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Abstract 
Genetic, genomic and proteomic analyses of cells, tissues and body fluids have generated 

a wealth of precious information about the intricate mechanisms which underlie carcinogenesis 
and metastasis. Lactoferrin, a multifunctional cationic glycoprotein, has attracted widespread 
appreciation because of its characteristically novel properties for cancer chemoprevention. Tumor 
microenvironment is a highly complicated and sophisticated ecosystem, significantly reshaped by 
a wide variety of treatment regimes. Therefore, lactoferrin-mediated immunostimulatory role 
reshapes tumor microenvironment and inhibits cancer progression. There is sufficient 
experimental evidence related to immunostimulatory ability of lactoferrin in tumor 
microenvironment. Different clinical trials have been conducted for the evaluation of clinical 
efficacy of lactoferrin in different cancer patients. It is necessary to carefully interpret the clinical 
evidence and identify the major gaps in our understanding related to the selection of group of 
cancer patients likely to benefit the most from the combinatorial treatment regime comprised of 
lactoferrin and chemotherapeutic drugs. Moreover, lack of efficacy should be analyzed by a team 
of interdisciplinary researchers for a broader and comprehensive understanding of the 
mechanisms underlying treatment failure. 
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Introduction 
The quest for biomolecules with remarkable biological activity has been ongoing 

for a long time. Medicinal chemistry and interdisciplinary research have revolutionized 
the field of drug discovery and we have witnessed the continuous upgrading of the list of 
natural products that have splendid preclinical and clinical efficacy (1-4). The discovery 
of lactoferrin has opened new horizons for the evaluation of its biological activities. 
Lactoferrin is a multifunctional glycoprotein widely distributed in milk and colostrum, as 
well as in other secretions, such as saliva and tears. It is released from neutrophils in 
inflamed tissues. Lactoferrin has a direct antimicrobial role, as it limits the adhesion and 
proliferation of microbes and/or kills them (5-8). The secretion of lactoferrin increases 
dramatically in neurodegenerative diseases (9, 10) and inflammation, which leads to the 
degranulation of neutrophils and activation of microglial cells. Lactoferrin efficiently 
reduces pollen antigen-mediated allergic inflammation of the airways (11). Lactoferrin 
has also been reported to demonstrate bactericidal effects (12-14). 

In the era of precision oncology, the mechanistic understandings gathered from 
different cancers have highlighted the fundamental role of intra-tumoral heterogeneity, 
epithelial-to-mesenchymal transition (15-17), activation of oncogenic signaling cascades 
and immune escape mechanisms (18). The identification of bioactive molecules with 
extraordinary cancer chemopreventive effects has stirred research in multifaceted aspects 
of molecular oncology (19-24). Significant developments have been made in expounding 
the roles and functions of natural products in the pharmacological targeting of aberrantly 
regulated protein networks (25-30).  

Lactoferrin, also known as lactotransferrin, is a nutrient produced by epithelial cells 
in mammalian species. Lactoferrin is an 80kDa single polypeptide chain containing 703 
amino acids in one molecule, and it has a higher affinity to binding the ferric iron in the 
body. Conversely, lactoferricin is a shorter peptide of 49 amino acids produced by the 
breaking down of lactoferrin through pepsin digestion in the stomach.  

There has always been a keen interest in searching for anticancer agents with 
minimum off-target effects and remarkable clinical efficiency (31-34). Different reviews 
have analyzed the role of lactoferrin in the inhibition of different cancers (35-38). In this 
mini-review, we have presented an overview of lactoferrin-mediated targeting of 
oncogenic pathways. We have browsed lactoferrin-mediated anticancer effects by using 
different keywords. We used "lactoferrin", "cancer", "metastasis", and "mice". We have 
also browsed clinicaltrials.gov for clinical trials related to lactoferrin in cancer 
prevention.  

