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In this study, finite-time stability of the linear continuous time-delay systems was investigated. A novel 

formulation of the Lyapunov-like function was used to develop a new sufficient delay-dependent 

condition for finite-time stability. The proposed function does not need to be positive-definite in the 

whole state space, and it does not need to have negative derivatives along the system trajectories. The 

proposed method was compared with the previously developed and reported methodologies. It was 

concluded that the stability investigation using the novel condition for stability investigation was less 

complicated for numerical calculations. Furthermore, it gives  results in comparison with the ones 

obtained with other analyzed conditions, and it provides superior results for these class of systems. 
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1. INTRODUCTION 

The concept of Lyapunov asymptotic stability is 
widely known in the control community. However, in 
some cases, Lyapunov asymptotic stability approach is 
not sufficient in the practical applications. Sometimes 
large values of state variables are not practically acce-
ptable, for instance in the cases where saturation is 
present. In these cases, it is of particular significance 
to consider the behavior of dynamical systems only 
over a finite time interval. For this purpose, the concept 
of finite-time stability (FTS) can be used. For a system, 
it is said to be FTS once a time interval is fixed if its 
state does not exceed some bounds during this time 
interval. 

This concept stability dates back to the 1950s [1-
3]. Since then, the researchers’ interest has moved to-
ward the classical Lyapunov stability due to the lack of  
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operative test conditions for FTS. Recently, the con-
cept of FTS has been revisited in the prospective of the 
linear matrix inequality theory, which has allowed the 
formulation of less conservative conditions that can 
guarantee both FTS and finite-time stabilization of the 
linear continuous time systems. Many valuable results 
have been obtained for this type of stability, such as the 
ones reported in [4-11]. Time delay and parameter 
uncertainty are commonly encountered in various tec-
hnical systems, such as electric, pneumatic and hydra-
ulic networks, chemical processes, and long transmi-
ssion lines.  

It has been shown that the existence of delay and 
uncertainty is the source of instability and poor perfor-
mance of control systems.  

Similar to the systems without delay, there is a 
need to investigate FTS for a class of time-delay sy-
stems. There are few results on FTS of time-delay sy-
stems. Some early results on FTS of time-delay sy-
stems can be found in [12–18]. The results of these 
investigations are conservative because they use bou-
ndedness proprieties of the system response, i.e, of the 
solution of system models.  

Recently, based on the linear matrix inequality 
(LMI) theory, some results have been obtained for FTS 
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for some particular classes of time-delay systems [19–
22].  

In this article, a novel delay dependent condition 
for the finite-time stability of the linear continuous 
time-delay systems has been presented. To solve the 
problem of FTS, we used the Lyapunov-like method. 
The sufficient condition is expressed in the form of 
algebraic inequality. The computation of the proposed 
conditions was presented throughout the numerical 
example. 

2. PRELIMINARIES AND PROBLEM 
FORMULATION 

The following notations has been used throughout 
the article. Superscript “T” stands for matrix transpo-

sition. nn denotes the n-dimensional Euclidean space 

and n m´n m´n mn m  is the set of all real matrices having dime-

nsion (n ́  m). F > 0 means that F is real symmetric and 
positive definite and F > G means that the matrix (F - 

G) is positive definite.  m (F) and  m 2 (F), where m2(F) 

= ½ lmax (F + FT) are the matrix measures of matrix F

, respectively. Matrices are assumed to be compatible 
for algebraic operations if their dimensions are not 
explicitly stated.  

Consider the following linear system with time 
delay: 

( ) ( ) ( )( )0 1t A t A t t= + -x x x( ) 0 1t A) 0 10 1( )t A)t Ax x(t A)t At At A0 10 10 1   (1) 

with a known vector valued function of the initial 
conditions:  

( ) ( ) [ ], , 0t t t= Î -x j t
  (2) 

where ( ) nt Îx
n

is the state vector, ( ) mt Îu
m

 is the 

control input, 0
n nA ´Î n n´n nn n , 1

n nA ´Î n n´n nn n  and n mB ´Î n m´n mn m  are 

known constant matrices, t  is constant time delay. 

