ETHNICITY AND TYPE 2 DIABETES IN ASIAN INDIAN MIGRANTS IN AUCKLAND, NEW ZEALAND

Jowitt Ljiljana

University of Auckland, Department of Surgery, Auckland, New Zealand

Abstract: The aim of this review was to present ethnic differences in body size and body composition in Asian Indian migrants in New Zealand, associated with metabolic syndrome and type 2 diabetes, through the comparison with other ethnic groups in New Zealand. International databases including PubMed and Google scholar were consulted, as well as the websites of the World Health Organization and International Diabetes Federation. About 74 studies out of 128 publications were selected to ensure relevance to the topic of the review. Seven research projects were presented for the body size and body composition of Asian Indian migrants in New Zealand. The prevalence of type 2 diabetes of 8.6% in Asian Indians in New Zealand is still higher than in their homeland, owing to their ethnicity, genetic predisposition, sedentary lifestyle and altered nutrition, and other psychosocial factors related to migration and living conditions like stress at work and depression. For the same body mass index, in comparison with people of other ethnic groups in New Zealand Asian Indians had more total body fat, higher percent body fat, more central fat, less lean mass and appendicular skeletal muscle mass. Central obesity was associated with insulin resistance and low grade systemic inflammation. Considering the evidence that type 2 diabetes develops ten years earlier in Asian Indians than in other populations, further studies are warranted to shed some light on the still incompletely understood metabolic syndrome and “thin-fat” Indian phenotype.

Key words: ethnicity, Asian Indian migrants, body composition, insulin resistance, metabolic syndrome.

INTRODUCTION

Asia has become the major epicenter of a diabetes epidemic, and accounts for 60% of the world’s diabetic population (1). The number of people with diabetes in the region of South Asia is estimated to increase to 120.9 million by 2030 (2). Estimates based on population growth, ageing, and rate of urbanization in Asia show that by the year 2030 India as the largest country in the region will have about 79.4 million people with diabetes. Studies from India showed higher prevalence rates in urban areas compared to rural settings, a finding that has been partly attributed to the adoption of a “Western” lifestyle as in the case of migrant South Asians. Rapid economic development, urbanization, and changes in nutritional status, have led to an explosive increase in prevalence of type 2 diabetes. South Asians who migrated to westernized countries have about four times higher prevalence of diabetes than those living in urban India (3). Factors which contributed to increase in higher prevalence of type 2 diabetes in Asian Indian migrants include ethnicity, genetic predisposition, change in diet and lifestyle, and other psychosocial factors mostly depression and stress at work place related to migration and living conditions (4, 5). From a diet rich in pulses and cereals, which contain large amounts of fruits and vegetables, Asian Indian migrants have changed to a diet high in sugars and saturated and total fats, low in fruits, vegetables and fibre (6).

The prevalence of type 2 diabetes in Indian diaspora was the highest in the United Kingdom (11–33%) followed by Norway (14–28%), United States (18%), Singapore (12.8%) and Canada (10%), whereas the prevalence in native South Asians of Pakistan, India and Bangladesh is 7.6, 7.1, and 6.1% respectively (7). The prevalence of type 2 diabetes of 8.6% in Asian Indians in New Zealand is still higher than in their country of origin.

The number of Asian Indians who migrated to New Zealand, has grown from the 2001 census to 2006 census, from 61,803 to 104,583 respectively making them, after the Chinese ethnic group, the second largest Asian ethnic group in New Zealand. Between the two censuses, the population in New Zealand has grown by
6.4%, with a 40% increase in the Asian Indian population (8). About 26% of the New Zealand Asian population comprises Asian Indians. In 2013 the Asian Indian ethnic group was the second largest Asian ethnic group, with 155,178 people (32.9 percent of the Asian ethnic group, up from 29.5 percent in 2006) (9).