Lactoferrin-mediated regulation of protein networks in cancer inhibition 

In this section, we have provided a brief summary of lactoferrin-mediated targeting 
of oncogenic proteins in different cancers. We have also provided a tabular form of 
effective doses of lactoferrin in different cancer cell lines (Table I). 
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Table I  Doses of lactoferrin used in different cell culture studies 
Tabela I  Doze laktoferina korišćene u različitim ispitivanjima na ćelijskim kulturama 

 
Lactoferrin/derivative Cell line Dose 

Recombinant Lactoferrin  Head and neck squamous cell 
carcinoma cells 250 μM (39) 

Recombinant Lactoferrin  Non-metastatic MDA-MB-231  109.46µg/ml (40)  

Recombinant Lactoferrin  Metastatic MDA-MB-231  91.4µg/ml (40)  

LfcinB9 SK-OV-3  60μg/ml (41) 

Lactoferrin  Colon cancer cells  20mg/mL (53) 

Lactoferrin  Oral squamous cell carcinoma 50μg/ml (46) 

Recombinant Lactoferrin  Oral squamous cell carcinoma 25μg, 50μg, 100μg  
and 250μg (47) 

Lactoferrin  T47D, MCF-7, MDA-MB-231, 
MDA-MB-468  10μg/ml (48) 

 
250 μM of recombinant lactoferrin inhibits the growth and proliferation of head and 

neck squamous cell carcinoma cells. Oral lactoferrin stimulates the release of intestinal 
IL-18 and potently enhances splenic production of NK cells and serum CD8+ cells. 
Lactoferrin induces an increment in the number of circulating and splenic CD4+ and 
CD8+ cells. The depletion of mature lymphocytes with anti-CD3+ antibody severely 
impaired lactoferrin-mediated shrinkage of tumors (39).  

Recombinant human lactoferrin demonstrates CC50 of 109.46µg/ml on non-
metastatic and 91.4µg/ml on metastatic MDA-MB-231 cancer cells (40).  

LfcinB9, a peptide derived from lactoferricin B, has been demonstrated to be 
effective against ovarian cancer. LfcinB9 (60μg/ml) increases the generation of ROS in 
SK-OV-3 cells. Intra-tumoral injections of LfcinB9 (60mg/kg) effectively impaired the 
tumor growth in mice inoculated with SK-OV-3 cells. It is non-toxic even at the highest 
tested concentrations of 640μg/ml. Hemolytic activity of LfcinB9 was very low in red 
blood cells (41).  

LfcinB induces ~80% cell death in SKBR3 and MDA-MB-231 cells at a dose of 
100 and 200 µg/ml. Intratumorally injected LfcinB induces the apoptotic death of the 
tumor cells, causing the shrinkage of the tumors (42). 

Adenovirus carrying lactoferrin (Ad-hLF) inhibits the growth of cervical cancer 
cells. Ad-hLF increases natural killer cell activity and the number of CD4+ and CD8+ T 
lymphocyte cells in the peripheral blood of mice inoculated with cervical cancer 
cells (43). Ad-hLF has also been found to be effective against breast cancer (44, 45). 
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Lactoferrin (50μg/ml) works effectively with human neutrophil peptide-1(10μg/ml) 
against oral squamous cell carcinoma (OSCC) cells (46). Human recombinant 
lactoferrin (25μg, 50μg, 100μg and 250μg) has also been tested against OSCC cells (47).  

IC30 dose for T47D and MCF-7 cells was 10μg/ml. However, at same dose, 
lactoferrin induced apoptosis in MDA-MB-231 (45%) and MDA-MB-468 (40%) 
cells (48).  

Diabetes is more likely to increase the vulnerability of colon tumors in xenografted 
mice. HT29 tumors developed at a fast rate under a high glucose environment. Tumors 
formed by the colon cancer cells (HCT116 and HT29) in diabetic mice were found to be 
markedly different from those in non-diabetic animal models. HKDC1 (Hexokinase 
domain component 1) overexpression may contribute to carcinogenesis. However, 
NT5DC3 (5'-Nucleotidase Domain Containing 3) suppresses cancer progression. 
Lactoferrin upregulates the levels of m6A eraser genes and downregulates m6A writer 
and reader genes under high glucose concentrations. Lactoferrin was used at a dosage of 
250 mg·kg−1 body weight (b.w.) (as 3.1 μM·kg−1 b.w.). Collectively, lactoferrin 
significantly reduced the levels of m6A modifications at 2309th site of NT5DC3 (49). 
Moreover, lactoferrin also inhibited DNA-methyltransferase-1 (DNMT)-mediated 
epigenetic repression of NT5DC3. These findings are highly intriguing and suggest that 
lactoferrin effectively inhibits colon cancer progression in a hyperglycemic environment.  

In another exciting study, it was shown that lactoferrin interacted with NT5DC3 
and activated its phosphorylation at Threonine-6 and Serine-11 sites. Lactoferrin 
suppressed the cancer development from T2D to colon cancer by activating the 
phosphorylation of NT5DC3 (50).   

