Purpose: Discordance with the guidelines and underutilization of pharmacotherapy for secondary prevention frequently exists in clinical practice. Aim of our study was to assess the prescription routine and drug utilization patterns for antiplatelets and peroral anticoagulants in tertiary medical center specialized for cardiovascular rehabilitation.

Methods: study included 96 consecutive patients scheduled for cardiovascular rehabilitation in period 1-6 months after the acute treatment for ischemic (80.2%) and valvular heart disease (19.8%). Patients were divided according to etiology of heart disease and type of acute cardiovascular treatments (conservative, percutaneous coronary interventions (PCI) and surgery).

Results: Dual antiplatelet therapy was the most commonly applied regimen in 84 (87.5%) of conservatively treated myocardial infarctions, 47 (61.9%) of percutaneous coronary interventions (PCI) and 13 (58.9%) of surgically treated group (p > 0.05). Among studied group of patients significant differences in utilization were found for warfarin, or combinations of antiplatelets with warfarin (p < 0.001), as well as studied etiologies of heart disease (p < 0.001), whilst there were no differences for those groups for studied antiplatelets drugs (p > 0.05). All four of patients that received triple therapy (4.17%) were from surgical group.

Underutilization of antiplatelets in ischemic heart disease was at 11 (14.3%) what was congruent with the developed industrial nations.

Conclusions: Acute cardiovascular treatment type, but not heart disease etiology, had significant influence on subsequent prescription routine. Decreased use of pharmacological agents for secondary prevention in surgical patients was revealed. Drug utilization analyzes can offer improvement in optimizing medical treatments, quality of care and decrease unnecessary polypragmasia, as well as improve economical efficiency of medical management.

Key words: drug utilization (DU) review; antiplatelets (AP); anticoagulants; warfarin; cardiovascular rehabilitation; ischemic heart disease; valvular heart disease.

INTRODUCTION

Antiplatelets (AP) and oral anticoagulants (OA) make inevitable components of successful long term management of various atherosclerotic born diseases (1). Named groups are among the most frequently prescribed therapy in prolonged course worldwide, thanks to efficiency in prevention of thrombogenic complications through primary, secondary or tertiary settings (2). However, occurrence of re-thrombosis is still not completely diminished by monotherapeutic approach, even with optimally selected dosage and treatment duration (3). Dual antiplatelet therapy using acetylsalicylate and thienopyridine considerably improves those outcomes, in terms of rate of major cardiovascular complications (4). Overall risk for developing major thrombotic complications on the other hand is becoming excessively increased, due to multifaceted relations. Complex associations include growth in number of population with earlier cardiovascular treatments, burden of more than a few of chronic comorbidities, di-
sease chronicity, as well as the ageing of population. The triple drug regimens, comprising from anticoagulant and two antiplatelets, were introduced for secondary and tertiary prevention of casuistic with prominent pro-thrombotic risk (5). Although the antithrombogenic effect of triple combination is more powerful, at the same time the prevalence of clinically important bleedings is unpleasantly increased. Triple antithrombotic therapies are dominantly matter of debates in regard to ideal combinations of drugs, dosage titrations or duration.

Costs of health care for advanced atherosclerotic process (including cerebrovascular and ischemic heart disease) tend to be additionally increased, and of reverse relation with the continuous adherence to established preventive measures (2). Underutilization of pharmacological secondary prevention is frequently found in clinical practice; moreover it is responsible for differences in prevalence of cardiovascular diseases, morbidity or mortality, which are found between various nations (6). There is a relative lack of data in studies concerning applying of secondary preventive measures from transitional European countries. The aim of our study was to assess drug utilization patterns for antiplatelets and peroral anticoagulants in tertiary medical center specialized for cardiovascular rehabilitation from Croatia. Additionally, combined effects of antiplatelet-anticoagulant therapy were studied in relation with cardiovascular risk factors, comorbidities and clinical diagnostics.