Comprehensive epidemiological data about the prevalence of type 2 diabetes were obtained in South Auckland between 1991 and 1995, where a household survey of 100,000 residents was undertaken, recorded a highest prevalence of diabetes of 8.6% in Asian Indians in the 40–49 age groups (10). Between the two New Zealand Health Surveys (NZHSs), in the 2002–03 and 2006–07, a significant rise in obesity from 44% to 55% respectively was recorded in Asian Indians, as well as the highest prevalence of diabetes and coronary heart disease (CHD) (11). A recent HbA1c (glycated haemoglobin (A1c)) screening in South Auckland for undiagnosed diabetes of 50,819 volunteers aged 20+ recorded particularly high rates of HbA1c in Asian Indians (12).

In spite of their population growth, Asian ethnic groups have been largely neglected by New Zealand health and research policies (13), although the research on health issues in Asian Indian migrants has been developed in the recent years.

The aim of this review was to present ethnic differences in body size and body composition in Asian Indian migrants in New Zealand associated with metabolic syndrome and type 2 diabetes, through the comparison with other ethnic groups in New Zealand. Presented studies were part of the current health research carried out in Asian Indian migrants at AUT University and University of Auckland, New Zealand. In this review, the name Asian Indians is used to define the ethnic group of South Asian Indians, who migrated to New Zealand from Indian subcontinent, Sri-Lanka, Pakistan, and Bangladesh.

International databases including PubMed and Google scholar were consulted in a search using the terms “South Asians”, “Asian Indians”, “Asian Indian migrants”, “central obesity”, “metabolic syndrome”, “insulin resistance”, and “body composition”, “obesity”, and their combinations. The websites of the World Health Organization and International Diabetes Federation were also consulted. The searches provided 128 publications from which 74 were selected and assessed to ensure their relevance to the main topic of the review. Seven research projects, out of 74, were separately presented in terms of body composition and body size relevant to “thin-fat” phenotype of Asian Indian migrants in New Zealand. Manual search was employed to allocate these studies from the database of the AUT University, published by the researchers at the Faculty of Health and Environmental Sciences.

Participants in these studies were clinically healthy, although the most of the participants were overweight, and had no knowledge of presence of the metabolic syndrome. Recruitment of participants for these studies was from the urban Auckland areas, by personal contact, advertisement or through existing networks of recruiters.

Pathogenesis of type 2 diabetes

The healthy pancreatic ß cell is capable of adapting to changes in insulin action (14). Any decrease in adaptation of the ß pancreatic cells to insulin levels, leads to impaired glucose tolerance (IGT), and impaired fasting glucose (IFG) or type 2 diabetes. Impaired pancreatic insulin secretion has been reported in all type 2 diabetic patients in all ethnic groups. Decreased insulin secretion and IFG cause acceleration of endogenous glucose production or hyperglycemia. Increased endogenous glucose production and hepatic insulin resistance represent the driving force for hyperglycemia in type 2 diabetes. The process of conversion from an insulin resistant state to type 2 diabetes is dependent on a relative deficit in ß cell insulin secretion capacity. However, type 2 diabetes cannot develop as long as ß cell secretory capacity matches the degree of insulin resistance (15).

The role of adipokines in metabolic syndrome and type 2 diabetes

Besides storing fat for excess energy, adipose tissue is an endocrine organ which produces and releases molecules commonly referred to as adipokines (16). Most adipokines in obesity form an important part of an “adipo-insular” axis, dysregulation which may support ß-cell failure and development of type 2 diabetes (17).

Research studies suggest that the adipokines, adiponectin and leptin, regulate functional ß cell mass, and are crucial for protection against the development of metabolic syndrome and diabetes (18, 19). Adiponectin is a key regulator of insulin sensitivity and tissue inflammation, with predominant action in the liver, skeletal muscles, and vasculature (20). Prominent roles of adiponectin are to improve hepatic insulin sensitivity, increase fuel oxidation, and reduce vascular inflammation. Circulating levels of adiponectin are inversely proportional to body fat content.