Pulmonary metastatic nodules were found to be remarkably enhanced in LF 
knockout (Lf −/−) mice injected with B16-F10 melanoma cells. Myeloid-derived 
suppressor cells (MDSCs) are pathologically activated monocytes and neutrophils with 
strong immunosuppressive functions. There was a considerable increase in 
polymorphonuclear MDSCs in LF knockout mice. The apoptotic death of MDSCs was 
significantly reduced in cells derived from naive Lf−/− mice. However, the addition of LF 
increases the apoptotic percentage of MDSCs from Lf−/− mice. LF promotes the 
differentiation of MDSCs into DCs and macrophages. Lactoferrin deficiency facilitates a 
pro-metastatic microenvironment in lung tissues, which is facilitated by PMN-MDSCs. 
TLR9 (Toll-like receptor-9) is downregulated significantly in the lung tissues of tumor-
bearing Lf −/− mice. TLR9 agonist not only inhibited the immunosuppressive activity of 
PMN-MDSCs, but also suppressed pulmonary metastatic nodules in tumor-bearing Lf−/− 
animal models (51). Lactoferrin was used as (200 mg/kg body-weight) in animal models.  

Lactoferrin overexpression in 5-8F cells significantly suppressed tumor growth in 
xenografted mice. However, tumor growth was found to be enhanced in mice inoculated 
with lactoferrin- knockdown HONE1 cells. PDK1 (Phosphoinositide dependent Protein 
kinase-1) phosphorylates AKT at 308th threonine and increases AKT activity. 
Resultantly, AKT phosphorylates SIN1 and enhances mTORC2 kinase activity, which 
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leads to phosphorylation at serine residue-473 (AKT) by mTORC2, thus catalyzing the 
fullest activation of AKT. Lactoferrin not only inhibits c-Jun mediated transcriptional 
activation of PDK1, but also reduces PDK1-mediated phosphorylation of AKT (52).  

Lactoferrin inhibits the migration and invasion of colon cancer cells at 20mg/ml. 
Vascular endothelial growth factor (VEGF)/VEGFR signaling contributes to the key 
aspects of tumorigenesis. Lactoferrin was found to effectively downregulate the levels of 
VEGFA, VEGFR2, p-PI3K, p-AKT and p-ERK1/2 in HCT8 and HT29 cancer cells (53).  

Moreover, lactoferrin inhibited tumor xenografts in mice implanted with U87MG 
cells into the left caudate nucleus (54). 

Recombinant adenovirus expressing human lactoferrin induced an increase in the 
levels of Fas and Bax in cervical cancer cells. Furthermore, caspase-3 was activated, but the 
levels of anti-apoptotic BCL-2 were noticed to be suppressed in cervical cancer cells (55).  

Lactoferrin considerably reduced the levels of cyclin D1 and Rb phosphorylation 
in nasopharyngeal carcinoma cells. p21 blocks CDK2-cyclin E and inhibits CDK2-
dependent phosphorylation of RB. The levels of p21 and p27 have been found to be 
enhanced in lactoferrin-treated cancer cells. Extracellular signal-regulated kinase-1/2 
(ERK1/2) are the downstream constituents of a phosphorelay pathway that conveys 
mitogenic and growth signals. Lactoferrin also reduced phosphorylated ERK1/2 in 
nasopharyngeal carcinoma cells (56). Overall, Lactoferrin interferes with NPC 
proliferation through the induction of cell cycle arrest and modulation of MAPK signaling 
cascade. 

Recombinant lactoferrin and epirubicin inhibited tumor growth in mice bearing 
solid Ehrlich carcinoma. Co-administration of recombinant lactoferrin and epirubicin 
effectively enhanced the levels of activated JNKs and p53 in tumor tissues (57).  