The initial condition, ( )tφ is a continuous and differe-

ntiable vector-valued function of [ ,0]t tÎ - .  

In this study, the finite-time stability of the class of 
systems (1) has been investigated.  

Definition 1. Time-delay system (1) satisfying the 
given initial condition (2) is said to be finite-time 

stable (FTS) with respect to { }, ,Ta b  if :     

[ ]
( ) ( ) ( ) ( ) [ ]

,0

sup , 0,
TT

t

t t t t t T
t

a b
Î -

£ Þ < " Îφ φ x x  

                  (3) 

Lemma 1. (Jensen's integral inequality) For any 

positive symmetric constant matrix n nM ´Î n n´n nn n , scalars

a , b satisfying a b< , a vector function [ ]: , na b ®f
n

 

exists, such that the integrations are well defined, and:

( ) ( ) ( ) ( ) ( )
T

b b b
T

a a a

d M d b a M dq q q q q q q
æ ö æ ö

£ -ç ÷ ç ÷ç ÷ ç ÷
è ø è ø
ò ò òf f f f

 (4) 

In the following part, some existing results on delay 
dependent stability conditions are presented. These 
stability conditions were used for comparison against 
the results derived in this study. 

Theorem 1. The time-delayed system (1) with the 
function of initial conditions (2) is finite time stable 
with respect to {α,β,T} if there exists a positive scalar 
Ã

 such that the following condition holds: 

max ,
t

e t
b
a

L
< " Î Á

 (5) 

where: 

( ) ( )( )
( )

max max 0 0 1 1

2

max 1 0 0 1 1 1 1 1 2

T T

T T T T

A A A A

q
A A A A A A A A I

l

t l

L = + + +

æ ö
+ × Ã + +ç ÷ç ÷Ãè ø  (6) 

with: 0Ã> , 0q >  and [ ]0,TÁ = , [17]. 

Theorem 2. Time-delayed system (1) with the 
function of initial conditions (2) is finite time stable 

with respect to { }, , Ta b  if there exists a positive 

scalar Λmax such that the following condition holds: 

( ) max1 ,
t

e t
b

t
a

L ×+ < " ÎÁ
 (7) 

where:  

( )

( )
max max

0 0 1 1

,

T TA A A A I

lL = P

P = + + +
 (8) 

with P  being symmetric matrix with all eigenvalues 
defined over the set of real numbers, [18]. 

Theorem 3. Time-delayed system (1) with the 
function of initial conditions (2) is finite time stable 

with respect to { }, , Ta b  if non-negative scalars Ã , 1g

, 2g , 3g  exist as well as positive definite symmetric 

matrices P and Q  such that the following conditions 

holds, [21]: 

0 0 1

1

0

T

T

A P PA Q P PA

A P Q

æ ö+ + -Ã
ç ÷X = <
ç ÷-è ø  (9) 

1 2 3, 0I P I Q Ig g g< < < <
  (10) 

1 2 3

2

3

0 0

Te ag b g a g at
g

g

-æ ö-
ç ÷

* - <ç ÷
ç ÷* * -è ø   (11) 
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3. MAIN RESULT 

In this section, the Lyapunov-like approach was 
used in order to find sufficient delay dependent con-
ditions of finite time stability for the time delayed 
systems.  

In the following part, a lemma necessary for 
construction of the system aggregation function is 
presented.  

It was observed that the novel result presented here 
is based on the result given in [23]. 