Adipokine leptin plays a major role in regulation of energy intake and energy expenditure, and its levels increase in response to accumulation of long-chain free fatty acids (21). In obesity, leptin resistance causes insulin resistance, hepatic steatosis, type 2 diabetes, and...
cardiac dysfunction (22). Circulating plasma levels of free fatty acids (FFAs), ceramides and glucose, promote serine phosphorylation of insulin receptor substrate (IRS-1) present in the skeletal muscle tissue; tumor necrosis factor α (TNF-α), promotes serine/threonine phosphorylation of the insulin receptor and IRS-1 (23). Serine-phosphorylated IRS-1 inhibits insulin receptor tyrosine kinase activity, which inhibits downstream insulin signaling. Defective insulin signaling in both the skeletal muscle tissue and fat tissue seems to play a role in development of type 2 diabetes (24, 25).

Inflammatory cytokine interleukin-6 (IL-6) is produced by adipocytes which may also be responsive to IL-6, owing to the presence of IL-6 receptors in the membrane of abdominal subcutaneous adipocytes (26). It was also observed that IL-6 expression was increased 15 fold in the fat tissue of insulin resistant people, which indicated IL-6 induced insulin resistance in fat cells by which it was produced (27). Insulin resistance leads to increased fat mass and BMI. It was suggested that the IL-6-174C allele from the common functional gene variant IL-6-174GC, is associated with higher BMI in people with type 2 diabetes, and a role for this gene is in mediating inflammatory insulin resistance (28).

The plasma levels of interleukin-6 (IL-6) increase in obesity, and in combination with other cytokines has cytotoxic effects on β-cells causing β-cells apoptosis, and synergizes with interleukin-1 (IL-1) in this respect (29). The interleukin-1 (IL-1) family of ligands and receptors is primarily associated with acute and chronic inflammation, where IL-1β causes local and systemic inflammatory conditions called autoinflammatory diseases (30, 31). The type of inflammation associated with type 2 diabetes is mediated by IL-1β. A sensitive marker for systemic inflammation is the acute-phase C-reactive protein (CRP) (32, 33). Higher plasma concentrations of CRP suggest a state of low-grade systemic inflammation in obese and/or insulin resistant people.

Excessive insulin resistance and metabolic syndrome in Asian Indians

Apparently, both insulin resistance and reduced insulin secretion are involved in the pathogenesis of type 2 diabetes, and the predominant mechanism seems to be different in various ethnic groups. Excessive insulin resistance in Asian Indian migrants appears to be the predominant mechanism for the excessive prevalence of diabetes in this population (34).

Genetic predisposition, central obesity, and unfavorable lifestyle, including unhealthy diet, sedentary lifestyle, and other psycho-social factors related to migration and living conditions were associated with the prevalence of type 2 diabetes in Asian Indian migrants. However, lifestyle changes associated with the process of urbanization/westernization might largely explain an ongoing increase in the prevalence of type 2 diabetes in Asian Indian migrants. Apparently, environmental factors certainly play a major role in diabetes epidemics, which occurs on a background of genetic susceptibility (35).

Asian Indians have different body phenotype from Europeans (36). The major differences are in high body fat, high truncal, subcutaneous and intra-abdominal fat, and low muscle mass. Biochemical parameters include hyperinsulinemia, hyperglycemia, dyslipidemia, hyperleptinemia, low levels of adiponectin and high levels of CRP, procoagulant state and endothelial dysfunction.

Owing to lean appearance and lower mean BMI, central obesity in Asian Indians cannot be clinically observed (37). Central obesity plays a significant role in pathogenesis of insulin resistance and is associated with increased risk of diabetes, hypertension, dyslipidemias and atherosclerosis, and represents the cornerstone of the metabolic syndrome (38). Centrally obese people have the most severe insulin resistance and low plasma levels of cytokine adiponectin, as is commonly seen in Asian Indians (39). Low adiponectin concentrations in Asian Indians with impaired glucose tolerance, are predictive of prospective diabetes. Apparently, high percent of total body fat, central obesity, insulin resistance, hyperinsulinaemia, and low muscle mass, predispose Asian Indians to the development of the metabolic syndrome (40). Moreover, about 25% of the urban Indian population of obese or non-obese adults has non-alcoholic fatty liver disease (NAFLD) with significantly higher insulin resistance than those without NAFLD (41). A proton magnetic resonance spectroscopy study of enzymes involved in gluconeogenesis pathway showed elevated gluconeogenesis in non-diabetic, non-obese Indian people with NAFLD. This finding indicates increased risk for the development of type 2 diabetes in later life.