M860 is a mouse antihuman lactoferrin monoclonal antibody having the unique 
ability to form a stable immunocomplex (IC) with lactoferrin. LTF-IC induced 
repolarization of human TAMs to M1-like phenotype. It is well-known that CD163 and 
CD206 are specifically expressed on M2 macrophages. Research has shown that LTF-IC 
significantly suppressed CD163 and CD206 and caused the stimulation of M1 markers 
CD86 in MDA-MB-231-TAMs (58). MDA-MB-231-TAMs expressed FcγRIIa/CD32a 
and FcγRI/CD64. LTF-IC exerted extraordinarily robust effects on TAMs by the 
induction of cross-signaling between FcγRIIa (CD32a) and lactoferrin receptor (TLR4, 
CD14). Blockade of mAbs against CD32a almost completely impaired LTF-IC-mediated 
secretion of TNFα by MDA-MB-231-TAMs. TAMs interacted with MDSCs and 
regulatory T cells (Tregs) for the formation of an immunosuppressive microenvironment, 
which played an important role in promoting the growth of tumors. Intraperitoneally 
administered LTF-IC caused the inhibition of tumor formation in hCD32a-transgenic 
mice implanted with B16 melanoma cells. LTF-IC considerably reduced the number of 
CD4+Foxp3+ Tregs and CD11b+Gr-1hi MDSCs within B16 tumor tissues from hCD32a-
transgenic mice. Directly injected LTF-IC-pretreated viable hCD32a-TG-B16-TAMs 
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into solid tumors led to a momentous reduction in the percentage of Tregs and MDSCs 
in the tumor tissues (58).  

Lactoferrin-mediated regulation of non-coding RNAs has also garnered scientific 
interest. Lactoferrin has been shown to trigger the expression of miRNAs in prostate 
cancer cells (59). However, these aspects have to be tested in detail, using experimental 
mice inoculated with prostate cancer cells. Expression profiling of miRNAs in the tumor 
tissues derived from prostate cancer cells will be helpful in the evaluation of anticancer 
effects of lactoferrin.  

There has been a significant increase in the number of macroscopic pulmonary 
metastases in mice injected with miR-214 overexpressing 6-10B cells. miR-214 acts as an 
oncogenic miRNA and directly targets lactoferrin. miR-214 promoted AKT signaling in 
nasopharyngeal carcinoma cells. Therefore, lactoferrin inhibited tumor progression by the 
inhibition of miR-214 and AKT signaling in nasopharyngeal carcinoma cells (60).  

The available evidence suggests lactoferrin-mediated regulation of different non-
coding RNAs, but the information is limited and needs comprehensive validation in 
animal model studies.  

Clinical trials 

Talactoferrin (TLF), a recombinant form of human lactoferrin, was well-tolerated. 
No significant hematologic, hepatic, or renal toxicities were reported. Research has 
provided important information about the clinical efficacy of Talactoferrin. Progressive 
advanced or metastatic renal cell carcinoma patients were enrolled in the clinical trial for 
evaluation of lactoferrin (Table II) (61).  

After the transportation of talactoferrin into the small intestinal Peyer's patches, it 
promotes the recruitment of circulating tumor antigen-loaded dendritic cells to GALT 
(gut-associated lymphoid tissues) and promotes their maturation. These signals trigger 
the induction of robust systemic innate and adaptive immune responses mediated by 
Natural Killer cells, CD8+ lymphocytes and NK-T cells.   

Phase II clinical trial was conducted by a combination of talactoferrin with 
paclitaxel and carboplatin as a treatment regime of metastatic NSCLC. Combinatorial 
treatment consisting of talactoferrin and carboplatin/paclitaxel demonstrated an increase 
in response rates compared to paclitaxel and carboplatin alone (62). In view of the 
clinically relevant evidence, clinicians initiated another correlative study to further 
characterize and interpret the immunostimulatory mechanisms induced by talactoferrin in 
patients suffering from metastatic NSCLC. However, the trials failed to generate 
significant evidence to substantiate the efficacy of talactoferrin in increasing the 
progression free survival and overall survival (63). 

Furthermore, the promising results of phase II trials also paved the way for two 
randomized, phase III trials, including a trial of single agent talactoferrin versus placebo 
in patients with refractory/relapsed NSCLC, and a trial of carboplatin/ 
paclitaxel/talactoferrin versus carboplatin/paclitaxel alone as frontline therapy (64). 
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However, the trials were unfortunately reported to be negative for progression free 
survival, as well as overall survival. 

In another clinical trial, talactoferrin was used as a monotherapy. There was no 
evidence of grade 3 or grade 4 toxicities. Importantly, the immunological systems of 
enrolled patients were found to be compromised, and thus least expected to generate 
significant immunological responses. It was also noticed that heavily pretreated NSCLC 
patients with a heavy disease burden also failed to generate effective immunological 
responses (65). Importantly, immunological responses are inversely related to the number 
of previous chemotherapy regimes. Two patients with the lowest number of prior 
anticancer regimens remained in the trial the longest, and demonstrated an increase in the 
number and functional activity of NK cells.  