PATIENTS AND METHODS

This was phase IV, open, not randomized and not controlled investigation, having one treatment arm. It included patients scheduled for cardiovascular rehabilitation subsequent to treatment for ischemic or valvular heart disease. Indications coverage included patients after implantation of stent for acute coronary syndrome or chronic ischemic heart disease, as well as those with surgical revascularization for coronary artery disease, and patients with valvular surgery (primary procedure, or as combined procedure with surgical revascularization. Procedures included implantation of prosthetic valves (animal or synthetic), valvuloplastic (using ring, artificial cords or other). Study timeline included period from 1-6 months after the acute treatments. Patients were examined by team of experienced specialists including internists, cardiologists and psychologist prior to inclusion. Diagnoses included medical history (evaluation of underlying chronic conditions, cardiovascular risk factors and relevant comorbidities), transthoracic echocardiography, anthropometrics, laboratory and electrocardiography. Medical history included evaluation of underlying chronic conditions, cardiovascular risk factors and relevant comorbidities. Population was analyzed through groups of cardiovascular acute treatments and structure of antiplatelets and anticoagulant therapy.

Patients with severe acute illness or chronic conditions considered as contraindications for cardiovascular rehabilitation were not included. Those namely were: unstable angina (acute and chronic of Canadian Cardiac society-CCS III to IV grade), hemodynamically significant pericardial effusion, decompensated heart failure (New York heart association-NYHA III and IV grade), hemodynamic instability, significant disorders of rhythms (ventricular fibrillation, sustained ventricular tachycardia, significant bradycardia in need for pacemaker), decompensated diabetes (un-treated hyperglycemia, hypoglycemia, ketosis), thyroid disorders (untreated hyperthyreosis, hypothyreosis), significant acid base misbalance (acidosis or alkalosis), advanced or end stage respiratory disease (chronic obstructive disease of Global Initiative for Chronic Obstructive Lung Disease-GOLD III and IV grade, untreated asthma, pulmonary hypertension, pulmonary embolism, pleural effusion, pneumonia, active tuberculosis, acute febrile illnesses (sepsis, flu, urinary infections), end stage renal disease (in need for dialysis), malignant disease (untreated, being in remission for less than 2 years, metastatic cancer), edema (peripheral, ascites or anasarca), severe hematologic or rheostatic disorders (severe anemia, patients that had transfusion after the first postoperative week, pronounced increase or decrease of any type of blood cells i.e. leucopenia and leucosis, as well as others) and those with significant early postoperative surgical complications (wound dehiscence, renal failure, surgery scission-related bleeding, infection/sepsis).

Main outcome measures

Drug utilization analyzes: Prescription analyzes included prevalence of proton pump inhibitor, ACE-inhibitor/sartan, beta blocker, calcium antagonists, loop diuretic, antidiabetics, acetylsalicylate/thienopyridine and peroral anticoagulant i.e. warfarin. While quoted drugs use was assessed as therapeutic group, and there were no additional individual analyzes, the rate of specific antiplatelets, peroral anticoagulant and their combinations were analyzed. Psycho-neuromodulatory therapy was not included in analyzes (anxiolytics, hypnotics).

Anthropometrics: Measurements of body weight were given in kilograms, height in meters and body mass index (BMI) calculated (kg/m²). Waist and hip circumferences (WC, HC) and ratios (WHR) were presented in centimeters.
Laboratory diagnostics: Samples were taken in morning hours 07:30-08:30 AM in fasting patients. Routine comprised from: Complete blood count (CBC) with number of erythrocytes (ERt) multiplied by 10\(^{12}\), hematocrit (HCT) in L/L, mean corpuscular erythrocyte volume (MCV) in fl., number of platelets (PLT) multiplied by 10\(^{12}\), leukocyte count (LKC) multiplied by 10\(^{9}\). Biochemical analyzes comprised of alanine aminotransferase (ALT) in IU/L at 37\(^\circ\)C, gamma glutamyltransferase (GGT) in IU/L at 37\(^\circ\)C, serum glucose in mmol/L, total cholesterol (CHOL) in mmol/L, low density lipoprotein (LDL) in mmol/L, high density lipoprotein (HDL) in mmol/L, triglycerides (TG) in mmol/L, creatinine (CR) in mmol/L, urea in mmol/L, uric acid (UA) in mmol/L and thyroid stimulating hormone in mIU/L.