An explanation proposed by Barker as “thrifty phenotype” hypothesis, ascribes the epidemic of type 2 diabetes to an unfavorable intrauterine environment (42). Fetal under-nutrition leads to altered metabolic programming in resource-poor developing countries like India (43, 44). An abundance of food supply may lead to increased velocity of weight gain during childhood and catch-up obesity in low-birth weight Indian babies, which has been reported to be important for adult-onset hyperglycemia and cardiovascular risk factors (45).

Intrauterine growth and development of Indian babies is completed before birth, and is the result of or-
The problem of vitamin D deficiency worsens in wo-
tural practices in India preclude exposure to sunshine.
exposure in sunny India (56). Prevalent social and cul-
are largely determined by food intake and ultraviolet
in Asian Indians. Serum concentrations of vitamin D
and insulin resistance is still incompletely understood
peroxisome proliferator activated receptor-co-activator-1
2 diabetes by interacting with obesity (53). Similarly, the
-2 (IRS-2) gene, makes Asian Indians susceptible to type
dian people at risk with type 2 diabetes (52).

The possibility exists that observed abnormalities
might have genetic causes (49). It has been reported
that a possible role in regulation of insulin receptor sig-
naling is attributed to ectonucleotide pyrophosphatase
phosphodiesterase 1 (ENPP1), a widely expressed class
II transmembrane glycoprotein, which could interact
with the insulin receptor and decrease insulin-induced
tyrosine phosphorylation of its intra-cytoplasmic do-
main (50, 51). Possibly, this physical interaction occurs
on the cell surface between gene ENPP1 and the
insulin receptor, preventing insulin-induced conformation-
changes of the extracellular receptor alpha subu-
nit. This failure prevents beta subunit autophosphoryla-
tion and tyrosine-kinase activity, which switches off in-
sulin signaling. A reported gene variant ENPP1 121Q,
appears to contribute to the excessive insulin resistance
and type 2 diabetes in Asian Indian migrants living in
Dallas and South Asians in Chennai, and might provid-
ean important genetic marker to identify Asian In-
dian people at risk with type 2 diabetes (52).

The D1057 D genotype of insulin receptor substrate
-2 (IRS-2) gene, makes Asian Indians susceptible to type
2 diabetes by interacting with obesity (53). Similarly, the
peroxisome proliferator activated receptor-co-activator-1
α (PGC-1) gene polymorphism Thr394Thr (G-A) is as-
associated with type 2 diabetes among Asian Indians, and
with total, central, and subcutaneous body fat (54, 55).