Lemma 2. Let a scalar aggregation function 

( )( )V y t  be defined as: 

( )( ) ( ) ( )TV t t t=y y y
 (12) 

where vector ( )ty  is defined in the following manner: 

( ) ( ) ( ) ( )
0

t t Q t d

t

q q q= + -òy x x

 (13) 

( )Q t  is ( )n n´  matrix which is continuous and 

differentiable over time interval [ ]0,t satisfying the 

following differential matrix equation: 

( ) ( )( ) ( ) [ ]0 0 , 0,Q A Q QJ J J t= + Î( ) (Q A(J J) (Q AQ A) (Q AQ A(
  (14) 

with initial condition: 

( ) 1Q At =
 (15) 

Then Euler derivative of ( )( )V ty  is given as: 

( )( ) ( ) ( )TV t t t= Xy y y( )( )V t( )( )V tV t( ))
 (16) 

where: 

( )( ) ( )( )0 00 0
T

A Q A QX = + + +
 (17) 

Proof.  From (12), follows: 

( )( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

0

0

0

T T T

T T T

d
V t t t Q d

dt

t Q t d

t t Q d

d
t Q t d

dt

t

t

t

t

q q q

h h h

q q q

h h h

æ ö
= + - ´ç ÷ç ÷

è ø

æ ö
´ + -ç ÷ç ÷

è ø

æ ö
+ + - ´ç ÷ç ÷

è ø

æ ö
´ + -ç ÷ç ÷

è ø

ò

ò

ò

ò

y x x

x x

x x

x x

( )( )V t( )( )V tV t( )) ç ÷T T T( )T T TT T TT T TT T T( )T T TT T T
æ ö

T T T( )T T TT T TT T TT T TT T T( )t tt t( )T T TT T TT T T( )t t( )t tt tt t( )t tt tt tt t( )t t

ç ÷( )ç ÷
d

t Q) dæ ö
( ) d

´ +(t Qt Q)ç ÷(t Q)t Qt Qç ÷(t Q)t Qt Qt Qt Qt Qt Qç ÷ç ÷t Qt Q
æ öæ ö

t Qt Q´ +´ +(t Qt Q)´ +´ +(t Qt Q)t Qt Qt Qt Qt Q

 (18) 

The further part of the proof is straightforward if 

the following expression ( ) ( )
0

d
Q t d

dt

t

q q q-ò x  was 

explicitly specified.  
In that sense, let us look at this expression after the 

derivation  on the variable q  has been performed: 

( ) ( )( ) ( ) ( ) ( ) ( )( )d
Q t Q t Q t

d
q q q q q q

q q
¶

- = - + -
¶

x x x( ) (q q( ) (Q tQ t( ) (Q tQ t( ) (Q tQ tQ t( ) (
  (19) 

It is noticeable that: 

( )( ) ( )( )x t x t
t

q q
q
¶ ¶

- = - -
¶ ¶

 (20) 

By substituting the previous equation into (19), the 
following equation can be obtained: 

( ) ( )( ) ( ) ( ) ( ) ( )( )d
Q t Q t Q t

d t
q q q q q q

q
¶

- = - - -
¶

x x x( ) (q q( ) (Q tQ t( ) (Q tQ tQ t( ) (Q tQ tQ t( ) (Q tQ tQ tQ t( ) (
 (21) 

or after rearrangement: 

( ) ( )( ) ( ) ( )

( ) ( )( )

Q t Q t
t

d
Q t

d

¶
- = -

¶

- -

x x

x

q q q q

q q
q

( ) (q q( ) (Q tQ t( ) ( -Q t(Q tQ tQ t( )Q tQ tQ t( )

  (22) 

The previous relation can be further derived as: 

( ) ( )( ) ( ) ( )( )d
Q t Q t

d t t
q q q q

¶
- = -

¶
x x

  (23) 

so, by virtue of (23), the expression can be derived as: 

( ) ( )

( ) ( ) ( ) ( )