Cardiovascular risk: assessment included prevalence of hypertension, hypercholesterolemia, chronic renal disease (CRD), treated diabetes mellitus, glucose intolerance, smoking history, chronic obstructive pulmonary disease, cerebrovascular stroke, carotid artery stenosis and pulmonary artery embolism, atrial fibrillation, past myocardial infarction, known coronary artery disease, diabetes mellitus with Chi square tests accordingly. Data on anthropometrics, laboratory, echocardiography and remainder numeric data were analyzed for differences by Mann-Whitney U test or Kruskal-Wallis ANOVA by ranks. Correlation of the anticoagulant or antiplatelets therapy with clinical diagnosis and outcomes was done by Spearman Rho. P value less than 0.05 was considered significant. Statistical analyses were done by experienced statistician using Statistica for Windows and IBM-SPSS12 v20.

Echocardiography: Transthoracic echocardiography assessments were done by two experienced cardiologists on Toshiba “Artida” equipped with 3 MHz cardiology probe, following general recommendations by American Society for Echocardiography and European Association of cardiovascular imaging.

Ethical issues: Study was approved by ethical committee of the University Hospital “Thalassotherapy Opatija” in line with the good clinical practice guidelines. Patients were included upon signing of written informed consent. There were no financial compensations, supports or grants for patients and authors engaged in the study. Study was not performed on behalf of any other parties than presented.

Statistical analyses: Population and groups were studied with descriptive statistic and presented as means and standard deviations. Population demographic, comorbidities, and nutritional risk screen was tested for differences with Chi square tests accordingly. Data on anthropometrics, laboratory, echocardiography and remainder numeric data were analyzed for differences by Mann-Whitney U test or Kruskal-Wallis ANOVA by ranks. Correlation of the anticoagulant or antiplatelets therapy with clinical diagnosis and outcomes was done by Spearman Rho. P value less than 0.05 was considered significant. Statistical analyses were done by experienced statistician using Statistica 10 for Windows and IBM-SPSS12 v20.

Table 1. Characteristics of the patient sample (n = 96) and studied groups

<table>
<thead>
<tr>
<th>Total</th>
<th>Treatments</th>
<th>Kruskal Wallis ANOVA by ranks</th>
<th>Disease</th>
<th>Chi square</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 44</td>
<td>5 (5.2%)</td>
<td>0 (0.0%)</td>
<td>1 (2.4%)</td>
<td>4 (8.7%)</td>
</tr>
<tr>
<td>45-65</td>
<td>44 (45.8%)</td>
<td>3 (37.5%)</td>
<td>26 (61.9%)</td>
<td>15 (32.6%)</td>
</tr>
<tr>
<td>> 65</td>
<td>47 (49.0%)</td>
<td>7 (14.9%)</td>
<td>15 (31.9%)</td>
<td>21 (43.8%)</td>
</tr>
<tr>
<td>BMI grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>19 (19.8%)</td>
<td>3 (37.5%)</td>
<td>6 (14.3%)</td>
<td>10 (21.7%)</td>
</tr>
<tr>
<td>25-30</td>
<td>56 (58.3%)</td>
<td>3 (5.2%)</td>
<td>21 (35.8%)</td>
<td>30 (52.6%)</td>
</tr>
<tr>
<td>> 35</td>
<td>15 (15.6%)</td>
<td>0 (0.0%)</td>
<td>11 (22.6%)</td>
<td>4 (8.7%)</td>
</tr>
<tr>
<td>Nicotine history</td>
<td>Non-smoker</td>
<td>16 (16.7%)</td>
<td>1 (12.5%)</td>
<td>6 (14.3%)</td>
</tr>
<tr>
<td>Active smoker</td>
<td>35 (36.5%)</td>
<td>3 (7.5%)</td>
<td>22 (52.4%)</td>
<td>10 (21.7%)</td>
</tr>
<tr>
<td>Former smoker</td>
<td>45 (46.9%)</td>
<td>4 (9.0%)</td>
<td>14 (33.3%)</td>
<td>27 (58.7%)</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma hypertension</td>
<td>32 (33.3%)</td>
<td>2 (25.0%)</td>
<td>15 (35.7%)</td>
<td>15 (32.6%)</td>
</tr>
<tr>
<td>Hyperlipoproteinemia</td>
<td>86 (89.6%)</td>
<td>8 (100.0%)</td>
<td>41 (97.6%)</td>
<td>37 (80.4%)</td>
</tr>
<tr>
<td>Chronic renal disease</td>
<td>94 (97.9%)</td>
<td>8 (100.0%)</td>
<td>41 (97.6%)</td>
<td>45 (97.8%)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>43 (44.8%)</td>
<td>1 (2.5%)</td>
<td>14 (33.3%)</td>
<td>28 (60.9%)</td>
</tr>
<tr>
<td>Glucose intolerance</td>
<td>25 (26.0%)</td>
<td>3 (37.5%)</td>
<td>10 (23.8%)</td>
<td>12 (26.1%)</td>
</tr>
<tr>
<td>Metabolic syndrome</td>
<td>34 (35.4%)</td>
<td>4 (50.0%)</td>
<td>15 (35.7%)</td>
<td>15 (32.6%)</td>
</tr>
<tr>
<td>Known coronary artery disease</td>
<td>63 (65.6%)</td>
<td>6 (52.5%)</td>
<td>28 (66.7%)</td>
<td>30 (62.5%)</td>
</tr>
<tr>
<td>Past myocardial infarction</td>
<td>79 (82.3%)</td>
<td>8 (100.0%)</td>
<td>42 (100.0%)</td>
<td>29 (63.0%)</td>
</tr>
<tr>
<td>Atherothrombotic disease</td>
<td>62 (64.6%)</td>
<td>8 (100.0%)</td>
<td>42 (100.0%)</td>
<td>12 (26.1%)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>34 (35.4%)</td>
<td>1 (12.5%)</td>
<td>11 (26.2%)</td>
<td>22 (47.8%)</td>
</tr>
<tr>
<td>Preserved systolic function (LVEF > 50%)</td>
<td>5 (5.2%)</td>
<td>0 (0.0%)</td>
<td>1 (2.4%)</td>
<td>4 (8.7%)</td>
</tr>
</tbody>
</table>

