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Today deposits are often, small in size, with poor quality and with complex structure and geometry, 

which makes them very difficult to mine. For this reasons, taking into account a wide range of 

parameters is the most important thing for the successful managing of the economically viable project. 

The problem is that practically, value of every parameter is strongly connected with many uncertainties. 

That’s why, all uncertainties should be incorporated in calculations in order to provide more realistic 

solutions. The core of pit optimization is the economic value of every block in block model. The economic 

block value depends on many parameters of an uncertain value. This paper presents a model for 

calculating the economic block value and generating optimal pits that can be used for the uncertainty 

assessment. The developed model is a combination of conventional (deterministic) and stochastic 

approaches. The presented model takes into account the uncertainty of parameters for the determination 

of block value. The paper also makes a comparison between ultimate pits generated by conventional and 

stochastic models of economic block value. This comparison can be used for the uncertainty assessment 

associated with the optimization of pit limits for coal or metal deposits. 
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1. INTRODUCTION 

Every component of any mining project has a cer-

tain degree of uncertainty that can be divided into two 

main categories: technical risks and commercial risks. 

Technical risks include resource grade and variability, 

production rates, operating capital cost, metallurgical 

performance and product quality. On the other hand, 

commercial risks include commodity prices, exchange 

rates, marketing, external cost, and political risks [1]. 

General characteristic of current approach in opti-

mization and pit planning, is based on deterministic 

approach and adoption of the input parameters. This 

means that, after extensive analysis, the value of each 

input parameter is adopted as a unique correct value.  
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This value can be determined in real time when the 

analysis is done, or it can be estimated with an attempt 

to approximate the value of a particular parameter and 

its trend in the future, but in any case adopted value is 

unique and immutable, i.e. believed absolutely correct. 

Further, optimization and planning work is carried on 

under the assumption that the geological boundaries, 

the distribution of quality, technology and mining and 

processing parameters, as well as the potential eco-

nomic parameters, are fully known. These algorithms 

are known as conventional approach in literature. The 

disadvantages of conventional algorithms lie in the fact 

that they do not take into account the uncertainty re-

lated to the input parameters optimization. This way, 

the risk associated with uncertainties cannot be pro-

perly evaluated, a fact that often keeps mining com-

panies, far from meeting their basic commercial goals. 

There are many examples of mines, where pla-

nning has been based on the most optimistic estimation 

approach (without a proper uncertainty assessment) 

and, at the end, the companies encountered a financial 
disaster. Morley, Snowden and Day [2] indicated that 
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70% of small mining companies in South Africa had 

mainly failed during the 1980’s just because of having 

overestimated the reserve tonnage and grade. The 

importance of uncertainty assessment is emphasized 

by the work of many authors. Erdem, Güyagüler and 

Demirel [3] show how proper analysis of uncertainty 

in financial evaluation can help decision makers to 

prevent possible errors.  

It should also be noted, that the elimination of risk 

(at the expense of the project value) is not the ultimate 

goal. The degree of risk the company is prepared to 

expose itself to, depends to large extent on its decision-

making behavior [4]. 

One of the most important phases in every mining 

project is the optimization of pit limits. The objective 

function of the optimization is the maximization of the 

profit yielded by the pit, calculated as the cumulative 

value of all the material (ore and waste). There are 

many algorithms for optimizing pit limits. Lerchs-

Grossmann (LG) method is the mostly used one, and it 

represents conventional industrial standards. LG 

method guarantees finding the optimal pit (optimal for 

a given set of parameters) in three dimensions [5]. The 

method works with only two types of information: the 

economic block value and the arcs (relation between 

two blocks). The economic block value (EBV) 

depends on many parameters with an uncertain value. 

For dealing with various mining and geology 

problems, stochastic approach is suggested by many 

authors [6-9]. This paper presents a stochastic model 

for calculating the EBV. The presented model takes 

into account the uncertainty of parameters for the 

determination of block value. The paper also makes a 

comparison between ultimate pits generated by 

conventional and stochastic models of EBV, which can 

be used for the uncertainty assessment associated with 

the optimization of pit limits. 

