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INTRODUCTION

Many species have evolved to hibernate during the 
winter months as a means of maintaining energy ho-
meostasis in such challenging circumstances [1,2]. The 
hibernating state is characterized by prolonged bouts 
of torpor during where basal metabolic rates are sup-
pressed to 2-4% of active metabolic rates while essen-
tial physiological and many energy-demanding cellular 
processes continue at a markedly reduced rate [2,3]. 
Bouts of torpor are spontaneously interrupted by arous-
als, periods of intense metabolic activity during which 
physiological parameters are promptly restored [1].

Energy metabolism in the pancreas of ground squirrels 
(Spermophilus citellus) during prolonged cold exposure and 
in hibernation
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This apparent metabolic and functional plasticity 
is based on the ability to modulate mitochondrial me-
tabolism and energy-producing pathways. Significant 
decreases in levels of ATP have been detected in brain, 
kidney and skeletal muscle tissues [4]. However, en-
ergy metabolism is maintained in a few select tissues, 
mostly in those responsible for overall energy homeo-
stasis and thermogenesis, such as heart, liver, brown 
adipose tissue (BAT) and white adipose tissue (WAT). 
Studies of non-hibernators have shown that metabolic 
remodeling during cold acclimation is tissue specific 
and that significant changes to mitochondrial oxida-
tive capacity (OXPHOS) and regulatory mechanisms 
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therefore occur in metabolically active tissues such as 
skeletal muscle and BAT [5,6]. These changes support 
a higher basal metabolism which is needed to main-
tain energy homeostasis, i.e. body temperature during 
cold acclimation. Along with the changes in metabolic 
pathways, reorganization of antioxidative defence oc-
curs in order to maintain tissue redox homeostasis [7-
9]. To the best of our knowledge, there are no studies 
that consider the energy metabolism of the pancreas 
during prehibernation and hibernation, despite its sig-
nifi cant role in the regulation of whole-body metabo-
lism. With that in mind, we focused on the molecular 
basis of mitochondrial bioenergetic potential (OXPHOS 
components) along with their regulatory mechanisms, 
AMP-activated protein kinase α (AMPKα) and nuclear 
respiratory factor 1 (NRF-1), as well as antioxidant de-
fence (AD) in the pancreas of ground squirrels during 
cold acclimation and hibernation.

MATERIAL AND METHODS

Animals 

The experimental protocol was approved by the ethical 
committee for the treatment of experimental animals 
of the Institute for Biological Research, Belgrade, Serbia. 
Adult male European ground squirrels (Spermophilus 
citellus) were trapped during mid-July in the Deliblatska 
peščara (southeastern part of Vojvodina, Serbia) and 
transported to the animal facility at the Institute for 
Biological Research, Belgrade, Serbia. Ground squir-
rels were housed in individual plastic cages at room 
temperature and fed rodent chow, fresh carrots, and 
apples ad libitum until early September when one 
group continued to be maintained under these condi-
tions (control group) and another group was moved 
to a cold chamber set to an ambient temperature of 4 
± 1 °C, with food and water ad libitum. Active, euther-
mic squirrels that did not enter into hibernation under 
these low temperature conditions were sampled as the 
cold-exposed group and were sacrifi ced after 1, 3, 7, 
12, or 21 days. Animals that entered into torpor (hiber-
nation group) were sampled after each individual had 
been hibernating for 2–5 days (as indicated by con-
tinuous rectal temperature reading of ~4 °C). Control 
animals were sampled on the same day as the hiber-
nating ones. All animals were sacrifi ced by decapita-
tion between 8 and 10 a.m. to avoid any cyclic daily 
variations. Pancreatic tissue was removed within 3 min, 
perfused with cold saline and minced. Minced tissues 
were washed thoroughly to remove all traces of blood 
and were snap-frozen in liquid nitrogen and stored at 
-80 °C until subsequent Western blotting. 