PCI — percutaneous coronary intervention; CAGB — coronary artery bypass surgery; VS — valvular surgery; LVEF — left ventricle ejection fraction
RESULTS

Patients

Mean age of patient was 63.1 years, with range 23-86. There was more of male patients, 70 (72.9%), than female 26 (27.1%). Patients were scheduled for cardiovascular rehabilitation in the timeline 1-6 months after heart surgery; median period at inclusion was 2.4 months. There were 77 patients (80.2%) with acute treatment for ischemic heart disease and 18 (19.8%) for valvular heart disease; with total of 46 (47.9%) surgical treatments; 42 (43.8%) percutaneous coronary interventions and 8 (8.3%) of conservatively treated myocardial infarctions. Coronary artery bypass surgery (CABG) was performed in 28 patients (29.2%), of which combined operation with valvular surgery (VS) was performed in 1 (1.1%). Results of cardiovascular diagnostics among studied groups of patients are presented in the Table 1.

There were no patients with clinically overt acute gastrointestinal hemorrhage. There were no reports on dyspeptic symptoms within medical history, no recorded reflux esophagitis (verified by endoscopy).

Cardiovascular diagnostics

Differences in diagnostics among studied groups of acute treatment and etiologies of heart disease are presented in the Table 2, including the appraisal of clinical relevance.

Antiplatelet and anticoagulant therapy

Significant differences were found in use of antiplatelets (any AP agent) and previous treatments (p < 0.001); in 36 (85.7%) patients with PCI, 7 (87.5%) of surgically treated. Peroral anticoagulant (warfarin) therapy was used only in surgical patients, with prevalence of 24/46 (52.5%). Significant difference was found on basis of heart disease etiology for prevalence of warfarin 8 (10.4%) vs. 16 (84.2%); (p < 0.001) for ischemic and valvular backgrounds respectively. There were no patients with clinically overt acute treatment and etiologies of heart disease are presented in the Table 2, including the appraisal of clinical relevance.
were no differences in studied platelets regimen for studied groups of treatment and disease etiology, while regimens that included peroral anticoagulant therapy showed significant differences in both studied categories.

Drug utilization analyzes for common cardiovascular group of drugs was studied in connection with type of previous cardiovascular treatment (percutaneous coronary interventions or surgery-coronary artery bypass graft and/or valvular surgery) and etiology of heart disease (ischemic or valvular). According to type of cardiovascular treatment, there were significant differences for angiotensinogen-convertase inhibitor/sartan; beta blockers, antilipid drugs, antianginals and warfarin. On the other hand, when etiology of heart disease was studied, significant differences were found for beta blockers, nitrates, antilipid drugs, peroral antidiabetics and warfarin.