In engineering sense, the problem of optimization 

of the open pit limits, comes down to the definition of 

the economic block model. In this respect, the source 

of uncertainty that occur while creating the economic 

block model is the source of uncertainty for the pit 

optimization process [6]. 

There are several ways of writing an expression for 

the EBV. In general, the value of the block is equal to 

the value of the ore in block (that can be excavated and 

processed), reduced by all coast (mining, processing, 

selling etc.). Since the value of parameters that 

determine the EBV, are variable (they can change 

depending on applied methodology or through life of 

mine), the EBV can’t be specified with single correct 

value. Therefore, these parameters are often main 

sources of uncertainty in mining and can be classified 

in four categories of uncertainty, Table 1: 

Table 1. Sources of uncertainties relevant to block value 

Geological Uncertainty Market Uncertainty 
Uncertainty in Costs 

Estimation 
Recovery Uncertainty 

Geometry of orebody Price of product (€/m3; €/t; €/%), Mining costs (€/m3) Mining recovery (%) 

Units of product – Grade (%; g/t) Exchange rate ($/€; $/£) Milling costs (€/m3) Milling recovery (%) 

Specific gravity(t/m3) / / / 

Geological uncertainty has been regarded as the 

major cause for not meeting project expectations as ex-

plained by Dimitrakopoulos, Farrelly and Godoy [10] 

and Abdel and Dimitrakopoulos [11]. Many authors 

have indicated that mineral resources and ore reserve 

reports generally contain a single tonnage and grade 

values. The tonnage and grade values do not contain 

any reference to the potential uncertainties in the esti-

mations. Morley, Snowden and Day noted that „Any 

resource and reserve estimation is guaranteed to be 

wrong. Some however, are less wrong than others‟ [2].  

The geological uncertainty consists of three major 

sources: 

 Boundaries of mineral reserves, 

 Density of the ore body, 

 Grade of the ore body 

Boundaries of mineral reserves can be more or less 

well detected. This uncertainty is usually caused by a 
lack of information. 

Density and grade of the whole ore body is dete-

rmined by using the results of the drill holes. Even if 

we assume that the sampling procedure and the esti-

mation of a density are properly performed, obtained 

value, in every point of the mineral deposit, will not be 

the correct one. Therefore, density and grade of the ore 

body are considered to be very important sources of 

uncertainties. 

Many authors suggest, that the best way of dealing 

with geological uncertainties, is the utilization of sto-

chastic simulated ore bodies. Dimitrakopoulos, Farre-

lly and Godoy [10] showed the impact of geological 

uncertainties on Net Present Value (NPV). They sho-

wed that if the conventionally constructed open pit 

design is tested against equal probable simulated sce-

narios of the ore body, its performance will probably 

not meet the expectations.  

The conventionally expected NPV of the mine has 

a 2 to 4 percent chance to materialize, while it is 
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expected to be 25% less than forecasted. Note that in a 

different example, the opposite could be the case [10]. 

Volatile nature of the market (especially metal ma-

rket) makes price forecasting one of the main sources 

of uncertainty. Many factors influence the market 

price: the demand, the supply, speculation, news eve-

nts, dividend payouts etc. Rendu indicated that the 

most important risk factor is the lack of knowledge 

about the future price of product mining [12]. Much 

effort has been invested to reduce price forecasting 

uncertainty, but usually this ends up in poor results. 

The most accurate price forecasting can be performed 

using a combination of technical and fundamental ap-

proaches. The technical approach consists of analyzing 

historical prices, studying long-term trends and short-

term variability and developing a statistical model. The 

fundamental approach consists of forecasting supply 

and demand. 

The price uncertainty is consider by numerous 

developed methods. Baek, Yosson and Park [13] pre-

sented a method to quantitatively represent the uncer-

tainty included in open pit optimization results due to 

variation in mineral prices, Evatt et al. [14] developed 

method for estimation of ore reserves under mineral 

price uncertainty, Asad and Dimitrakopoulos [15] 

presented a parametric maximum flow algorithm for 

open pit optimization under uncertain market con-

ditions. 

In addition, uncertainties related to exchange rate 

variations are in the group of market uncertainty. Price 

in the global market is usually expressed in a single 

currency, which might not match the currency of the 

country where the raw material is exploited and where 

is exported. For this reason, variations of exchange 

rates are of great importance the financial performance 

of a mining project. 