0

0 0

d
Q t d

d t

d
Q t d Q t d

d

t

t t

q q q

q q q q q q
q

- =

- - -

ò

ò ò

x

x x

t t

( ) (Q t( ) (Q tQ t) (
  (24) 

or 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

0 0

0

d
Q t d Q t d

d t

Q t

Q t

- = -

- -

+

ò òx x

x

x

t t

q q q q q q

t t

( ) (d Q t d( ) (d Q t d( ) (t dt d(d Qd Q ( )d Qd Q ( )

 
 (25) 

By employing (15), the previous equation can be 
directly rewritten as: 

( ) ( ) ( ) ( )

( )
( ) ( )

0 0

1

0

d
Q t d Q t d

d t

A t

Q t

- = -

- -

+

ò òx x

x

x

t t

q q q q q q

t

( ) (d Q t d( ) (d Q t d( ) (t dt d(d Qd Q ( )d Qd Q ( )

 (26) 
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Equation (18) becomes: 

( )( )
( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

0 1

1

0

0

0

0 1

1

0

0

0

T T T T

T T T T T T

T T T

V t

t A t A

t Q d t A t Q

t Q t d

t t Q d

A t A t

Q t d A t Q t

t

t

t

t

t

q q q t

h h h

q q q

t

h h h t

=

æ ö+ - +
ç ÷

= ´ç ÷
+ - - - +ç ÷ç ÷

è ø

æ ö
´ + - +ç ÷ç ÷

è ø

æ ö
+ - ´ç ÷ç ÷

è ø

æ ö+ - +
ç ÷

´ç ÷
+ - - - +ç ÷ç ÷

è ø

ò

ò

ò

ò

y

x x

x x x

x x

x x

x x

x x x

( )( )V t((

ç ÷
T T T T

ç ÷= ´
T T T T( )T T T TT T T T( )T T T TT T T TT T T T( )T T T T( )

ç ÷
ç ÷( ) (Q t(Q t) (
ç ÷

( ) (
 (27) 

or: 

( )( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

0

0

0

0

0

0

T T T T

T T

T T T

t A t Q

V t
t Q d

t Q t d

t t Q d

A t Q t Q t d

t

t

t

t

q q q

h h h

q q q

h h h

æ ö+ +
ç ÷

= ´ç ÷
+ -ç ÷ç ÷

è ø

æ ö
´ + -ç ÷ç ÷

è ø

æ ö
+ + - ´ç ÷ç ÷

è ø

æ ö
´ + + -ç ÷ç ÷

è ø

ò

ò

ò

ò

x x

y
x

x x

x x

x x x

( )( )V t(( = ´V tV t ç ÷
T T

= ´
ç ÷( )T T d( )T T qt Q d( )T TT T
ç ÷

T Tç ÷qt Q d( )

æ ö
ç ÷( ) (Q t(Q t) (
æ ö

( ) (Q t(Q t) (Q tQ t) (Q tQ t(Q t(Q tQ tQ t)Q t(Q tQ tQ t)
 (28) 

After rearrangement, the previous equation can be 
expressed as follows: 

( )( ) ( ) ( )( ) ( )( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

0 0

0

0

0

0

0 0

0 0

0

0

T T T

T T T

T T T T

T T T

V t t A Q A Q t

t A Q Q Q Q t d

t Q A Q Q Q d t

t Q Q Q Q t d d

t

t

t t

h h h h h

q q q q q

q q h q h h q h

= + + +

+ + + -

æ ö
+ - + +ç ÷ç ÷

è ø

+ - + -

ò

ò

ò ò

y x x

x x

x x

x x

( )( )V t( )( )V tV t( ))

( )) (Q Q t d( )) (Q Q t d( )) (Q Q t dt d( )) (Q Q ( ))
æ ö

)Tç ÷( ))T d t( ))T d td t( ))TT
æ ö

( ))TQ Q d td t( ))TT d tQ Q d td t( ))

