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On Some Irregularity Measures of Graphs

I. Ž. Milovanović, E. I. Milovanović, V. Ćirić, N. Jovanović

Abstract: Let Γ(G) be a set of all simple graphs of order n and size m, without isolated vertices,
with vertex degree sequence d1 ≥ d2 ≥ ·· · ≥ dn > 0. A graph G is regular if and only if
d1 = d2 = · · ·= dn. Each mapping Irr : Γ(G) 7→ [0,+∞) with the property Irr(G) = 0 if and
only if G is regular, is referred to as irregularity measure of graph. In this paper we introduce
some new irregularity measures and inequalities that establish relations between them.
Keywords: Zagreb indices; irregularity measures; inequalities.

1 Introduction

We consider simple graphs G = (V,E), where V = {1,2, . . . ,n} and E = {e1,e2, . . . ,em},
without isolated vertices. Denote by d1 ≥ d2 ≥ ·· · ≥ dn > 0, di = d(i), i = 1,2, . . . ,n,
a sequence of vertex degrees and by d(e1) ≥ d(e2) ≥ ·· · ≥ d(em), a sequence of edge
degrees, whereby for each edge e = {i, j} ∈ E holds d(e) = di +d j −2. By i ∼ j we denote
that vertices i and j are adjacent, while by ei ∼ e j that edges ei and e j are adjacent in a given
graph G.

Let A be the adjacency matrix of G. Eigenvalues of A, λ1 ≥ λ2 ≥ ·· · ≥ λn represent
ordinary eigenvalues of graph G. Well known properties of these are (see for example
[6, 30])

n

∑
i=1

λi = 0 and
n

∑
i=1

λ 2
i =

n

∑
i=1

di = 2m.

Denote by D = diag(d1,d2, . . . ,dn) a diagonal matrix of vertex degrees in G. Then L =
D−A is the Laplacian matrix of G. The eigenvalues of L, µ1 ≥ µ2 ≥ ·· · ≥ µn−1 ≥ µn = 0,
are Laplacian eigenvalues of G. Some well known properties of Laplacian eigenvalues are
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[6, 10]
n−1

∑
i=1

µi =
n

∑
i=1

di = 2m and
n−1

∑
i=1

µ2
i =

n

∑
i=1

d2
i +

n

∑
i=1

di = M1 +2m,

where

M1 = M1(G) =
n

∑
i=1

d2
i = ∑

i∼ j
(di +d j)

is the first Zagreb index [24]. In the same paper, the second Zagreb index, M2, is defined as

M2 = M2(G) = ∑
i∼ j

did j.

The first and the second Zagreb indices of a given graph satisfy so called Zagreb indices
inequality (see for example [8, 18])

M1

n
≤ M2

m
. (1)

The first and second reformulated Zagreb indices, EM1 and EM2, are defined as [35, 44]

EM1 = EM1(G) =
m

∑
i=1

d(ei)
2 and EM2 = EM2(G) = ∑

ei∼e j

d(ei)d(e j).

A relation between Zagreb indices and reformulated Zagreb indices is established over the
line-graph, L = L (G), of the underlying graph G (see [6, 10, 30]). Namely,

EM1(G) = M1(L (G)) and EM2(G) = M2(L (G)).

It is not difficult to conclude that line-graph L (G) has m vertices and 1
2 M1 −m edges. If

graph G satisfies (1), then the following is valid

EM1

2m
≤ EM2

M1 −2m
and

EM1

n
≤ EM2

2m−n
, (2m ̸= n). (2)

The forgotten topological index of G is defined as [17, 22, 24, 45]

F1 =
n

∑
i=1

d3
i = ∑

i∼ j
(d2

i +d2
j ).

The equality that establishes a connection between graph invariants M1, M2, EM1 and F1 is
given by [45]

EM1 = F1 +2M2 −4M1 +4m. (3)

More on these and other degree-based topological indices and their applications can be
found in [12, 13, 16, 18, 20, 25, 26, 27, 28, 37, 40, 41, 42, 43].
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A graph G is regular if and only if d1 = d2 = · · ·= dn > 0. Otherwise it is irregular. Let
Γ(G) be a set of all simple graphs of order n, n ≥ 2, and size m, without isolated vertices.
Each mapping Irr : Γ(G) 7→ [0,+∞) with the property Irr(G) = 0 if and only if G is
regular, is referred to as irregularity measure of graph. There have been defined a lot of
irregularity measures in the literature (see for example [1, 2, 3, 5, 11, 14, 15, 19, 21, 24, 29,
34]). In the next section we mention some irregularity measures that are of interest for our
work and introduce some new ones.