SDS-PAGE and Western blotting 

Western blots were conducted as described previously 
[10,11] using antibodies against the Ndufa9 subunit of 

complex I (COM I, ab5521; 2.5 μgml-1), complex II (COM 
II, ab14715; 0.1 μgml-1), complex III (COM III, ab14745; 
0.5 μgml-1), subunit IV of cytochrome c oxidase (COX IV, 
ab14744; 0.1 μgml-1), cytochrome c (ab18738; 1.0 μgml-

1), ATP synthase (ab14730; 0.8 μgml-1), phosphorylated 
AMPK-activated protein kinase α (phospho-AMPKα, 
Millipore, 07-681; 2.0 μgml-1), NRF-1 (ab86516; 1.0 
μgml-1), copper-zinc superoxide dismutase (CuZnSOD, 
ab13498; 0.2 μgml-1), manganese superoxide dismutase 
(MnSOD, ab13533; 1:5000), catalase (CAT, ab1877; 
1:1000), glutathione peroxidase 1 (GSH-Px 1, ab16798; 
1:2000), and beta-actin (ab8226; 1:1000). Quantitative 
analysis of immunoreactive bands was conducted 
with ImageJ software [12]. Band volume was the sum 
of all the pixel intensities within a band, i.e., 1pixel = 
0.007744mm2. We averaged the ratio of dots per band 
for the target protein and beta-actin in corresponding 
samples from three similar independent experiments, 
and expressed them relative to the euthermic control, 
which was standardized as 100%. Data were then sta-
tistically analyzed. 

Additional assays and statistical analysis 

Protein content was estimated using bovine serum al-
bumin as a reference [13]. Analysis of variance (ANO-
VA) was used to test within-group comparisons. If the 
F test indicated an overall diff erence, Tukey’s t test was 
applied to evaluate the signifi cance of the diff erences. 
Statistical signifi cance was set at p < 0.05.

RESULTS

The changes in protein expression of oxidative phos-
phorylation (OXPHOS) components in the pancreas of 
ground squirrels during cold acclimation and hiberna-
tion are shown in Figure 1. Protein levels of complex 
I were maintained at control levels during the initial 
phase of cold exposure, but the expression was in-
creased in the late stage of cold acclimation (days 
12 and 21). This high protein level of complex I was 
maintained in hibernation (p < 0.01). Similarly, protein 
content of complex II was maintained during the ini-
tial phase and increased more than 2-fold on days 12 
and 21 (p < 0.001). Protein levels of complex III were 
increased on day 3 as well as in hibernation (p < 0.01). 
Low temperature induced an increase in the protein 
content of complex IV, also on days 12, 21 (p < 0.01 and 
p < 0.001, respectively) and in hibernation (p < 0.05). 
Protein level of cytochrome c showed an increase from 
day 7 onwards, peaking on day 21 (p < 0.001) and in 
hibernation (p < 0.01). However, levels of ATP synthase 
were slightly decreased during cold acclimation and 
hibernation.

The expression pattern of AMPKα and NRF1 dur-
ing cold acclimation corresponds to the changes seen 
in OXPHOS components (Figure 2). Levels of  AMPKα 
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were increased about 1.5-fold on days 12 and 21 (p < 
0.05). Protein content of NRF-1 also showed a slight in-
crease on days 12 and 21, but decreased on day 7 and 
in hibernation (p < 0.05). 

Cold exposure induced signifi cant changes in pro-
tein levels of antioxidant enzymes (Figure 3). Protein 
content of CuZnSOD was increased on days 7 (p < 
0.05) and 12 (p < 0.01), as well as in hibernation (p < 

0.01). Also, levels of GSH-Px were increased on days 7 
and 12 (p < 0.01 and p < 0.05, respectively), and fur-
thermore on days 21 and in hibernation, when the in-
crease was almost 2-fold (p < 0.001). Protein levels of 
MnSOD showed a marginal increase on day 7 (p < 0.05) 
and levels of catalase were maintained at control levels 
during the 21-day cold exposure and in hibernation.

Figure 1. Change in protein content of oxidative phosphorylation components: (A) complex I (COM I), (B) complex II (COM II), (C) 
complex III (COM III), (D) subunit IV of cytochrome c oxidase (COX IV), (E) cytochrome c (CYT C), (F) ATP synthase in the pancreas 
of cold exposed (1, 3, 7, 12, or 21 days) and hibernating (2-5 days) ground squirrels. The protein content is expressed relative to a 
euthermic control, which was standardized as 100%. The signals from representative Western blots are shown. Bars represent the 
mean ± S.E.M of three independent immunoblots.
*Compared to euthermic control, *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 2. Protein expression of (A) phosphorylated AMP-activated protein kinase α (phospho AMPKα) and (B) nuclear respiratory 
factor 1 (NRF-1) in the pancreas of cold exposed (1, 3, 7, 12, or 21 days) and hibernating (2-5 days) ground squirrels. The protein 
content is expressed relative to a euthermic control, which was standardized as 100%. The signals from representative Western 
blots are shown. Bars represent the mean ± S.E.M of three independent immunoblots.
*Compared to euthermic control, *p < 0.05.
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DISCUSSION