Vitamin D deficiency and insulin resistance in Asian Indians

The association between vitamin D deficiency
and insulin resistance is still incompletely understood
in Asian Indians. Serum concentrations of vitamin D
are largely determined by food intake and ultraviolet
exposure in sunny India (56). Prevalent social and cul-
tural practices in India preclude exposure to sunshine.
The problem of vitamin D deficiency worsens in wo-
men during pregnancy and has important consequen-
ces for the newborn, including fetal hypovitaminosis
D, neonatal rickets, tetany, and infantile rickets which
is associated with infection of the lower respiratory
tract, zand is the leading cause of infant mortality (57,
58). Vitamin D has more targets such as heart, stomach,
brain, liver, skin, pancreatic β cells, thyroid, parathyroid
and adrenal glands and immune cells which contain the
nuclear vitamin D receptor (VDR) and the enzyme 1α-
hydroxylase which facilitates conversion of vitamin D
into its active form in kidneys (59, 60). This finding
indicates actions of vitamin D other than calcium homeo-
stasis and bone metabolism. The presence of the VDR
in pancreatic β cells supports the findings that vitamin
D affects insulin secretion and/or insulin sensitivity
through the insulin receptor gene. In Asian Indian mi-
grants vitamin D deficiency is further associated with
raised parathyroid hormone (PTH). When serum
25-hydroxyvitamin D (25OHD) falls below 15 ng/mL,
PTH levels rise sharply (61). Low levels of vitamin D
correlate positively with BMD and/or increased mark-
ers of bone catabolism when compared with Caucasi-
ans (62). In cultured fibroblasts derived from two gro-
ups of participants (Asian Indians and Caucasians) an
zyme 25OHD-24-hydroxylase activity (in vitro) was
higher in Asian Indians, which raised concerns about
increased catabolism of serum vitamin D. Further, skin
capacity for vitamin D synthesis seems to be substan-
tial in both ethnic groups, Asian Indians and Caucasi-
ans. Serum vitamin D was measured after exposure to
UV-radiation (63). To achieve a given level of vitamin
D production, Asian Indians needed over twice as
much UV-B exposure when compared to Caucasians.
However, suboptimal production of vitamin D in Asian
Indians might be the result of conjoined effects of pos-
sible catabolism of serum vitamin D and dark skin pig-
mentation which has been found to decrease skin syn-
thesis of vitamin D because longer exposure to UV ra-
diation is needed. In addition, Asian Indian migrants in
sunny Auckland have very low BMC and BMD, which
might be related to low serum concentrations of vita-
mn D, which further is associated with insulin resis-
tance.

HEALTH RESEARCH IN ASIAN INDIAN MIGRANTS AT AUT UNIVERSITY

Research studies present ethnic differences
in body size and body composition
in Asian Indian migrants in NZ

The study by Rush et al. (64) provided comparati-
ve analysis of the body composition of European, Ma-
ori, Pacific Island, and Asian Indian peoples in urban
Auckland, New Zealand. The method used in this study included anthropometric measurements (height, weight, and BMI kg/m²) and the whole body composition (fat mass, fat-free soft tissue and bone mineral content (BMC)) was assessed by DEXA. Fat — free mass was calculated as the sum of fat-free soft tissue and BMC. Percentage of body fat (%BF) was calculated as 100 x FM/DEXA weight. This was the first study which made direct comparison between Polynesian and Asian Indian peoples in New Zealand, the two ethnic groups considered to lie at opposite ends of the spectrum in terms of their body size and body composition. At a fixed percentage of body fat corresponding to BMI of 30 kg/m² for Pacific Island people BMI values were up to 5 units higher and for Asian Indians up to 6 units lower, a span of 11 BMI units. For the same BMI, body fat in Pacific men and women was 25% and 38% respectively, while in Asian Indian men and women percent body fat was 37% and 47%, respectively. Therefore, Asian Indian people have more total body fat (TBF) than Pacific people, more central fat, less lean mass and appendicular skeletal muscle mass (APSMM), and less bone mineral content (BMC) than other participants in the study of different ethnicities. Use of universal BMI cut-off points underestimate risks associated with the levels of obesity in Polynesian and Asian Indian ethnic groups, although it does show a need for ethnic specific BMI cutoffs for people of both ethnicities. The BMI cutoff point for observed metabolic risk in different Asian populations should be between 22 kg/m² and 25 kg/m², and for high risk the range from 26 kg/m² to 31 kg/m² is appropriate (65). It was also observed that with increasing age, body fat in Asian Indian people showed a shift in the fat body distribution to the abdominal area which shows their tendency for the development of central obesity and consequently insulin resistance, while in people of other ethnicities in the study increase in abdominal fat was coupled with increase in total body fat.