The impact of uncertainty in cost estimation and 

recovery is, in most cases, less significant. The major 

factors for these types of uncertainty are based on 

technical, organizational, geological and geotechnical 

conditions. 

2. METHOD FOR UNCERTAINTY ASSESSMENT 

IN PIT OPTIMIZATION - DEVELOPMENT OF 

HYBRID MODEL 

As it is mentioned above, the only input for Le-

rchs-Grossmann (LG) method of pit optimization is the 

EBV for all blocks in a geological block model. 

Conventional (deterministic) method for optimization 

of pit limits produces solutions that do not incorporate 

uncertainty. To overcome this problem, a hybrid model 

was developed. The algorithm of this model is shown 

in Figure 1. The model generates a stochastic optimal 

pit shells and a conventional optimal pit shells. Sto-

chastic optimal pit shells can be used for the uncer-

tainty assessment, regarding optimal pit limits. 

The model can be described through the following 

four steps: 

 Defining set of input parameters 

 Calculating Economic Value of Block 

 Analysis and Comparison of Calculated Block Va-

lue 

 Generation of Optimal Pit Shells and Assessment 

of Uncertainty 

Step 1. In the first step, a set of input parameters 

for EBV is defined. The parameters are: grade of ore, 

specific gravity, selling price of product, mining and 

milling recovery, mining and milling costs. 

On the basics of those parameters, stochastic and 

deterministic EBV will be calculated. For the deter-

ministic (conventional) EBV, parameters have a single 

value, while for the stochastic EBV all parameters are 

defined as the probability distributions. 

Step 2. For the deterministic approach, the value of 

one block is calculated using the equation: 

EBV = (Grade · Mining(R) · Milling(R) · Price) – (Mining(C) + Milling(C))  (1) 

Where: EBV – economic block value (€/m3), Gra-

de–grade of ore in block (%), Price – price of com-

modity (coal, metal, €/t; €/%), Mining(R)–mining re-

covery (%), Milling(R)–milling recovery (%), Mi-

ning(C) – cost for mining a block (€/m3), Milling(C) – 

cost of processing block (€/m3). 

It is important to emphasize that the deterministic 

calculation of EBV, for all blocks in model, is auto-

matically done, with the use of Pit optimizer (part of 

Surpac 6.1). The Result is a single economic value for 

every block in the model. For the stochastic approach, 

EBV is calculated using Monte Carlo simulation 

(MCS) on the basics of the same equation 1. The inputs 
for MCS are probability distributions for every 

parameter. MCS has the advantage of evaluating a 

huge number of hypothetical scenarios, which makes 

MCS powerful mathematical method for conducting 

uncertainty assessment and quantitative risk analysis in 

mining industry as is shown by Lane [16]. 

In this way, uncertainty is taken into account. The 

result is a set of block values (for one block) with 

different probability of occurring. Based on type of 

distribution, some probable block values are more 

interesting than others. For example, in normal 

distribution particularly interesting is the most 

probable block value and values of one and two 

standard deviation interval (𝑥̄ ± 𝜎 =68.27% and 𝑥̄ ±
2𝜎=95%) around mean (𝑥̄) economic block value. 
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Figure 1 - Algorithm of hybrid model for uncertainty assessment in pit optimization 

Step 3. In order to successfully apply the LG me-

thod and find optimal pit limits, it is essential that each 

block (in block model) has its economic value. For the 

deterministic approach, calculating EBV is easy, beca-

use for the given set of parameters, it is automatically 

done for every block.  

In contrast, for stochastic approach, calculating 

EBV is much more complicated, since MCS must be 

done for each block (in the block model). As the block 

model usually consists of hundreds of thousands of 

blocks and the time for one simulation is measured in 

minutes, making calculation of simulated EBV for all 

blocks is a time-consuming and rather impractical pro-

cedure. To overcome this problem, a different appro-

ach is proposed in this paper. MCS (of EBV) is done 

only for a specific number of blocks. Obtained results 

(simulated EBV) are then compared with EBV (for the 

same blocks) determined with the deterministic 
approach.  

Based on this comparison, the function that corre-

lates deterministic and simulated EBV is determined. 