( ) ( )) ( )T T T( ) ( ) Q t d d( ) ( )) ( )T T T( ) ( ) Q t d dQ t d d( ) ( )) ( )T T TT T TT T T( ) ( ) Q tQ tQ t( ) ( )) (T T TT T TT T TT T T( ) ( )t Q Q Q Q tQ Q Q tQ Q Q t( ) ( ) ( ) ( ))T T TT T TT T TT T T( ) ( )
 (29) 

By virtue of (14), one can get: 

( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( )

0 0

0

0 0

0

0

0 0 0

0 0

0 0

0

0

T

T T T

T T T T

T T T

T

T

V t t t

t A Q A Q Q t d

t Q A Q A Q d t

Q A Q Q
t t d d

Q A Q Q

t

t

t t

h h h

q q q

q h
q h q h

q h

= X

+ + + + -

æ ö
+ - + + +ç ÷ç ÷

è ø

ì ü+ +ï ï
+ - -í ý

+ +ï ïî þ

ò

ò

ò ò

y x x

x x

x x

x x

( )( )V t( )( )V tV t( ))

 (30) 

and: 

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )

0

0

0 0

T

T

T T

T T

V t t t

t Q t d

t Q d t

t Q Q t d d

t

t

t t

h h h

q q q

q q h h q h

= X

+ X - +

æ ö
- Xç ÷ç ÷

è ø

+ - X -

ò

ò

ò ò

y x x

x x

x x

x x

( )( )V t( )( )V tV t( ))

 (31) 

as well as: 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0 0

T

T T

V t t t Q t d

t Q d t Q t d

t

t t

h h h

q q q h h h

æ ö
= X + -ç ÷ç ÷

è ø

æ ö æ ö
+ - X + -ç ÷ ç ÷ç ÷ ç ÷

è ø è ø

ò

ò ò

y x x x

x x x

( )( )V t( )( )V tV t( ))

  (32) 

and finally:

( )( ) ( ) ( ) ( ) ( ) ( )
0

T T TV t t t t Q d t

t

q q q
æ ö

= X + - Xç ÷ç ÷
è ø
òy x y x y( )( )V t( )( )V tV t( ))

 (33) 

( )( ) ( ) ( ) ( ) ( )
0

T T TV t t t Q d t

t

q q q
æ ö

= + - Xç ÷ç ÷
è ø

òy x x y( )( )V t( )( )V tV t( ))
  (34) 

( )( ) ( ) ( )TV t t t= Xy y y( )( )V t( )( )V tV t( ))
  (35) 

what completes the proof, Q.E.D. 

Theorem 4. Time-delayed system (1) with the function 
of initial conditions (2), having the following 
properties: 

{ } { }
( )

( ) ( ) ( ) ( )
( ) [ ]

0 1

0

1 2

!

........

0, 1,2, .... , , 0

i

T

n

i

A A

A

t t t t

t i n t

s s

l

j j j

j t

+

Î Ù Î

$ Î

= é ùë û

³ " = " Î -

φ

{ }0 1{A A{0 10 1 Î}0 1A A{0 10 1{A AA AA A0 10 10 1

C

  (36) 

is finite time stable with respect to { }, , Ta b , if there 

exist a matrix ( ) [ ]0, 0,Q ³ ÎJ J t ,  being the general 

solution of (14) and if  the following condition  is 
satisfied: 

( )( ) ( )max1 1 ,
t

e t
l b

t y
a

X ×
+ + < " ÎÁ

  (37) 

where: 

( )0 0R A Q= +
  (38)  

TR RX = +   (39) 

( ) ( )( )
( )

( )
22

max

1
0 0

2

R
T e

Q Q
R

m t

y l
m

-
=

 (40) 
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( ) ( )max

1

2

TR R Rm l= +
  (41) 

and ( )0Q  is positive definite solution of the following 

nonlinear transcendental matrix equation: 

( ) ( )0 0
10

A Q
e Q A

t+ =
  (42) 

Proof. From (16), follows: 