The aim of the study by Rush et al., (66) was to characterize ethnic differences in the relationships between total body fatness and body size and body fat distribution in women from five ethnic groups in New Zealand and South Africa (SA). The objective of the study was to investigate differences in body composition, especially the relationship between BMI kg/m² and %BF among female participants. The study participants were 721 women aged 18–60 years from five ethnic groups in New Zealand (173 European, 76 Maori, 84 Pacific, and 93 Asian Indian) and South Africa (SA 201 black and 94 European). The method used included anthropometry (measurements of height, weight, waist and hip circumference), and TBF, central and peripheral body fat, BMC and ASMM were derived from dual X-ray absorptiometry in the Department of Surgery, University of Auckland, New Zealand and the Department of Human Biology, University of Cape Town in South Africa. BMI was derived from height and weight. It was reported that for the same BMI of 30 kg/m², the Pacific women had the lowest body fat (~38%BF) while Asian Indian women had the greatest body fat content (~48%BF). Pacific women had the highest levels of fat free mass (FFM) and APSMM, while Asian Indian women had the lowest FFM and APSMM. More importantly, New Zealand Asian Indian women had the greatest central fat mass, followed by the NZ Maori, NZ European and NZ Pacific women who had the least. Also, DEXA derived peripheral or appendicular fat mass (AFM) was the highest in SA black women and Asian Indian women, which can be explained by their greater total body fatness. In addition, the whole body BMC was lower in Asian Indian women followed by Pacific and Maori women. This finding suggests that vitamin D deficiency in Asian Indians in New Zealand is associated with impaired glucose tolerance in the population under a high risk of developing type 2 diabetes.

The study by Rush et al., (67) recruited a total of 114 healthy male volunteers (64 European, 31 Pacific Island, and 19 Asian Indian) aged 17–30 years. Height and weight were measured, BMI was calculated, while %BF, FFM, BMC, bone mineral density (BMD), abdominal fat, thigh fat, and APSMM were obtained from total body DEXA scans. For the fixed BMI, Asian Indian men had significantly more body fat than Pacific Island and European men. These ethnic differences were explained by differences in body build and muscularity in particular. Compared with European men of similar weight and height, Asian Indian men had significantly less skeletal muscle mass, while Pacific Island men had significantly more. Examination of body fat distribution has shown that Asian Indian men have more central fat than European or Pacific Island men. BMC and BMD were lower in Asian Indian than in European and Pacific Island men.

The levels of body fatness, physical activity, and nutritional behavior in 52 Asian Indian men and 62 Asian Indian women, aged 44–91 years (mean 67.5 ± 7.6ys) in the study by Kolt et al., (68). The study draws attention to the different levels of fatness in Asian Indian men and women. The measurements of the BF by the bioelectrical impedance (BIA) have ranged from 13.2% to 58.8% (mean = 41.1, SD = 9.1) for both of the sexes. Asian Indian men (34.6%, SD = 6.8) had significantly less body fat than their female (45.7%, SD = 6.8) counterparts. Cutoff points of greater than 25% body fat for Asian Indian men, and 30% body fat for Asian Indian women, put them under the increased risk of
type 2 diabetes and CHD associated with excess body fat. The use of WC ethnic specific cutoff points in Asian Indian men and women (greater than 90 cm for men and 80 cm for women), have shown that 82% of men and 90% of women had significantly high levels of central obesity, which predispose them to insulin resistance and risk of type 2 diabetes.

Ethnic differences in body size and body composition in Asian Indian children in NZ

The study by Duncan et al., (69), investigated demographic and lifestyle risk factors for excess body fatness in a multiethnic group of 1229 healthy children aged 5–11 years, which consisted of 46.8% European, 33.1% Polynesian, 15.9% Asian, and 4.1% from other ethnicities. The Asian group comprised of Asian Indian children (38.3%), Chinese (21.9%), and Korean (13.8%), Filipino (9.7%), Sri Lankan (4.1%), and other Asian (12.2%) children. The study draws attention to the body composition of Asian Indian children, which in this study is presented only through the %BF, measured using hand-to-foot BIA. Over-fat children were defined as those with a %BF ≥ 25% (boys) and %BF ≥ 30% (girls). Asian children had more excess body fat than European children. Asian Indian and Sri Lankan children comprised the majority of Asian children (42.4%), who at the age of eight had more fat tissue than their European counterparts of the same age, which already put them under the high risk of developing insulin resistance in adolescence or later life.