2 Some irregularity measures of the graph

Collatz and Sinogowitz [11] have proved that

λ1 ≥
2m
n
,

with equality holding if and only if G is a regular graph. Using this inequality in [21] the
Collatz–Sinogowitz irregularity measure was defined via

IrrCS(G) =
nλ1

2m
−1.

Nikiforov [34] introduced irregularity measure referred to as degree deviation

S(G) =
n

∑
i=1

∣∣∣∣di −
2m
n

∣∣∣∣ .
We will call this measure Nikiforov irregularity measure and denote it by IrrN(G).

Bell [5] considered the variance of vertex degrees as irregularity measure. It is defined
as

VAR(G) =
1
n

n

∑
i=1

(
di −

2m
n

)2

.

It is not difficult to see that both IrrN(G) and VAR(G) are special case of the following
graph invariant

Rα(G) =

(
1

nα−1

n

∑
i=1

∣∣∣∣di −
2m
n

∣∣∣∣α
)1/α

, α ≥ 1.

Hamzeh and Reti [24] defined the following irregularity measure

IRM1(G) = M1 −
4m2

n
.

Edwards [14] considered the value Cγ as irregularity measure, defined as

1+C2
γ =

nM1

4m2 , (4)
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whereby C2
γ is a real number. He proved that Cγ = 0 if and only if G is regular. It is not

difficult to see that the following relation between VAR(G), IRM1(G) and C2
γ holds

C2
γ =

n2

4m2VAR(G) =
n

4m2 IRM1(G).

Therefore these measures can be considered as equivalent. Since C2
γ ≥ 0, according to (4)

it follows that

M1 ≥
4m2

n
. (5)

Equality holds if and only if G is regular. More on the inequality (5) one can find in [12,
20, 25, 44]. Based on (5), in [21] Edwards’ irregularity measure was defined as

IrrE(G) =

√
nM1

4m2 −1.

Ilić and Stevanović [25] (see also [45]) proved the following inequality

M2 ≥
4m3

n2 , (6)

with equality holding if and only if G is a regular graph. Based on this, a new irregularity
measure, Ilić–Stevanović measure, can be defined as

IrrIS(G) =
3

√
n2M2

4m3 −1.

In [24] the following irregularity measure was proposed

IRM2(G) = M2 −
4m3

n2 .

Since

IRM2(G) =
4m3

n2 IrrIS(G),

it follows that IRM2(G) is not different from the IrrIS(G).
From the inequality (5) the following inequality can be directly derived [13]

EM1 ≥
(M1 −2m)2

m
≥ 4m(2m−n)2

n2 ,

with equality holding if and only if G is regular. Based on this inequality, another irregular-
ity measure can be defined as

Irr1(G) = 3

√
n2EM1

4m(2m−n)2 −1, 2m ̸= n.
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In [26] (see also [13]) based on inequality (6) the following one was proved

EM2 ≥
(M1 −2m)3

2m2 ,

with equality holding if and only if G is regular. According to this and the inequality (5), it
follows that

EM2 ≥
4m(2m−n)3

n3 .

Now we can define Ilić–Zhou irregularity measure

IrrIZ(G) = 4

√
n3EM2

4m(2m−n)3 −1, 2m ̸= n.

Denote by F(α)
1 =

n

∑
i=1

dα
i , where α (α ≥ 1) is a real number. It is not difficult to see

that F(1)
1 = 2m, F(2)

1 = M1 and F(3)
1 = F1. According to the Chebyshev’s inequality (see for

example [31])
n

∑
i=1

pi

n

∑
i=1

piaibi ≥
n

∑
i=1

piai

n

∑
i=1

pibi, (7)

for pi = bi = di and ai = dα−2
i , α ≥ 2, inequality (7) becomes

n

∑
i=1

dα
i ≥ M1

2m

n

∑
i=1

dα−1
i . (8)

After iterating the above inequality, we obtain

F(α)
1 =

n

∑
i=1

dα
i ≥ (M1)

α−1

(2m)α−2 , α ≥ 2.