( )( ) ( ) ( ) ( ) ( )( )max
TV t t t V tl= X £ Xy y y y( )( )V t( )( )V tV t( ))

  (43) 

By integrating (43) from 0 to t, with [ ]0,t TÎ ,  

it was obtained: 

( )( ) ( ) ( )max 0
t

V t e V
l X ×

< ×y
  (44) 

From (12) , one can find: 

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0 0

0 0 0 2 0T T

T

V Q d

Q d Q d

= + -

é ù
+ - ´ -ê ú

ê úë û

ò

ò ò

y x x x x

x x

t

t t

J J J

J J J J J J

 (45) 

Based on the known inequality1, and with the 
particular choice of  IG = , one can get: 

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

0

0

0 0

0 0 0

0 0

T

T T

T

T

V

Q Q d

d

Q d Q d

t

t

t t

J J J

J J J

J J J J J J

£

+

+ - -

æ ö
+ - ´ -ç ÷ç ÷

è ø

ò

ò

ò ò

y x x

x x

x x

x x

 (46) 

Using the Jensen's integral inequality, as in Lemma 

1, the following inequalities are valid: 

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

0

0

0

0 0 0

0 0

T

T T

T

T T

V

Q Q d

d

Q Q d

t

t

t

J J J

J J J

t J J J J J

£

+

+ - -

+ - -

ò

ò

ò

y x x

x x

x x

x x

 (47) 

Introducing the general solution of  (14), given 
with: 

( ) ( ) [ ]
( )0

0 , 0,

0

RQ e Q

R A Q

JJ J t= Î

= +
 (48) 

    
1 ( ) ( ) ( ) ( ) ( ) ( )12 , 0T T Tu t v t u t u t v t v tt t t-- £ G + - G - G >

and by substituting (48) into (47), the following 
expression is obtained: 

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

0

0

0

0 0 0

0 0 0 0

0 0

T

T

T

T R T R

T

T T R R

V

e Q Q e d

d

Q e e Q d

t
J J

t

t
J J

J

J J J

t J J J

£

+

+ - -

+ - -

ò

ò

ò

y x x

x x

x x

x x

  (49) 

or: 

( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

max max

0

0

max

0

0 0 0

0 0 0 0

0 0

T

T

T

T R R T

T

R R T T

V

Q Q e e d

d

e e Q Q d

t
J J

t

t
J J

l l J

J J J

t l J J J

£

+

+ - -

+ - -

ò

ò

ò

y x x

x x

x x

x x

 (50) 

and : 

( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) ( )( ) ( ) ( )

max max

0

0

max max

0

0 0 0

0 0 0 0

0 0

T

T

T

T T R R

T

T R R T

V

Q Q e e d

d

Q Q e e d

t
J J

t

t
J J

l l J

J J J

t l l J J

£

+ ×

+ - -

+ -

ò

ò

ò

y x x

x x

x x

x

 (51) 

Based on Definition 1, one can find: 

( )( )

( ) ( )( ) ( )
( ) ( )( ) ( )

max max

0

max max

0

0

0 0

0 0

T

T

T R R

T R R

V y

Q Q e e d

Q Q e e d

t
J J

t
J J

a

a l l J

a t a t l l J

£

+

+ +

ò

ò
  (52) 

From Coppell’s inequality given in the following 
form: 

( ) ( )2
max

T F tFt F te e e
ml × £

 (53) 

with ( )Fm being any matrix measure, follows: 

( )( ) ( )

( ) ( ) ( )( ) ( )2
max

0

0 1

1 0 0
RT

V y

Q Q e d

t
m J

a t

a t l J

£ + +

+ ò
 (54) 

or : 
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( )( ) ( ) ( ) ( )( )
( )

( )

( ) ( ) ( )( )
( )

( )

