u tri relativno nezavisna pravca (sl. 1). Jedan se odnosio na razvoj računarskih programa tzv. prirodnih jezika, drugi na razvoj „pametnih“ robota, a treći na razvoj ekspertnih sistema.

Ekspertni sistem je inteligentni računarski program koji koristi znanje i postupke zaključivanja za rešavanje problema dovoljno teških da zahtevaju stručnost eksperata. Ova definicija je najbliža onoj koju je postavio profesor Edward Feigenbaum sa Stanford univerziteta, jedan od pionira u oblasti ekspertnih sistema. Znanje čine činjenice i heuristika (iskustvo i osećaj).

Paralelno sa terminom ekspertni sistemi, za isti pojam koriste se i sledeći termini: inženjeri znanja, inženjerstvo znanja, sistem zasnovan na znanju, inteligentni informacioni sistem, itd.

U konvencionalnim softverskim sistemima, moduli (potprogrami na primer) se međusobno pozivaju po fiksnom, unapred definisanom (determinističkom) postupku. U ekspertnim sistemima se ne pozivaju direktno, već komuniciraju sa okruženjem podataka. Osnovna struktura ekspertnog sistema data je na sl. 2.

![Diagram ekspertnog sistema](image)

Sl. 2. Osnovna struktura ekspertnog sistema

3. INTELIGENTNI SISTEMI NA BAZI NEURONSKIH MREŽA I EKSPERTNIH SISTEMA

Proučavanje neuronskih mreža, naročito u poslednjoj dekadi prošloga veka, trasiralo je novi pravac razvoja ekspertnih sistema, pre svega u vidu integracije neuronskih mreža i konvencionalnih ekspertnih sistema, radi dobijanja efikasnijih sistema koji bi bili otporniji na greške i nepotpune podatke, adaptivniji za proširivanje sistema. Ovo povezivanje ekspertnih sistema i neuronskih mreža dovodi do razvoja hibridnih inteligentnih sistema koji nalaze široku primenu za rešavanje različitih problema koje nameće savremeni tehnološki razvoj, kao što su zadaci praćenja i prognoze stanja, planiranja, itd.

Na sl.3. prikazani su neki primjeri konfiguracije neuronske mreže i ekspertnih sistema. U najjednostavnijem izvođenju, izlaz neuronske mreže (ili ekspertnog sistema) je ulaz u ekspertni sistem (ili neuronsku mrežu) pri čemu postoji sekvencijski upravljački mehanizam. Dodatna komponen-
TEHNIČKA DIJAGNOSTIKA 1/2002.

ta ekspertnog sistema može da se koristi za kolek-
ciju ulaza u neuronsku mrežu i/ili analiziranje re-
zultata.

![Diagram ekspertnog sistema](image)

Sl. 3. Primeri sekvencijalnih konfiguracija neuronske mreže i ekspertnih sistema

U drugoj konfiguraciji (sl. 4.) jedna neuronska mreža ili više njih je ugrađeno u ekspertni sistem kao funkcija koja se poziva kada je potrebna. Informacija se pomoću neuronske mreže zatim uključuje u proces zaključivanja ekspertnog sistema zajedno sa činjenicama i pravilima ekspertnog sistema. Ekspertni sistemi i neuronske mreže mogu biti i u paralelnoj vezi, kao što se vidi na sl. 4.

![Diagram pretprocisiranja i postprocisiranja](image)

Sl. 4. Primeri konfiguracija neuronske mreže i ekspertnog sistema

I za razvoj ekspertnih sistema i za razvoj neu-
ronskih mreža moraju da budu uključeni eksperti iz predmetne oblasti da bi se povećala tačnost pra-
vila i skupa podataka. Inženjer znanja troši znatno vreme za formulisanje i testiranje pravila. Za rad sa neuronskim mrežama potrebno je smjestiti skup podataka u odgovarajuće forme koje traži neu-
ronska mreža za proces obučavanja. To nije samo problem obrade podataka, jer svaki pojedinačni format može da utiče na kvalitet i efikasnost treni-
ranja. Inženjeri znanja zatim razvijaju bazu znanja i testiraju projekat, obično preko prototipa pri če-
mu postoji povratna veza od eksperta. Neuronska mreža se trenira do prihvatljive tačnosti i zatim se testira podacima za koje se znaju rezultati.

Neuronske mreže su naročito dobre za odre-
dene klase aplikacija, kao što su prepoznavanje uzoraka, procesiranje signala, robotika, preduvi-
danje (prognoziranje), itd. Neuronske mreže su pot-
puno sposobne za otkrivanje skrivenih informacija pomoću posmatranja uzoraka. One mogu da uče podatke i razviju zakon upravljanja uz najmanju podršku stručnjaka.

Metod obučavanja zavisi od tipa podataka ko-
ji su raspoloživi i od vremenskih ograničenja. Pri-
roda podataka može da označi nagledano učenje (izlazi koji odgovaraju datim ulazima su dobro po-
znati). U tom slučaju neuronska mreža je potrebna
za brzu „proizvodnju“ željenih izlaza na osnovu ulaza. Da bi neuronska mreža naučila kako da od-
govara potrebno je poznavanje skupa ulaza pove-
zanih sa korektним izlazima, a za to je potrebno is-
kustvo. U slučaju da je klasifikacija ulaza nepo-
znata koristi se nenadgledano učenje sa ciljem da
se pronade korelacije u podacima.