Relative shares of specific representatives and drug combinations of all studied group of drugs and their combinations are shown in the Table 3.

Table 3. General cardiovascular drugs

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Conservative N (%)</th>
<th>PCI N (%)</th>
<th>Surgery N (%)</th>
<th>Kruskal Wallis ANOVA by ranks</th>
<th>Disease Ischemic N (%)</th>
<th>Valvular N (%)</th>
<th>Chi square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiotensinogen-convertase inhibitor/sartan</td>
<td>7 (87.5%)</td>
<td>35 (83.3%)</td>
<td>17 (37.0%)</td>
<td><0.001</td>
<td>51 (66.2%)</td>
<td>8 (42.1%)</td>
<td>0.053</td>
</tr>
<tr>
<td>Beta blocker</td>
<td>7 (87.5%)</td>
<td>40 (95.2%)</td>
<td>34 (73.9%)</td>
<td>0.023</td>
<td>68 (88.3%)</td>
<td>13 (68.4%)</td>
<td>0.032</td>
</tr>
<tr>
<td>Calcium antagonist</td>
<td>3 (37.5%)</td>
<td>8 (19.0%)</td>
<td>4 (8.7%)</td>
<td>0.086</td>
<td>14 (18.2%)</td>
<td>1 (5.3%)</td>
<td>0.165</td>
</tr>
<tr>
<td>Loop diuretic</td>
<td>4 (50.0%)</td>
<td>8 (19.0%)</td>
<td>13 (28.3%)</td>
<td>0.171</td>
<td>20 (26.0%)</td>
<td>5 (26.3%)</td>
<td>0.976</td>
</tr>
<tr>
<td>Statin</td>
<td>8 (100.0%)</td>
<td>40 (95.2%)</td>
<td>22 (47.9%)</td>
<td><0.001</td>
<td>66 (85.7%)</td>
<td>4 (21.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Omega-3/fibrate</td>
<td>3 (37.5%)</td>
<td>26 (61.9%)</td>
<td>3 (6.5%)</td>
<td><0.001</td>
<td>31 (40.3%)</td>
<td>1 (5.3%)</td>
<td>0.004</td>
</tr>
<tr>
<td>Nitrate (sublingval and peroral)</td>
<td>4 (50.0%)</td>
<td>30 (71.4%)</td>
<td>4 (8.7%)</td>
<td><0.001</td>
<td>38 (49.4%)</td>
<td>0 (0.0%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Trimetazidine</td>
<td>5 (62.5%)</td>
<td>3 (7.1%)</td>
<td>1 (2.2%)</td>
<td><0.001</td>
<td>9 (11.7%)</td>
<td>0 (0.0%)</td>
<td>0.117</td>
</tr>
<tr>
<td>Proton pump inhibitor</td>
<td>7 (87.5%)</td>
<td>10 (23.8%)</td>
<td>30 (65.2%)</td>
<td><0.001</td>
<td>36 (46.8%)</td>
<td>11 (57.9%)</td>
<td>0.384</td>
</tr>
<tr>
<td>Oral antidiabetics</td>
<td>2 (25.0%)</td>
<td>8 (19.0%)</td>
<td>5 (10.9%)</td>
<td>0.432</td>
<td>15 (19.5%)</td>
<td>0 (0.0%)</td>
<td>0.036</td>
</tr>
<tr>
<td>Insuline</td>
<td>1 (12.5%)</td>
<td>3 (7.1%)</td>
<td>2 (4.3%)</td>
<td>0.649</td>
<td>6 (7.8%)</td>
<td>0 (0.0%)</td>
<td>0.209</td>
</tr>
<tr>
<td>Acetilsalycilate (ASA)</td>
<td>7 (87.5%)</td>
<td>36 (85.7%)</td>
<td>36 (78.3%)</td>
<td>0.610</td>
<td>64 (83.1%)</td>
<td>15 (78.9%)</td>
<td>0.670</td>
</tr>
<tr>
<td>Thienopyridine (T)</td>
<td>7 (87.5%)</td>
<td>27 (64.3%)</td>
<td>28 (60.9%)</td>
<td>0.351</td>
<td>49 (63.6%)</td>
<td>13 (68.4%)</td>
<td>0.696</td>
</tr>
<tr>
<td>Warfarin</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>24 (52.2%)</td>
<td><0.001</td>
<td>8 (10.4%)</td>
<td>16 (84.2%)</td>
<td><0.001</td>
</tr>
<tr>
<td>AP-combinations</td>
<td>None</td>
<td>1 (12.5%)</td>
<td>5 (11.9%)</td>
<td>9 (19.6%)</td>
<td>11 (14.3%)</td>
<td>4 (21.1%)</td>
<td>0.552</td>
</tr>
<tr>
<td></td>
<td>Acetilsalycilate</td>
<td>0 (0.0%)</td>
<td>10 (23.8%)</td>
<td>9 (19.6%)</td>
<td>17 (22.1%)</td>
<td>2 (10.5%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td></td>
<td>Clopidrogel</td>
<td>0 (0.0%)</td>
<td>1 (2.2%)</td>
<td>11 (22.2%)</td>
<td>2 (2.6%)</td>
<td>0 (0.0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dual AP</td>
<td>7 (87.5%)</td>
<td>26 (61.9%)</td>
<td>27 (58.7%)</td>
<td>47 (61.0%)</td>
<td>13 (68.4%)</td>
<td></td>
</tr>
<tr>
<td>Warfarin + AP-combinations</td>
<td>None</td>
<td>8 (100.0%)</td>
<td>42 (100.0%)</td>
<td>22 (47.8%)</td>
<td>69 (89.6%)</td>
<td>3 (15.8%)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Warfarin</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>6 (13.0%)</td>
<td>3 (3.9%)</td>
<td>3 (15.8%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triple</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>4 (8.7%)</td>
<td>2 (2.6%)</td>
<td>2 (10.5%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warfarin + AP</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>14 (30.4%)</td>
<td>3 (3.9%)</td>
<td>11 (57.9%)</td>
<td></td>
</tr>
</tbody>
</table>