2

max

0

2

max

0 1 1 0 0
2

1
1 1 0 0

2

R
T

R
T

e
V y Q Q

R

e
Q Q

R

J tm J

J

m t

a t l
m

a t l
m

=

=

æ ö
ç ÷£ + +
ç ÷
è ø

æ ö-
= + +ç ÷ç ÷

è ø  (55) 

and finally: 

( )( ) ( )( )0 1 1V y a t y£ + +
 (56) 

Based on the crucial assumption of Theorem 4, in 
connection with definiteness of matrix Q (v) over 
prescribed time interval and using the assumption 
given in (36), follows: 

( ) ( ) ( )
0

0 2 T t Q t d

t

h h h< -òx x

 (57)  

what directly leads to: 

( ) ( ) ( )( )T t t V t£x x y
 (58) 

Taking into account (44) and (56), it follows: 

( ) ( ) ( )( )
( ) ( )

( )( ) ( )

max

max

0

1 1

T

t

t

t t V t

e V

e

l

la t y

X ×

X ×

£

£ ×

£ + +

x x y

 (59)
 

Finally, condition (37) and the above inequality 
imply: 

( ) ( ) ,T t t tb< " ÎÁx x
 (60) 

what was to be proven. Q.E.D.  

Remark 1. It can be noticed that the sufficient con-
dition (37) entirely depends on the existence of the 
solution of (42). This requires that nonlinear algebraic 
matrix equation (42) have a positive definitive solution 

for ( )0Q . 

Remark 2. The brief explanation of condition (36) 
leads towards the conclusion that the considered 
system is restricted to unstable time delay systems with 
monotone growing solutions.  

4. NUMERICAL EXAMPLE 

The main result is numerically analyzed through-
out the results of Theorem 4. 

Example 1. The system of the following form has 
been given:

( ) ( ) ( )0 1

0 1

0.1

1.7 1.7 0 1.5 1.7 0.1

1.3 1 0.7 , 1.3 1.5 0.3

0.7 1 0.6 0.7 1 0.1

t A t A t

A A

= + -

- -æ ö æ ö
ç ÷ ç ÷= - = - -ç ÷ ç ÷
ç ÷ ç ÷- -è ø è ø

x x x( ) 0 1t A) 0 1( )t A)t Ax x(t A)t At At A0 10 1

(61)

It is possibile to show that: 

{ } { }

{ } { }
0

1

0.7125, 2.8758, 1.1367

2.8606, 0.1197, 0.1197

A

A

s

s

= - -

=
 (62) 

Consequently, all conditions given (36) are 
satisfied. 

In order to verify the finite time stability of system, 
given (61), the system operation is simulated under the 
following conditions: 

( ) [ ] [ ]1 1 1 , , 0
T

t t t= Î -φ
.  

It is noticeable that:  

( ) ( ) [ ]3 , ,0T t t ta t= = Î -φ φ
 

Figures 1 and 2 show the initial response ( )tx  and 

the norm of state vector ( ) ( )T t tx x  of system (61). 

Figure 1 - The state response x(t) of the system 

 
Figure 2 - The square norm of state vector 

It is observed that the state variables ( )ix ¥ ® ¥ , 

1,2,3i = which means that system (61) is not 

asymptotically stable.  

From (38) and (42), one can find:

( )
1.5279 1.7336 0.0994

1.2328 1.4145 0.2936

0.5249 0.8069 0.1575

0Q

-

- -
æ ö
ç ÷= ç ÷
ç

ø- ÷
è  
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0.1721 0.0336 0.0994

0.0672 0.4145 0.4064

0.1751 1.8069 0.4425

R

æ ö
ç ÷= ç ÷
ç

-

-è ø

-

÷
, 

0.3442 0.0335 0.2745

0.0335 0.8290 2.2133

0.2745 2.2133 0.8849

-æ ö
ç ÷X = ç ÷
ç ÷-è ø , 

Moreover, other values are calculated as follows: 

( ) ( ){ }max 0 0 9.8109TQ Ql = , ( ) 1.1789Rm = , 

1.1064y = , { }max 2.3578l X = . 