Za uspešno korišćenje neuronske mreže važno
je ograničenje vremena obučavanja i vremena ra-
da. Ono se razlikuje za različite tipove neuronskih

mreža, veličine mreže i kvaliteta podataka. Ako
trening uzorci sadrže nekozistentne informacije i
ako ne pokrivaju sve moguće slučajeve, mreža mo-
že beskonačno da potroši vreme pokušavajući da
se usredsredi na informacije koje treba da nauči.

Za svaki nivo mora da se odredi broj čvorova.
Ulagni čvorovi se biraju tako da adekvatno repre-
zentuju izvore podataka. Nedovoljno informacija
in podacima vodiće do netačne mreže, prisustvo

nepotrebnih podataka produžiće vreme obučava-

nja, što sve može da daju lošije rezultate. Pretpro-
cesiranje podataka vodi do skraćenog vremena

obučavanja.

Podaci mora da se „smeste“ u format koji od-
govara tipu ulaza modela neuronske mreže koji se
koristi. Na primer, podaci sa kontinualnim vredno-
stima se uzorkuju u određenim vremenskim inter-
valima i unose u mrežu. Po jedan čvor se koristi za svaki izvor kontinualnih podataka.

U toku prikupljanja i pripremanja podataka struktura neuronske mreže određuje binarni ili kontinualni ulaz u mrežu. Zahteva se visoki kvalitet prikupljenih podataka kako bi se minimizirala dvosmislenost, greške i slučajnosti (šumovi) u podacima.

4. ODREĐIVANJE OTKAZA REDUKTORA HELIKOPTERA

Stanje helikoptera u letu se prati pomoću monitoring sistema, a onda se korišćenjem računara na zemlji vrši analiza izmerenih podataka. Zbog ogromnog broja podataka koji se zabeleži tokom leta primenjuje se automatizovani inteligentni sistem za njihovo skeniranje. Razvijeni inteligentni upravljački sistem je u stanju da je iz ogromnog broja podataka smisljenih za vreme leta izdvoji i identifikuje uzorke koji su simptomi otkaza, da ukaže na one abnormalnosti čiji je uzrok nepoznat i da da ocenu u pogledu daljeg korišćenja helikoptera. Za to se primenjuje nenadgledano učenje koje predstavlja proces koji treba da klasifikuje uzorke bez prethodnog znanja. Analizom ulja može da se identifikuje intenzitet habanja uljem okašenih delova. Za to se koriste programske tehnike za magnetne sonde, fil-

Da bi se demonstrirala mogućnost nenadgledanih tehnika učenja, iz 11 reduktora, uzeto je 138 uzoraka, na kojima je izvršena spektralna analiza. Primjenjeni inteligentni hibridni neuronski sistem, baziran na prethodnoj obradi uzoraka, trebalo je da izdvoji uzorke koji su osetljivi na otkaze i da ih razlikuje od onih koji odgovaraju stanju „bez otkaza“. Iz ilustracije je primenjeno nenadgledano učenje na četiri nivoa koncentracije elemenata: gvožđa (Fe), magnezijuma (Mg), aluminiuma (Al) i srebra (Ag). Kao rezultat učenja formirano je 11 grupa, pri čemu su uzorci u okviru svake grupe bili slični. U okviru grupa uočene su dve osnovne vrste. Prva vrsta je sadržala malo broj uzoraka koji su se odnosili na otkaze. Druga vrsta grupe sadržala je veliki broj uzoraka koji se odnose na uobičajene slučajeve. Detaljna procedura grupisanja uzoraka i tačnost u pogledu određivanja otkaza data je u [3]. U navedenom radu je pokazano je da je otkaz ležajeve mogao da se predvidi 50 do 80 časova pre nego što je do njega došlo, odnosno pre nego što je otkriven pomoću odgovarajućih detekto-
ra. Za analizu stanja mogu da se iskoriste i zapisi vibracija tokom leta helikoptera [3]. Vibracije mo-
gu da budu posledica uslova rada ili otkaza pojedinih komponenata. Korišćenjem tehnologija neuronskih mreža i računarskih alata, mreža je bila u stanju da uči i da povezuje »uzrok i posledicu«. Za demonstraciju učenja korišćeni su zapisi vibracija zabeleženi tokom letnih ispitivanja 23 helikoptera Super Puma MK za vreme 1645 letova. Podaci su čuvani u bazama podataka koja se sastojala od 3137 zapisa. Takođe, izvršeno je merenje vibracija i na helikopteru Sea King 5R. Ispitivanja su pokazala da primjenjeni inteligentni sistem na bazi neuronskih mreža omogućava da se neispravne komponente otkriju i zamene pre katastrofalnih otkaza.

5. ZAKLJUČAK

Prikazani hibridni inteligentni monitoring sistem na bazi neuronske mreže može da se iskoristi za povećanje resursa i smanjenje troškova održavanja reduktora helikoptera. Rezultati su pokazali da je korišćenjem integrisane neuronske računarne arhitekture moguće postići stopostotnu detekciju otkaza sa nultim procentom lažnog alarma. Takođe, potrebno je redefinisanje tradicionalnih metoda održavanja, pogotovo u uslovima kada se radi o obezbeđenju visoke pouzdanosti.

LITERATURA