Genetics and/or lifestyle changes

Living predominantly sedentary lifestyle with low level of physical activity, predispose Asian Indian population in New Zealand to type 2 diabetes and CHD. It appears that early intervention programs are more successful when initiated at an early stage of metabolic syndrome. It is well known that metabolic syndrome is not a diagnosis (70). It is rather a pre-morbid condition that can be reversed at an early stage. The impact of a group diet and physical activity on body composition, lipid profile and insulin resistance in Asian Indian migrants was assessed in the study by Rush et al., (71). Study participants were Asian Indian men and women (aged ? 50 y), recruited from urban Auckland. Anthropometric measures of obesity for total body (BMI) and central fat (WC), and fasting blood tests for serum glucose, insulin and lipids, and blood pressure, were obtained one month prior to the commencement of the intervention program, and were repeated after a five-month period, following the intervention of altered diet and exercise. Significant decrease in body weight, total and central body fat, resulted in decrease in blood pressure in Asian Indian men, while these changes were not significant in women. Lipid profiles in both men and women improved, such as increased blood level of high density lipoprotein (HDL), decreased low density lipoprotein (LDL), and total cholesterol/HDL ratio, without changes in serum glucose, insulin resistance and triglycerides. Apparently, the intervention program was a good indicator that change was possible but limited. However, in the early stages of the disease, insulin resistance is compensated by an increase in pancreatic β-cell mass and function, that often delays diagnosis of type 2 diabetes for a period of years (72).

The role of inflammation in metabolic syndrome

The relationships between markers of insulin resistance and inflammation, resting energy expenditure (REE), and body composition were examined by professor Rush et al., (73). The participants in the study were 79 (38F, 41M; age 30 – 49 years) healthy adult Asian Indian migrants from urban Auckland. Total and regional body composition, including regional FM and ASMM were determined by DEXA. Beta-cell function (HOMA B %) (74) and insulin sensitivity (HOMA S %) were derived, using homeostatic model assessment. The REE was measured using indirect calorimetry, and fasting blood samples were taken for the measurement of serum glucose, insulin, and cytokines interleukin (IL)-6, tumour necrosis factor (TNF)-α, and CRP. The association of inflammation and metabolic syndrome is particularly relevant to Asian Indians, owing to their high propensity to insulin resistance and central obesity. Apparently, Asian Indian men had more central body fat distribution than women, and their REE rate was highly associated with plasma circulating cytokine IL-6 concentrations. Further, in both sexes IL-6 concentrations were associated positively with % BF and insulin resistance, and inversely with APSMM and insulin sensitivity. The study showed that the relationship between body fat distribution and insulin sensitivity were strongly sex dependent, where male Asian Indians had a greater propensity for the development of the metabolic syndrome than their female counterparts.