 
Table II  Clinical trials of talactoferrin 
Tabela II  Klinička ispitivanja talaktoferina 

 
 
 
 

Selection Criteria  Number  
of Patients Results 

Progressive advanced or 
metastatic renal cell carcinoma. 
Treatment failure of prior 
systemic therapy. 

44 adult 
patients 

14-week progression-free survival rate of 59%. 
PFS was 6.4 months. 
Median OS was 21.1 months (61). 

Stage IIIB/IV NSCLC having 
treatment failure for two or more 
prior regimens. 

742 patients Clinical trial failed to show a statistically 
significant difference between talactoferrin alfa 
and placebo (64). 

Stage IV NSCLC patients 
previously treated with multiple 
chemotherapy regimens. 

10 patients Increase in immunologic activity in 2 patients (65). 

Stages IIIB to IV NSCLC having 
treatment failure for one or two 
prior regimens. 

100 patients Increase in Median OS by 65% in oral 
talactoferrin group (66). 

Progressive advanced or 
metastatic patients. 
Patients ineligible for standard 
chemotherapy. 

36 patients 17 patients had stable disease (50% disease 
control rate).  
Median PFS in 12 NSCLC patients (4.2 months)  
Median PFS in 7 RCC patients (7.3 months) (67). 
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Concluding remarks 

Lactoferrin-mediated anticancer and anti-metastatic effects have opened new 
horizons for the evaluation of clinical efficacy. It is pertinent to mention that clinical trials 
of lactoferrin give a unique perspective of translatability of lactoferrin as a promising 
clinical drug. Therefore, detailed analysis of lactoferrin-mediated effects in cell culture 
studies and tumor-bearing mice is compulsory. The highest concentrations of lactoferrins 
are present in bovine and human milk. Moreover, bone marrow cells, secondary granules 
of neutrophils, and the collecting tubules of kidneys also produce lactoferrin in the body. 
Emerging evidence has illuminated how lactoferrin inhibited AKT/mTOR and 
VEGF/VEGFR signaling for cancer inhibition.  

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a highly 
efficient anticancer agent. There is a need to analyze how lactoferrin works with TRAIL-
based therapeutics for durable cancer inhibition in animal model studies. How lactoferrin 
modulates different non-coding RNAs is another mystery that needs to be resolved. The 
identification of different long non-coding RNAs and circular RNAs likely to be regulated 
by lactoferrin will further refine our understanding about the combinatorial use of tumor 
suppressor non-coding RNAs and lactoferrin for cancer inhibition. Importantly, 
lactoferrin-mediated activation of immunological responses is also significant for the 
inhibition of cancer progression. Although researchers have started to explore the 
mechanisms and pathways modulated by lactoferrin for effective cancer 
chemoprevention, we still have to answer many outstanding questions.  
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Kratak sadržaj 
Genetičke, genomske i proteomske analize ćelija, tkiva i telesnih tečnosti pružile su obilje 

dragocenih informacija o složenim mehanizmima koji leže u osnovi karcinogeneze i metastaza. 
Laktoferin, multifunkcionalni katjonski glikoprotein, predmet je velikog interesovanja zbog 
svojih karakteristično novih svojstava u hemioprevenciji karcinoma. Tumorsko mikrookruženje 
je veoma složen i sofisticiran ekosistem, koji u značajnoj meri mogu preoblikovati raznovrsni 
režimi lečenja. Stoga imunostimulativna uloga laktoferina preoblikuje tumorsko mikrookruženje 
i inhibira napredovanje kancera. Postoji dovoljno eksperimentalnih dokaza koji se odnose na 
imunostimulativnu sposobnost laktoferina u tumorskom mikrookruženju. Brojna klinička 
ispitivanja su sprovedena radi evaluacije kliničke efikasnosti laktoferina kod različitih pacijenata 
obolelih od kancera. Neophodno je pažljivo tumačiti kliničke dokaze i identifikovati ključne 
praznine u našim saznanjima vezanim za izbor grupe pacijenata obolelih od kancera za koje se 
očekuje da će imati najviše koristi od kombinovanog režima lečenja koji se sastoji od laktoferina 
i hemioterapijskih lekova. Pored toga, trebalo bi da nedostatak efikasnosti analizira tim 
interdisciplinarnih istraživača, zarad šireg i sveobuhvatnog razumevanja mehanizama koji leže u 
osnovi neuspeha u lečenju. 

 
Ključne reči: kancer, laktoferin, metastaza, klinička ispitivanja, ćelijski signalni proces 
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