Using this function, EBV for all other blocks (for the 

stochastic block model) is calculated. According to this 

approach, it is very important that function, derived 

from the comparison of deterministic and simulated 

EBV, can be found and that, with this function, an ade-

quate accurate approximation (of stochastic EBV) is 

possible.  

Step 4. After calculation of deterministic and sto-

chastic EBV, LG algorithm is used for the optimization 

of pit limits. Based on the analysis we want to carry 

out, a different number of pits can be generated. For 

the deterministic calculated EBV conventional pit li-

mits will be generated and from the stochastic EBV it 

is especially interesting to generate pit shell for most 

probable EBV and for values of one and two standard 

deviation interval around mean EBV (𝑥̄ ± 𝜎=68.27% 

and 𝑥̄ ± 2𝜎=95%). From generated pit shells for 
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different deterministic and stochastic EBV, uncertai-

nty assessments can be obtained. 

3. CASE STUDY OPTIMIZATION OF PIT LIMITS 

AND ASSESSMENT OF UNCERTAINTY 

For better understanding of developed model, case 

study is provided. The case study was made for iron 

ore deposit, but nevertheless developed hybrid model 

is universal and can be used for coal and other mineral 

deposits.  

Software packages used in calculations are Pit 

Optimizer (module of Surpac 6.1) [17]. and for the 

Monte Carlo simulation, a student version of @Risk 

6.1.2 was used [18]. 

The analyzed deposit is a real deposit, which due 

to confidential reasons, will not be named. Also, all 

parameters used in calculation, are taken from existing 

practice of mining iron ore deposits. 

The deposit is explored with 552 drillholes. Based 

on drillholes a geological model is developed. 

Calculation with model showed reserves of 43.7 

million tons of ore with an average grade of 41.6 % of 

iron. Reserves were calculated for the cut-off value of 

35% of iron in ore [19, 20]. In order to conduct pit 

optimizations and uncertainty assessments, a set of 

required parameters is determined. For the dete-

rministic (conventional) calculation of EBV, all para-

meters have a unique value (Table 2). 

Table 2. Parameter set for conventional calculation of EBV 

Units of product 

Grade (%) 

Price of product 

(€/t, @51.4%Fe) 

Mining recovery 

(%) 

Milling recovery 

(%) 

Mining costs for ore 

and waste (€/m3) 

Milling costs 

(€/m3) 

Different for 

every block 
91.3 94 84 4 13.47 

Product price (iron concentrate) is an average mo-

nthly price for period from January 2000 - up to May 

2013. The data is taken from the International Mone-

tary Fund [21] and is related to China import Iron Ore 

Fines 62% Fe spot (CFR Tianjin port). Due to its 

volatile nature, prices from years 2008 and 2009 were 

not taken into account. For the purpose of this case 

study, prices of iron ore concentrate went through 

currency replacement, from US Dollars to Euros and 

they have been recalculated from 62%_Fe to 

51,4%_Fe concentrate. For the stochastic approach, 

based on statistical analysis, probability distribution of 

every parameter is defined.  

The basic properties of probability distributions 

are shown in table 3. The distribution, defined for 

every parameter separately, is the same for every 

block, except the distribution for the Grade parameter, 

which is defined around estimated value.  

With the defined set of parameters and the 

probability distribution of these parameters, we can 

calculate EBV using both deterministic and stochastic 

approach. If we calculate EBV for a block that contains 

average grade of iron (41.6 %), using the deterministic 

approach (equation 1) we obtain a single value: EBV 

= 55, 99 €/m3. 

With the stochastic approach based on MCS, for 

the same block, we obtain normal distribution of a set 

of probable EBV with a different probability of 

occurrence (Figure 2). All simulations in this case 

study were performed in 50.000 iterations 

 
Figure 2 - Probability distribution of EBV (grade 

41.6%Fe) 

Some values obtained from performed MCS are 

more interesting (relevant) than others. Minimum 

simulated value EBV is 2.13 €/m3, while maximum 

EBV is 142.7 €/m3. The mean value of distribution is 

56.13 €/m3, and the most probable EBV is 50.46 €/m3. 