The results of this study show the changes in mito-
chondrial oxidative capacity and AD in the pancreas of 
European ground squirrels during prolonged cold ex-
posure and in hibernation. We observed a marked in-
crease in electron transport chain capacity in response 
to the three-week cold exposure, especially from the 
12th day onwards, evident from increased protein lev-
els of most respiratory complexes in the later phase of 
cold acclimation and in hibernation. It seems likely that 
signaling that precedes and follows the increase in OX-
PHOS capacity during prehibernation and hibernation 
is tightly regulated, since there was an upregulation of 
AMPKα and NRF-1, as well as antioxidative defence.

It has been shown that overall metabolic reorga-
nization during cold acclimation in non-hibernators 
involves pancreatic tissue at several levels: glucagon 
secretion, rate of noradrenaline turnover, oxygen con-
sumption and metabolism, exocrine secretion and 
monoamine oxidase activity [14-19]. The present study 
suggests that there were metabolic changes in pan-
creas of hibernators during cold acclimation. To our 
knowledge, this is the fi rst result showing upregulation 
of respiratory complexes in hibernators, observed from 
days 12 to 21 of cold exposure. Respiratory complexes 
were also upregulated in hibernation. In contrast to 
the pronounced depletion of energy metabolism in 
many tissues during hibernation, energy metabolism is 
maintained in a few select tissues, mostly those essen-
tial to overall energy homeostasis and thermogenesis, 
such as heart, liver, BAT and WAT. In relation to this, our 
results showing increased expression of respiratory 
complexes in the pancreas suggest its signifi cant role 

during the hibernating state. High capacity for energy 
production in the pancreas of hibernators is possibly 
linked to its biosynthetic activity, particularly in the 
context of its endocrine function. Considering that 
insulin synthesis and secretion are both tightly linked 
to ATP production i.e. OXPHOS [20], we can speculate 
that maintaining high respiratory chain capacity dur-
ing cold acclimation and hibernation is signifi cant for 
the dynamics of insulin release, especially as the pre-
hibernatory and early hibernation periods have been 
characterized as hyperinsulinemic [21-24]. Also, the 
increase in energy-producing capacity in hibernation 
could be described as a preconditioning mechanism 
providing a quick metabolic response of this organ 
during arousal. 

The surprising result was the slight decrease in pro-
tein levels of ATP synthase during cold acclimation and 
in hibernation. It is possible that such a decrease does 
not diminish the signifi cance of the apparent increase 
in respiratory complexes in terms of electron transport 
and ATP production, especially in light of the near total 
energy depression in the hibernating state.

It seems likely from our results that such recruit-
ment of energy-producing pathways in the pancreas 
of hibernators during cold acclimation occurs in a reg-
ulated manner, including AMPKα signaling. Along with 
the increase in protein levels of respiratory complexes 
from days 12 to 21 of cold exposure, there was an in-
crease in AMPKα and its downstream eff ector NRF-1, 
a positive regulator of respiratory complex transcrip-
tion. Earlier studies from our laboratory have shown 
increases in AMPKα levels in skeletal muscle, BAT and 
WAT of cold acclimating rats [5,6,25]. This highlights 
the role of this enzyme in the metabolic recruitment 

Figure 3. Protein expression profi les of antioxidative defence components: (A) copper-zinc superoxide dismutase (CuZnSOD), (B) 
manganese superoxide dismutase (MnSOD), (C) glutathione peroxidase (GSH-Px) and (D) catalase (CAT) in the pancreas of cold 
exposed (1, 3, 7, 12, or 21 days) and hibernating (2-5 days) ground squirrels. The protein content is expressed relative to a euther-
mic control, which was standardized as 100%. The signals from representative Western blots are shown. Bars represent the mean 
± S.E.M of three independent immunoblots.
Compared to euthermic control, *p < 0.05, **p < 0.01, ***p < 0.001.
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required due to the heightened energy demands of 
cold acclimation. The return of AMPKα to control levels 
in hibernating animals suggests that energy demand is 
fulfi lled and also concurs with the notion that AMPKα 
is not involved in the metabolic remodeling in the hi-
bernating state [26]. 