Based on this and inequality (5), we have that

F(α)
1 =

n

∑
i=1

dα
i ≥ (2m)α

(n)α−1 , α ≥ 2,

whereby the equality holds if and only if G is regular. This inequality enables us to define
a bunch of irregularity measures for various α

Irr(α)(G) =

(
nα−1F(α)

1
(2m)α −1

)1/α

. (9)
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It is obvious that Irr(2)(G) = IrrE(G). Also, the following might be an interesting irregu-
larity measure when α = 3

Irr(3) = 3

√
n2F1

8m3 −1.

Remark 1 Let us note that equivalent irregularity measure to the above was defined in
[38].

In [19] Goldberg noticed that the simplest irregularity measure is

d(G) = d1 −dn.

We will call this measure Goldberg’s irregularity measure, and consider it in the form

Irrg(G) =
d1

dn
−1.

Remark 2 It is obvious that a lot of irregularity measures can be defined. The question is
do we really need all of them? From each of them we can conclude whether a given graph is
regular or not, but if we are interested to see how much the considered graph deviates from
the regular one, the differences arise. It is desirable that irregularity measure is sensitive
to the changes of all basic graph parameters: n, m, d1 and dn. Thus, for example Golberg’s
irregularity measure is really simple, but it is (completely) insensitive to the changes of
parameter m when parameters d1 and dn remain unchanged. Thus, for example, if graph
G1 is obtained by adding edges to the graph G, while d1 and dn remain unchanged , then
Irrg(G1) = Irrg(G). However, it is obvious that G deviates from regularity more than G1.
Also, the measure Irr(G) = 2m

ndn
−1 , (dn ̸= 0), is not sensitive to the changes of parameter d1

when n, m and dn are unchanged. Nevertheless, these ”simple” irregularity measures are
useful for determining bounds of other irregularity measures or when comparing different
measurs.

3 Inequalities for irregularity measures

In this section we prove some inequalities between irregularity measures defined in the
previous section. Also we establish bounds for some of them. But, first we recall some
results from the literature needed for our work.

In [19] Goldberg proved the following inequality

IrrCS(G)≥ 4m2

n2

√
2m
nd1

IrrE(G)2. (10)
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Nikiforov [34] proved the following inequalities
√

2m
2n

IrrE(G)2 ≤ IrrCS(G)≤
n
√

IrrN(G)

2m
, (11)

and
IrrN(G)2

4nm
√

2m
≤ IrrCS(G)≤

√
n2

2m
IrrE(G). (12)

Based on the Popovicu [36] and Nagy [33] inequalities (see also [39]) the following
inequalities can be obtained

√
ndnIrrg(G)

2
√

2m
≤ IrrE(G)≤

ndnIrrg(G)

4m
. (13)

In the following theorem we improve the right-hand side of inequality (13).

Theorem 1 For each graph G, G ∈ Γ(G), the following is valid

IrrE(G)≤
√

α(n)ndnIrrg(G)

2m
, (14)

where

α(n) =
1
n

⌊n
2

⌋(
1− 1

n

⌊n
2

⌋)
. (15)

Equality holds if and only if G is regular.

Proof. For real numbers p1, p2, . . . , pn, a1,a2, . . . ,an and b1,b2, . . . ,bn with the property

pi ≥ 0, 0 < r1 ≤ ai ≤ R1 <+∞, 0 < r2 ≤ bi ≤ R2 <+∞, i = 1,2, . . . ,n

Andrica and Badea [4] proved the following inequality∣∣∣∣∣ n

∑
i=1

pi

n

∑
i=1

piaibi −
n

∑
i=1

piai

n

∑
i=1

pibi

∣∣∣∣∣≤ (R1 − r1)(R2 − r2)∑
i∈S

pi

(
n

∑
i=1

pi −∑
i∈S

pi

)
, (16)

where S is a subset of the set In = {1,2, . . . ,n} for which the value∣∣∣∣∣∑i∈S
pi −

1
2

n

∑
i=1

pi

∣∣∣∣∣ (17)

reaches a minimum. Let S = {1,2, . . . ,k}, 1 ≤ k ≤ n, and pi = 1, for i = 1,2, . . . ,n. Then,
according to (17) k = ⌊n

2⌋, i.e. S = {1,2, . . . ,⌊n
2⌋}. Now, for S = {1,2, . . . ,⌊n

2⌋}, pi = 1,
ai = bi = di, i = 1,2, . . . ,n, R1 = R2 = d1 and r1 = r2 = dn according to (16) we have that

n
n

∑
i=1

d2
i −

(
n

∑
i=1

di

)2

≤ (d1 −dn)
2
⌊n

2

⌋(
n−
⌊n

2

⌋)
(18)
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i.e.
nM1 −4m2 ≤ (d1 −dn)

2
⌊n

2

⌋(
n−
⌊n

2

⌋)
.