Standard deviation () for distribution is 16.09 and 

with a probability of 68.3% (𝑥̄ ± 𝜎), the exact EBV 

will be in range from 40.2 €/m3 to 72.2 €/m3. With the 

probability of 95% (𝑥̄ ± 2𝜎), the exact EBV will vary 

from 28 €/m3 to 90.3 €/m3. 
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Table 3. Basic properties of probability distributions for calculation of EBV 

 
 

4. ANALYSIS AND COMPARISON OF 

CALCULATED BLOCK VALUE 

Analysis of both approaches can be done for a set 

of blocks with different grade content, comparing 

deterministic versus simulated values. The range of 

grade for this analysis is specified from cut-off value 

in block model (35% Fe) up to maximum value in 

block model (65% Fe). Results of deterministic and 

simulated EBV calculation for the specified range of 

grade are presented  

In Table 4. For deterministic approach EBV is 

unique for each grade value, but for stochastic 

approach we have two values that define the range of 

(𝑥̄ ± 𝜎). 

Variable parameter 
Type of distribution  

And Histogram 
Properties of distribution 

Units of product 

Grade 

(%) 
 

Normal Distribution 

Mean=estimated grade value for block 

Mode=estimated grade value for block 

Median=estimated grade value for block 

Standard deviation=0.0645 

Price 

of product 

(€/t, @51.4%Fe) 
 

Gama Distribution 

=46.41, 

=1.968 

Mean = 91.34 

Mode=89.37 

Median= 90.68 

Standard deviation =13.41 

Mining recovery 

(%) 

 
Normal Distribution 

Minimum=0.90 

Maximum=1.00 

Mean≈0.941 

Mode=0.94 

Median=0.9405 

Standard deviation ≈0.0187 

Milling recovery 

(%) 

 
Normal Distribution 

Minimum=0.80 

Maximum=0.88 

Mean≈0.84 

Mode=0.84 

Median=0.84 

Standard deviation≈0.0176 

Mining costs 

(€/m3) 

 
Normal Distribution 

Minimum=3.0 

Maximum=5.0 

Mean=4.0 

Mode=4.0 

Median=4.0 

Standard deviation=0.040 

Milling costs 

(€/m3) 

 
Weibull Distribution 

=3.7961 

=4.9516 

Shift=9 

Mean=13.4749 

Mode=13.5684 

Median=13.4959 

Standard deviation=1.316 

 1 
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Table 4. Results of deterministic and simulated EBV calculation 

Grade 

(%Fe) 
Conventional Approach Stochastic Approach 

Comparison 

Stochastic/Conventional 

A B C D E F G 

/ 
Deterministic EBV 

(€/m3) 

Standard Deviation  

(€) 

EBV for  

x  
(€/m3) 

EBV for 

x  
(€/m3) 

Ratio 

D/B 

Ratio 

E/B 

35 44.34 14.87 29.7 59.1 0.670 1.333 

40 53.17 15.72 37.7 68.7 0.709 1.292 

45 62 16.68 45.7 78.5 0.737 1.266 

50 70.84 17.57 53.5 88.4 0.755 1.248 

55 79.66 18.59 61.4 98.2 0.771 1.233 

60 88.5 19.59 69.2 108.1 0.782 1.221 

65 97.3 20.77 76.9 118.2 0.790 1.215 

As it has already been mentioned, it would be quite 

time-consuming and rather impractical to simulate 

𝑥̄± values for all blocks in the block model. To 

overcome unnecessary computing, function is defined 

in order to approximate the 𝑥̄± of EBV, for all ore 

blocks in the model. Ratio of column D and column B 

(D/B – from table 4) defines function (Figure 3) that, 

relates Grade, stochastic EBV for 𝑥̄- and determi-

nistic EBV. Figure 3 indicates that, the relation of 

grade, EBV for 𝑥̄- and deterministic EBV (blue line 

in Figure 3) is approximated with a polynomial fun-

ction (red line in Figure 3): 

(D/B) = - 0.0029x2 + 0.0425x + 0.6328 (2) 

Where: (D/B) is the ratio of stochastic EBV for pro-

bability distribution x - and deterministic EBV and 

relation of X value and grade is defined with equation 

3. 