The pancreas is particularly vulnerable to high lev-
els of reactive oxygen species, as expression and activ-
ity of AD are very low in this tissue [27]. However, our 
previous results [7], along with the results presented in 
this study, suggest that the pancreatic AD has the abil-
ity to reorganize itself in order to maintain tissue redox 
state. The observed increase in pancreatic OXPHOS ca-
pacity during cold acclimation and hibernation was ac-
companied by an increase in AD, since levels of GSH-Px 
and CuZnSOD were elevated during the latter phases 
of cold acclimation and in hibernation. The marked 
increase in protein levels of GSH-Px and CuZnSOD 
observed in this study, in conjunction with the earlier 
enzyme activity results, albeit in the pancreas of non-
hibernators [7], suggests that pancreatic GSH-Px and 
CuZnSOD have a higher sensitivity for redox changes 
and that the responsibility for the preservation of re-
dox homeostasis during cold acclimation and in hiber-
nation predominantly lies with these enzymes. Main-
tenance of these high levels in hibernation represents 
an important preconditioning phenomenon and could 
be related to increased ROS production due to sudden 
intensifi cation of metabolic activity during interbout 
arousals [2,28,29].

This study gives an insight into the metabolic re-
modeling of the pancreas during cold acclimation and 
hibernation, primarily on the level of OXPHOS and AD. 
In light of the upregulation, or at least maintenance 
of respiratory chain components and AD enzymes, 
it is evident that the function of the pancreas is not 
suppressed, as is the case with many organs and that 
it plays a vital role in maintaining overall energy ho-
meostasis during cold acclimation and hibernation. 
Considering the intriguing relationship between insu-
lin and hibernation, we hope to further elucidate the 
functional (endocrine) signifi cance of these fi ndings in 
future studies. 
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Energetski metabolizam u pankreasu tekunica (Spermophilus 

citellus) tokom produženog izlaganja hladnoći i u hibernaciji

Kratak sadržaj

Sisarski hibernatori podležu brojnim biohemijskim adaptaci-
jama koje im omoguc ́avaju preživljavanje niskih temperatura i 
oskudnost hrane u prirodi. Medjutim, energetski metabolizam 
u pankreasu tokom hibernacije je još uvek nepoznat. Stoga je 
u ovoj studiji ispitana molekularna osnova puteva produkcije 
energije u mitohondrijama u skladu sa njihovim regulacionim 
mehanizmima, kao i promene antioksidativne odbrane u pan-
kreasu tokom prehibernacionog perioda i u stanju hibernacije. 
U tu svrhu, mužjaci sezonskog hibernatora Evropske tekunice 
(Spermophilus citellus) podeljene su u dve grupe, kontrolnu 
koja je boravila na sobnoj temperaturi (22±1 °C) i grupu koja 
je bila izložena niskoj temperaturi (4±1 °C). Aktivne tekunice 
su žrtvovane posle 1, 3, 7, 12 i 21 dana izlaganja niskoj temper-
aturi; životinje koje su ušle u hibernaciju žrtvovane su nakon 2-5 

dana. Rezultati studije su pokazali da je proteinska ekpresija kompleksa I, II, IV elektron transportnog lanca i citohroma 
c povećana kao odgovor na produženo izlaganje hladnoći (od 12. dana) i da se takvi ekspresioni profi li održavaju i u 
hibernaciji. Paralelno, zapaženo je povećanje ekspresije AMP-aktivirane protein kinaze a (AMPKa) i nuklearnog respirator-
nog faktora 1 (NRF-1). Štaviše, produženo izlaganje hladnoći i hibernacija izazvale su porast ekspresije antioksidativnih 
enzima bakar-cink superoksid dismutaze (CuZnSOD) i glutation-peroksidaze (GSH-Px). Rezultati dobijeni u studiji ukazuju 
na kontrolisano metaboličko remodeliranje u pankreasu tekunica tokom izlaganja hladnoc ́i i u hibernaciji, koje uključuje 
povećan oksidativni kapacitet mitohondrija, zajedno sa proporcionalnom povećanjem antioksidativne odbrane.

Ključne reči: hibernacija; energetski metabolizam; antioksidativna zaštita; pankreas.
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