The above inequality can be rewritten in the form

4m2
(

nM1

4m2 −1
)
≤ n2d2

n

(
d1

dn
−1
)2 1

n

⌊n
2

⌋(
n−
⌊n

2

⌋)
wherefrom we obtain the result of the theorem.

Equality in (18) holds if and only if d1 = d2 = · · ·= dn, so the equality in (14) holds if
and only if G is a regular graph.

�

Remark 3 Since

α(n) =
1
n

⌊n
2

⌋(
1− 1

n

⌊n
2

⌋)
=

1
4

(
1− (−1)n+1 +1

2n2

)
=

{
1
4 , if n is even
(n−1)(n+1)

4n2 , if n is odd
,

the inequality (14) is stronger than the right-hand side of inequality (13) for odd n.

Corollary 1 For each graph G, G ∈ Γ(G), the following inequality is valid

IrrCS ≤
n

2m

√√
α(n)ndnIrrg(G).

Equality holds if and only if G is a regular graph.

In inequalities (11) and (12) indirect relationships between irregularity measures IrrN(G)
and IrrE(G) are given. In the following theorem we prove the inequality that establishes
direct connection between these irregularity measures.

Theorem 2 For each graph G, G ∈ Γ(G), the following is valid

2
√

2m√
n

IrrE(G)≤ IrrN(G)≤ 2mIrrE(G). (19)

Equality holds if and only if G is a regular graph.

Proof. For the real positive numbers p1, p2, . . . , pn, a1,a2, . . . ,an and b1,b2, . . . ,bn with the
property

n

∑
i=1

pi = 1, 0 < r ≤ ai ≤ R <+∞, i = 1,2, . . . ,n
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Cerone and Dragomir [9] have proved the following inequality∣∣∣∣∣ n

∑
i=1

piaibi −
n

∑
i=1

piai

n

∑
i=1

pibi

∣∣∣∣∣≤ R− r
2

n

∑
i=1

pi

∣∣∣∣∣bi −
n

∑
i=1

pibi

∣∣∣∣∣ .
For pi =

1
n , ai = bi = di, i = 1,2, . . . ,n, R = d1 and r = dn, the above inequality transforms

into
1
n

n

∑
i=1

d2
i −

1
n2

(
n

∑
i=1

di

)2

≤ d1 −dn

2n

n

∑
i=1

∣∣∣∣di −
2m
n

∣∣∣∣ ,
i.e.

1
n

M1 −
4m2

n2 ≤ d1 −dn

2n

n

∑
i=1

∣∣∣∣di −
2m
n

∣∣∣∣ .
From the above inequality we obtain

4m2

n2 IrrE(G)2 ≤ d1 −dn

2n
IrrN(G). (20)

Based on the Lagrange’s identity (see for example [32]) we have

4m2

n2 IrrE(G)2 =
1
n2

(
nM1 −4m2)= 1

n2

n
n

∑
i=1

d2
i −

(
n

∑
i=1

di

)2
=

=
1
n2 ∑

1≤i< j≤n
(di −d j)

2 ≥ 1
n2

(
n−1

∑
i=2

(
(d1 −di)

2 +(di −dn)
2)+(d1 −dn)

2

)
.

Now according to Jennsen’s inequality (see for example [31]) from the above inequality we
have that

4m2

n2 IrrE(G)2 ≥ 1
n2

(
n−1

∑
i=2

(d1 −dn)
2

2
+(d1 −dn)

2

)
=

1
2n

(d1 −dn)
2.

From the above we obtain that the following is valid

d1 −dn ≤
2
√

2m√
n

IrrE(G). (21)

Left side of the inequality (19) is obtained according to (20) and (21).
Right-hand part of inequality (19) is obtained from the Cauchy inequality for bi = 1 and

ai =
∣∣di − 2m

n

∣∣, i = 1,2, . . . ,n (see for example [32])(
n

∑
i=1

aibi

)2

≤
n

∑
i=1

a2
i

n

∑
i=1

bi.
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�

Corollary 2 For every graph G, G ∈ Γ(G), the following inequality is valid

dnIrrg(G)≤ IrrN(G)≤ ndn
√

α(n)Irrg(G).