            
5

30


Grade
X

 (3) 

Coefficient of determination, which indicates how 

well curve fit data points (or how accurate approxi-

mation is) in this case is R2 = 0.9968. 

 
Figure 3 - Ratio and approximation of stochastic EBV for𝑥̄ − 𝜎and deterministic EBV 

Using equation 2, for the every block in model, 

depending on the grade of that block, the ratio of 

stochastic EBV for (𝑥̄ − 𝜎) and deterministic EBV and 

stochastic EBV (ratio D/B) can be calculated. Note that 

the X value from equation 2 is changed according to 

equation 3. By multiplying known deterministic EBV 

with ratio D/B, approximated EBV for probability of 

𝑥̄ − 𝜎 can be obtained. 

By following the explained steps, this can be done 

very easily and quickly for each block in block model. 

Two last steps, calculating ratio D/B and appro-

ximation of EBV for probability of 𝑥̄ − 𝜎, are done 
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automatically. In this case, it is done with command 

attribute math (Surpac 6.1), but it can also be done, for 

example, using Microsoft Excel, if the block model is 

exported to comma separated values (csv) file format. 

The same procedure can be applied to calculate 

EBV for probability distribution of 𝑥̄ + 𝜎 (average 

plus one standard deviation value). By comparing 

simulated EBV of 𝑥̄+ (column E in table 4) with 

deterministic calculated EBV (column B in table 4) we 

can obtain the ratio E/B (column G in table 4), which 

define function (Figure 4). This function relates grade, 

deterministic EBV and stochastic EBV for  𝑥̄ + 𝜎. 

 
Figure 4 - Ratio and approximation of stochastic EBV for 𝑥̄ + 𝜎 and deterministic EBV 

In this case, the relation of stochastic EBV for 𝑥̄ +
𝜎 and deterministic EBV (blue line in Figure 4) is ap-

proximated, again, with polynomial function (red line 

in Figure 4): 

E/B= 0.003x2 - 0.0427x + 1.3696 (4) 

Where: (E/B) – is the, relation of EBV for pro-

bability distribution of 𝑥̄ + 𝜎 and deterministic EBV 

and relation of X value and grade is defined with equ-

ation 5. 

 
5

30


Grade
X

 (5) 

Coefficient of determination for this approxi-

mation is R2 = 0.9962. 

In the same way like it has already been explained, 

with equation 4, for each block in the model, depe-

nding on the grade of that block, and expression for X 

(equation 5) ratio of EBV for probability of 𝑥̄ + 𝜎 and 

deterministic EBV can be calculated (ratio E/B). By 

multiplying known deterministic EBV with calculated 

ratio E/B, approximated EBV for probability distri-

bution of 𝑥̄ + 𝜎 can be obtained. These last two steps 

are also done automatically. 

5. GENERATION OF OPTIMAL PIT SHELLS 

AND ASSESSMENT OF UNCERTAINTY 

The result of the procedure explained in previous 

section is the block model with three different EBV, 

one deterministically calculated and two approxima-

tions for 𝑥̄ ± 𝜎. Those EBV are used for the optimi-

zation of pit limits (LG method). Generated optimal 

pits shells are shown in Figure 5, while Table 5 

specifies the details of their performance.  

As shown on Figure 5, optimal pit shell: generated 

with deterministic calculated EBV is marked as Pit_1, 

generated with approximation EBV of probability 𝑥̄ −
𝜎 is marked as Pit_2, generated with approximation 

EBV of probability 𝑥̄ + 𝜎 is marked as Pit_3 

Table 5. Basic performance of generated pits 

Optimal Pit Pit 1 Pit 2 Pit 3 

Ore Mass (t) 36.021.000 32.604.000 36.950.000 

Waste Volume (m3) 61.401.000 45.707.000 66.249.000 

NPV of Pit 290.355.000 192.203.000 401.160.000 
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Figure 5 - Generated optimal pits 

On the basis of generated pits, uncertainty 

assessment can be conducted. If we look at the value 

of ore mass, we can tell that, with a probability of 

68,27% (probability distribution of 𝑥̄ ± 𝜎) the optimal 

pit will contain ore mass between 32.6 (Pit_2) and 

36.95 (Pit_3) million tones. The difference between 

these two pits is just 13.3 % (for ore mass). We can 

also compare ore mass from Pit_1 (36.02x106 t) and 

Pit_3 (36.95x106 t), resulting to a difference of just 

0.3%. This means that the increase of EBV, to the 

value of 𝑥̄ + 𝜎, practically does not affect pit design 

and optimal limits. 