Mean ± SD — standard deviations; **N** — number; **CABG** — coronary artery bypass surgery; **VS** — valvular surgery; **AP** — antiplatelets; **ASA** — Acetylsaliclyc acid; **T** — Thienopyridine

During the study course, we did not have any case of clinically significant bleeding (intracerebral, pericardial, pleural, abdominal, and gastrointestinal) and no blood transfusions. Cases of bleeding associated with surgical treatment complications (early complications, in first postoperative week) that had to be managed by surgery were not included in the study.

DISCUSSION

Current study for the first time systematically analyzed utilization of antiplatelets and anticoagulant group in patients with secondary prevention and rehabilitation from Croatia. Share of antiplatelets agents was in range from 10-17%, while peroral anticoagulants made about 12% of total prescriptions. Relative portions of antiplatelet and anticoagulant group were greater in the postsurgical group, which in part represents suspected underutilization of antilipemecs, beta blockers and angiotensin-convertase inhibitors/sartans; pa-
rall with decrease in total number of drugs per patient (8). Consumption of antiplatelets was greater in the group of patients with ischemic heart disease, conversely to the warfarin which was more commonly used with valvular operations. Additional factor that favored peroral anticoagulants was presence of atrial fibrillation which was poured more frequently in surgical patients, especially ones with ischemic heart disease. Interestingly, there were no differences in consumption of antiplatelets or their combinations within studied groups of cardiovascular treatment or the etiology of heart disease. Warfarin and its combinations showed to be plentifully related with cardiovascular treatment, as well as through etiology of heart disease. Relations of anticoagulant therapy with laboratory parameters seem to represented acute treatments backgrounds i.e. greater prevalence of surgical treatments, than the effects of therapy per se.