Equalities hold if and only if G is regular.

Corollary 3 For every graph G, G ∈ Γ(G), the following inequalities are valid

IrrN(G)≤
√

2m(nd1 −2m) (22)

and

IrrN(G)≤
√

m(n−2)(n(n−1)−2m)

n−2
, n ≥ 3. (23)

Equality in (22) holds if and only if G is regular, whereas in (23) if G is a complete graph,
G = Kn.

Proof. The inequality (22) is obtained from the right-hand side of (19) and inequality M1 ≤
2md1. The inequality (23) is obtained from the right-hand side of (19) and the inequality

M1 ≤ m
(

2m
n−1

+n−2
)
,

proven in [7].

�

Theorem 3 For every graph G, G ∈ Γ(G), that satisfies Zagreb indices inequality, the fol-
lowing inequalities are valid

IrrIS(G)3 ≥ IrrE(G)2 and IrrIZ(G)4 ≥ Irr1(G)3.

Equalities hold if and only if G is regular.

Proof. Since the graph G satisfies Zagreb indices inequality, then according to (1) and (2)
we have that

M2 ≥
m
n

M1 and EM2 ≥
2m−n

n
EM1.

From the above inequalities we obtain

IrrIS(G)3 =
n2M2

4m3 −1 ≥ n2mM1

4m3n
−1 =

nM1

4m2 −1 = IrrE(G)2,

and

IrrIZ(G)4 =
n3EM2

4m(2m−n)3 −1 ≥ n2EM1

4m(2m−n)2 −1 = Irr1(G)3,

which had to be proved.
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�

The following theorem gives a relationship between irregularity measures IrrE(G) and
Irr(3)(G).

Theorem 4 For every graph G, G ∈ Γ(G), the following inequalities are valid

3
√

IrrE(G)2 (IrrE(G)2 +2)≤ Irr(3)(G)≤

≤ 3

√
IrrE(G)2 (IrrE(G)2 +2)+

n2d2
nβ (S)

4m2 Irrg(G)2
, (24)

where

β (S) =
1

2m ∑
i∈S

di

(
1− 1

2m ∑
i∈S

di

)
,

and S is a subset of In = {1,2, . . . ,n} which minimizes the expression∣∣∣∣∣∑i∈S
di −m

∣∣∣∣∣ . (25)

Equalities hold if and only if G is regular.

Proof. For pi = di, i = 1,2, . . . ,n the inequality (17) becomes (25). Let S be a subset
of In = {1,2, . . . ,n} which minimizes the expression (25). Then for pi = ai = bi = di,
i = 1,2, . . . ,n, R1 = R2 = d1 and r1 = r2 = dn, the inequality (16) becomes

n

∑
i=1

di

n

∑
i=1

d3
i −

(
n

∑
i=1

d2
i

)2

≤ (d1 −dn)
2 ∑

i∈S
di

(
n

∑
i=1

di −∑
i∈S

di

)
,

i.e.
2mF1 −M2

1 ≤ 4m2β (S)(d1 −dn)
2.

If we multiply the above inequality by n2

16m4 it transforms into

n2

8m3 F1 −
(

nM1

4m2

)2

≤ n2β (S)d2
n

4m2

(
d1

dn
−1
)2

,

wherefrom we obtain right-hand part of (24).
For α = 3 the inequality (8) becomes

F1 ≥
M2

1
2m

.
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According to the above we have that the following is valid

n2F1

8m3 −1 ≥
(

nM1

4m

)2

−1,

wherefrom we obtain the result of the theorem.

�

Corollary 4 For every graph G, G ∈ Γ(G), the following inequality is valid

Irr(3)(G)≤ 3

√
IrrE(G)2 (IrrE(G)2 +2)+

n2d2
n

16m2 Irrg(G)2. (26)

Equality holds if and only if G is regular.

Proof. According to the arithmetic-geometric mean inequality for real numbers (see for
example [32]) we have that for each set S, S ⊆ In, holds β (S)≤ 1

4 . Now the inequality (26)
can be obtained from the right-hand part of (24).

�
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