NPV has been calculated for every pit with the 

same parameters. Capacity for one year is set to 2x106 

t and discount rate is 8%. If we observe the NPV 

performance of pits, we can tell that with a probability 

of 68,27% (probability distribution of 𝑥̄ ± 𝜎) the 

optimal pit will have NPV between 192.2 (Pit_2) and 

401.2 (Pit_3) million euros. In contrast to the case 

when we compared ore mass, the comparison of NPV 

value shows a big difference between pits. The diffe-

rence between Pit_1 and Pit_2 is 51.1%, between Pit_1 

and Pit_3 is 38, 2% and for Pit_2 and Pit_3 the diffe-

rence reaches 208.8%. A big difference in NPV value 

is generated by the difference in calculated EBV for 

the pits.  

In the end, we can conclude, that for a wide range 

of scenarios, optimal pit will be much more sensitive 

to NPV performance, than to probability to contain 

more or less ore mass. 

6. CONCLUSIONS 

This paper presents a hybrid model for calculating 

the EBV and generating optimal pits that can be used 

for uncertainty assessment. The presented model is a 

combination of both conventional (deterministic) and 

stochastic approaches. Furthermore, the developed 

model takes into account the uncertainty of parameters 

for determining EBV. The proposed methodology 

provides a practical method for approximation of EBV, 

with no need of numerous and time-consuming simu-

lations. Function is determined on the basis of the com-

parison between a set of deterministically calculated 

and simulated EBV. Using this function, EBV for all 

other blocks (of the stochastic block model) is calcu-

lated. For an obtained EBV, using the LG algorithm, 

many optimal pits can be generated. Those pits in a 

plastic way, in a 3-D space, allows uncertainty asse-

ssment. Proposed hybrid model is universal in sense 

that it can be used for various deposits (coal, metal, 

etc).   

All in all, it is clear that the uncertainty should not 

be ignored as it can have a major impact on the project 

success. The source of uncertainty should be incor-

porated in calculations in order to suggest more robust 

and realistic solutions. However, further investigation 

is required, for a better understanding of the possible 

improvements that stochastic solutions may have to 

offer, as compared to present conventional (determini-

stic) practices. 
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REZIME 

HIBRIDNI MODEL ZA PROCENU NEIZVESNOSTI U OPTIMIZACIJI POVRŠINSKIH 

KOPOVA 

Današnja ležišta često su mala, sa lošim kvalitetom i kompleksnom strukturom i geometrijom, što ih čini 

teškim za eksploataciju. Iz ovoga razloga, za ekonomski uspeh projekta, izuzetno je bitno uzeti u obzir 

mnogobrojne uticajne parametre. Značajan problem ovakvom pristupu je činjenica da je vrednost 

praktično svakog parametra neizvesna. Iz tog razloga neizvesnost kao pojava mora biti uključena u 

proračune, kako bi se obezbedila realnija rešenja. U osnovi optimizacije granica površinskih kopova je 

ekonomska vrednost svakog bloka u modelu. Ekonomska vrednost bloka zavisi od mnogih neizvesnih 

parametra. Ovaj rad prezentuje model za proračun ekonomske vrednosti blokova u modelu i generisanje 

optimalnih kontura kopova koje se mogu koristiti za procenu neizvesnosti. Predloženi model je 

kombinacija determinističkog i stohastičkog pristupa. Prezentovan model uzima u obzir neizvesnosti 

povezane sa parametrima koji određuju ekonomsku vrednost blokova. Takođe u radu je obrađeno i 

upoređenje između optimalnih kontura generisanih na osnovu deterministički i stohastički proračunatih 

vrednosti blokova u modelu. Ovo upoređenje može se iskoristiti za procenu neizvesnosti povezane sa 

optimizacijom granica površinskih kopova. 

Ključne reči: optimizacije granica površinskih kopova, ekonomska vrednost bloka, procena 

neizvesnosti, stohastički model  