Consumption of acetylsalicylic acid varied from 87.5% of conservative treatments down to 78.3% in surgical and was of similar ranges between the ischemic heart disease and valvular. Rate of underutilization for acetylsalicylates was 13% for the ischemic group. Low dose acetylsalicylic acid (ASA) (75-100 mg) acts as irreversible inhibitor of the cyclooxygenase-1 (COX-1) in platelets (9). Additional mechanisms that might exhibit the cardiovascular protection include anti-inflammatory and tissue remodeling/reparation effects by inhibition of the expression of inducible nitric oxide (INOS), inhibition of activation of nuclear factor kappa-beta (NF-kB), with initiation of acute phase response and inhibition of neutrophil activation (10, 11). Large scale meta-analysis reported on beneficiary effects of acetylsalicylic acid in primary prevention of serious adverse atherothrombotic complications, pointing out the prevalence of first non-fatal myocardial infarction, stroke, cardiovascular death (12). Furthermore, owing to conceptualization shift to preventive actions in the “cardiovascular continuum” ASA is now-days recommended therapy by evidence based merits for patients that did not survive the cardio-cerebro-vascular or peripheral artery event, nonetheless bear the increased scores of 10-years cardiovascular hazard due to prevalence of combined risk factors or chronic comorbidities, particularly diabetes (13, 14). Over and above, the group of individuals with arterial hypertension of high risk grade also showed long-term benefits in preventive therapy with acetylsalicylic acid (15). Secondary prevention considers the lifelong therapy with antiatherothrombotic agent, outlining only the importance for remaining short and long term patency of the implanted intracoronary stent or coronary bypass grafts (16, 17). Despite the predictable complications, dominantly in terms of gastric and enteric mucosal lesions, nephropathy and salicylism in the adults, underutilization of acetylsalicylic acid is commonly found in clinical practice (18). The latter was predicted to save up to 10.000 of lives each year in the population of 350 million, if the theoretical sustained coverage would be equal to entire set of patients surviving the acute coronary syndrome (19). Another important problem is around acetylsalicylic acid lesser treatment efficiency i.e. aspirin resistance, which could be of clinical and laboratory types. Latter could happen in relation with patients’ characteristics (alternation in platelets production or function, genetic alternations in metabolism of drugs, diabetes mellitus, nicotinismus, some food and beverages as grape juice or alcohol), and drug-drug interactions (with non-steroidal anti-inflammatory drugs, some type of statins, and proton pump inhibitors) (20, 21, 22, 23). Similar scenarios occur with other antiplatelet drugs, as well as their combinations (24, 25).

Dual antiplatelet therapy consisting of ASA and Clopidogrel was the most commonly used antiplatelet modality in our patients, making 62% in ischemic heart disease, and of nearly equal ranges among studied groups of cardiovascular treatments (26). Clopidogrel is irreversible thienopyridine blocker of P2Y12 protein, adenosine diphosphate (ADP) chemoreceptor on platelet cell membranes (27). Drug is used for prevention of thromboembolic events such as cerebrovascular stroke, peripheral artery disease or acute coronary syndrome, as well as for improvement of the short and long term patency of implanted intracoronary stents (28, 29). Increased consumption of dual antiplatelet combinations in 57% of surgical patients and 68% of valvular, might be prominently explained through prevalence of atherothrombotic disorders and atrial fibrillation in these groups. Benefits of dual antiplatelet therapy in remaining of the bare metal stent patency beyond the period of 6-12 months are less evident; however future studies comprising of populations with surgical revascularization, prevalence of comorbidities and the extent of atherosclerotic process would be valuable in order to increase the cost-efficiency (30).

Position of peroral anticoagulant therapy with antagonist of the K vitamin in secondary prevention of cardiovascular diseases is still matter of consultations due to unanimous conclusions (31). Studies showed lack of coherence in evidences about net benefit in major cardiovascular events versus bleeding which was mainly corresponding with the dosing regiments i.e. attained levels of international normalized ratios (INR) (32). Supplementary controversies of vitamin K antagonists could be found in the reported advancement in atherosclerosis or thrombus stability through inhibition of matrix Gla-protein (MGP) and subsequent vascular calcification (32, 33). The triple combination also
brings certain challenges and questions in terms of legislative. Although some professional societies recommend triple therapy in some instances, the labeling directives of drugs, produced by various companies do not imply preferring the use of such combinations due to similar safety concerns (bleeding risk).

Although the study settings represent the non-randomized cohort of patients on cardiovascular rehabilitation, most of the comorbidities were found to be of similar national prevalence within earlier reports (33, 34). Most of risk factors from the modifiable cluster were still found to be of high prevalence, particularly continuous nicotine abuse in 36% of patients. In addition, 23% of patients were obese and 58% overweight, diabetes 26%, glucose intolerance 35%, metabolic syndrome 66%, and chronic renal disease 45% (6,35).