CONCLUSION

The research projects which were presented have recognized the major ethnic characteristics of the typical “thin-fat” Indian phenotype in the population at high risk for development of the metabolic syndrome and type 2 diabetes. In comparison with other ethnic groups in New Zealand Asian Indians had more total
Table 1. Summary of findings in selected studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Findings</th>
</tr>
</thead>
</table>
| Rush et al., 2009 | Participants: 933 (454 men and 479 women) of European, Maori, Pacific Island, and Asian Indian ethnicity, aged 17–80 years
✓ For the same BMI Asian Indian men and women (37% and 47% respectively) have more total body fat than Pacific men and women (25% and 35% respectively).
✓ Asian Indian people have more central fat, less lean mass and ASMM, and less BMC than other participants in the study
✓ With increasing age, body fat in Indian people showed a shift in the body fat distribution to the abdominal area (increase in central fat and insulin resistance) |
| Rush et al., 2007 | Participants: 173 NZ European, 76 Maori, 84 Pacific, 93 Asian Indian, and South African (201 South African black and 94 South African white) women, aged 18–60 years
✓ For the same BMI of 30 kg/m², Asian Indian women had the greatest body fat content (~48%BF) while Pacific Island women had the least (~38%BF)
✓ Asian Indian women had the lowest FFM and ASMM
AFM was the highest in South African and Asian Indian women (general fatness)
✓ Asian Indian women had the greatest central fat mass followed by Maori, NZ European, and Pacific Island women
✓ The whole body BMC was lower in Asian Indian women followed by Pacific and Maori women. Low BMC indicates vitamin D deficiency and its association with insulin resistance |
| Rush et al., 2004 | Participants: 64 Europeans, 31 Pacific Island, and 19 Asian Indian healthy men, aged 17–30 years
✓ For the fixed BMI Asian Indian men had significantly more body fat than Pacific Island and European men
✓ Asian Indian men when compared with their European counterparts had significantly less skeletal muscle mass, while Pacific Island men had significantly more
✓ Asian Indian men had more central fat than European or Pacific Island men
✓ BMC and BMD were lower in Asian Indian men than in European and Pacific Island people |
| Kolt et al., 2007 | Participants: 52 Asian Indian men and 62 Asian Indian women, aged 44–91 years
✓ The %BF have ranged from 13.2% to 58.8% for both of the sexes
✓ About 82% of Asian Indian men (25% BF) and 90% of women (30% BF) had significantly high levels of central fat which predisposed them to high risk of type 2 diabetes |
| Duncan et al., 2008 | Participants: 1229 healthy children aged 5–11 years
✓ Over-fat children were defined as those with $25%BF
✓ Asian Indian and Sri Lankan children at the age of eight had more fat tissue than their European counterparts at the same age |
Rush et al., 2007

“Reduction of abdominal fat and chronic disease factors by lifestyle change in migrant Asian Indians older than 50 years”

- Decrease in body weight, total and central body fat, and decrease in blood pressure
- Lipid profiles in both Asian men and women improved (HDL, LDL, and total cholesterol/HDL ratio).
- Serum glucose, insulin resistance and triglycerides have not changed
- Asian Indian men had higher cell function (HOMA-B%) and lower
- Insulin sensitivity (HOMA-S%)

Rush et al., 2007

“Interleukin-6, tumor necrosis factor-alpha and insulin relationships to body composition, metabolism and resting energy expenditure in a migrant Asian Indian population”

- Asian Indian men had more central body fat than women
- Interleukin-6 was associated with REE in Asian Indian men
- In both sexes interleukin-6 was positively associated with: %BF and insulin resistance and inversely associated with ASMM and insulin sensitivity
- Asian Indian men have a greater propensity for the development of the metabolic syndrome than their female counterparts

Abbreviations

- **AFM** — appendicular fat mass
- **APSMM** — appendicular skeletal muscle mass
- **BMI** — body mass index
- **CRP** — C-reactive protein
- **FFM** — fat free mass
- **HbA1c** — glycated haemoglobin (A1c)
- **HOMA B %** — beta cell function
- **HOMA S %** — insulin sensitivity
- **IL-6** — interleukin-6
- **IL-1** — interleukin-1
- **IRS-1** — insulin receptor substrate-1
- **NAFLD** — non-alcoholic fatty liver disease
- **REE** — resting energy expenditure
- **TBF** — total body fat
- **TNF-α** — tumour necrosis factor alpha

Sažetak

ETNIČKA PРИПАДНОСТ I DIABETES TIP 2 KOD AZIJSKIH INDIJSKИХ MIGRANATA U OKLANDU, NOVI ZELAND

Jowitt Ljiljana

University of Auckland, Department of Surgery, Auckland, New Zealand

Prevalence of type 2 diabetes in Asian Indian migrants in Auckland, New Zealand

261

REFERENCES

60. Holick MF. Vitamin D: the underappreciated light-fuhrine hormone that is important for skeletal and cellular health. Curr Opin Endocrinol Diabetes. 2002; 9(1): 87–98.