It is easy to show that: 

( )0 0,Q >
 

as well as:  

( ) ( ) ( )0,1

1.5 1.7 0.1

0,1 0 0 1.3 1.5 0.3 0,

0.7 1 0.1

R RQ e Q e Q´

-æ ö
ç ÷= = = - - >ç ÷
ç ÷-è ø

t  

so all conditions of Theorem 4, are satisfied. 

In the sequel, the finite time stability with respect 

to { }, , mT Ta b = , with particular choice of 3a = , for 

value 100b = , is investigated.  

It was necessary to find the maximum allowed 

upper bound of T , max estT T= , for  the time interval 

[ ]0,T  so system (61) is FTS. 

Table 1 lists the comparison of max estT T=  for spe-

cific value of the parameter 100b = , using various 

methods presented in Theorem 1 [17], Theorem 2 [18], 
Theorem 3 [21] , Theorem  4 [23] and  Theorem 4 (this 
study) .  

By simulating system (61), the actual values of 
parameterT , 1.945aT =  are estimated from the norm 

of state vector. The results are presented in Table 1.  

Table 1. Upper bound of T, 
max estT T=  

3, 100a b= = ,   [ ]1.945T sa =  [ ]maxT T sest=  

Theorem # Study Result 

1 [17] 0.585 

2 [18] 0.448 

3 [21] 1.225 

4 
[23], same as [23], 
no uncertainties 

0.707 (
0.2865Ã =

) 

4 This study 1.1308 

Furthermore, corresponding values of the para-
meter Ã  (Theorem 4, [23]) are given in Table 1.  

It is calculated that Theorem 4 (this study) gives 
noticeably better results than all other obtained using 
the previous Theorems. However, unlike Theorem 3 
which uses LMI, Theorem 4 [23] is based on algebraic 
inequalities only.  

That inequality can be solved without using 
appropriate optimization methods. 

5. CONCLUSION 

This paper extends some of the basic results in the 
area of the non-Lyapunov stability to the linear 
continuous invariant time-delay systems.  

Under certain assumptions, the new sufficient,  
delay-dependent criteria for the finite time stability  
has been presented.  

The derived result is based on algebraic inequ-
alities only, which can be solved without using appro-
priate optimization methods. It has been shown that, 
under some circumstances, the conditions derived in 
this study leads to significant improvement in the finite 
time  stability analysis, particularly in comparison with 
results given in [23], [24] 
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REZIME 

POBOLJŠANI REZULTATI PO PITANJU STABILNOSTI SISTEMA SA KAŠNJENJEM NA 
KONAČNOM VREMENSKOM INTERVALU: PRILAZ SA POZICIJA JENSENOVE 
NEJEDNAČINE 

U ovom radu razmatra se stabilnost na konačnom vremenskom interval jedne posebne klase vremeski 

neprekidnih Sistema sa kašnjenjem. Iskorišćen je novi oblik agregacione funkcije, tj. kvazi-Ljapunovljev 

funkcional  kako bi se došlo do novih dovoljnih uslova ovog koncepta stabilnosti i to u formi koja 

uključuje i iznos čisto vremenkog kašnjenja. Predložena agregaciona funkcija ne mora da poseduje 

pozitivnu određenost u celom prostoru stanja, niti njen vremenski izvod duž kretanja sistema mora da 

bude negativno određen. Izloženi postupak, je kroz primer, upoređen sa ranijim rezultatima i pokazano 

je da je daleko jednostavniji sa numeričke tačke gledišta a u određenim prilikama daje i manje 

konzervativnije rezultate od postojećih  za ovu klasu razmatranih sistema. 

Ključne reči: Vremenski neprekidni  sistemi sa kašnjenjem, Stabilnost na konačnom vremenskom 

intervalu, algebarske nejednačine 