In conclusion, utilization of acetylsalicylate acid therapy was found to be of similar range in compare with the most developed industrial nations. Dual antiplatelet therapy was the most common prescription routine. Triple therapy was used to less degree, in patients of secondary or tertiary prevention, mostly ones with atrial fibrillation. Acute settings cardiovascular treatment was shown to influence the prescription routine, apart from heart disease etiology, raising concerns about the decreased use of available pharmacological agents in secondary prevention of the post-surgical patients.

Conflict of interest:
None declared

Acknowledgments:
This study was not supported financially in any way.

Abbreviations:
AP — antiplatelets
COPD — chronic obstructive pulmonary disease
AC — anticoagulants
CRD — chronic renal disease
ASA — Acetylsalicylate acid
LVEF — left ventricle ejection fraction (%)
T — Thienopyridine
ERC — eritrocytes
PCI — percutaneous coronary intervention
HCT — hematocrit
CABG — coronary artery bypass surgery
MCV — mean corpuscular volume of erythrocytes
VS — valvular surgery
LKC — leukocytes
BMI — body mass index (kg/m2)
PLT — platelets
WC — waist circumference (cm)
GLC — serum glucose
HC — hip circumference (cm)
CREAT — creatinine
WHR — waist-hip ratio
CHOL — cholesterol
HDL — high density lipoprotein
LDL — low density lipoprotein

Sažetak

ANALIZA KORIŠTENJA ANTITROMBOCITNIH LEKOVA I PERORALNE ANTIKOAGULANTNE TERAPIJE KOD BOLESNIKA NA STACIONARNOM PROGRAMU BOLNIČKE KARDIOLOŠKE REHABILITACIJE

Boban Marko,1,2 Persic Viktor,1,2 Pesa Vladimir,1 Pehar-Pejcinovic Vesna,1 Detanac S. Dzemal,3 Sipic Tomislav,2 Zulj Marinko,2 Franovic Tamara,1 Vcev Aleksandar2

1 Department of cardiology, University hospital “Thalassotherapia Opatija”, Medical faculty University of Rijeka; Croatia
2 Department of internal medicine, Medical faculty JJ Strossmayer, Osijek, Croatia
3 General hospital Novi Pazar, Serbia

Uvod: Neslaganje sa smernicama i neoptimizacija farmakoterapije u sekundarnoj prevenciji često postoji u kliničkoj praksi. Cilj istraživanja bio je proceniti obrazac propisivanja i utilizacije antitrombocitnih lekova i peroralne antikoagulantne terapije u tercijarnom medicinskom centru specijalizovanom za kardiovaskularnu rehabilitaciju.

Metode: u studiju je uključeno 96 uzastopnih bolesnika zakazanih za kardiovaskularnu rehabilitaciju u razdoblju od 1 do 6 meseci nakon akutnog lečenja zbog ishemijske bolesti srca (80,2%) i bolesti srčanih zalištaka (19,8%). Bolesnici su podeljeni prema etiologiji bolesti srca i akutnim oblicima lečenja.

Rezultati: Dvojna antiagregaciona terapija bila je najčešće korišćeni režim kod 87,5% konzervativno lečenih infarkta miokarda, 61,9% perkutane koronarne intervencije (PCI) i 58,9% kod hirurški tretirane grupe (p > 0,05). Profil utilizacije nije bio značajno različit za
antitrombocitne lekove (p > 0.05); Obrnuto, utilizacija varfarina, ili kombinacije koje su uključivale varfarin, značajno su se razlikovale prema ispitivanim grupama lečenja (p < 0.001) i etiologiji bolesti (p < 0.001). Sva četiri bolesnika koja su primila trostruku terapiju (4,17%) bila su u grupi hirurški lečenih pacijenata. Neadekvatna utilizacija antitrombocitnih lekova u ishemijskoj bolesti srca iznosila je 14,3%, što je u skladu sa razvijenim industrijskim zemljama.

REFERENCES

Correspondence to / Autor za korespondenciju

Assist. Prof. Marko Boban, MD, PhD, MBA
Department of cardiology. University Hospital Thalassotherapia Opatija
Medical Faculty University of Rijeka
Medical faculty JJ Strossmayer, Osijek, Croatia
E-mail: marcoboban@yahoo.com
M. Tita 188/1; Opatija 51 440; Croatia;
Mob: ++385 51 202 600; Fax: ++385 51 271 424