Sinteza fotokatalizatora za redukciju šestovalentnog hroma modifikovanjem TiO₂ nanočesticama Cu i/ili CdS

JANA LJ. PETROVIĆ, Univerzitet u Beogradu,	Originalni naučni rad
Inovacioni centar Tehnološko-metalurškog fakulteta, Beograd	<i>UDC: 628.349:546.766</i>
ORCID: 0009-0004-7543-7589	DOI: 10.5937/tehnika2404385P
ŽELJKO M. RADOVANOVIĆ, Univerzitet u Beogradu,	
Inovacioni centar Tehnološko-metalurškog fakulteta, Beograd	l
ORCID: 0000-0002-0602-3831	
SLAVICA S. LAZAREVIĆ, Univerzitet u Beogradu,	
Tehnološko-metalurški fakultet, Beograd	
ORCID: 0000-0002-9748-9353	
NEMANJA M. BARAĆ, Univerzitet u Beogradu,	
Inovacioni centar Tehnološko-metalurškog fakulteta, Beograd	l
ORCID: 0000-0001-5037-9176	
ĐORĐE T. JANAĆKOVIĆ, Univerzitet u Beogradu,	
Tehnološko-metalurški fakultet, Beograd	
ORCID: 0000-0002-8291-4345	
RADA D. PETROVIĆ, Univerzitet u Beogradu,	
Tehnološko-metalurški fakultet, Beograd	
ORCID: 0000-0001-9511-5633	

U ovom radu sintetisani su kompozitni fotokatalizatori na bazi TiO_2 za fotoredukciju Cr(VI)deponovanjem nanočestica CdS i/ili Cu. Za sintezu nanočestica Cu korišćen je ekstrakt lišća hrasta kao redukciono sredstvo. Iako mala (~ 1,1 mas. %), deponovana količina Cu je obezbedila pomeranje praga apsorpcije u vidljivu oblast i značajno veću efikasnost u odnosu na TiO₂. I deponovanje ~ 3 mas. % CdS je obezbedilo veću aktivnost pod dejstvom vidljive svetlosti u odnosu na TiO₂, ali manju u odnosu na Cu-TiO₂. Najbolji rezultati ostvareni su sa trojnim fotokatalizatorom, jer je verovatno obrazovan z-šema u kojoj deponovani Cu ima ulogu posrednika za prenos elektrona između CdS i TiO₂. Dodatak limunske kiseline kao "hvatača" šupljina je omogućio dodatno povećanje aktivnosti, čak i u slučaju TiO₂. **Ključne reči:** titan(IV)-oksid; fotokatalitička redukcija; Cr(VI);vidljivo zračenje

1. UVOD

Zagađivanje prirodnih voda toksičnim šestovalentnim hromom, koji se koristi u brojnim industrijskim procesima odakle putem otpadnih voda dospeva u životnu sredinu, predstavlja veliki problem savremenog društva. Cr(VI) je veoma rastvorljiv u vodi i javlja se u obliku hromatnih i dihromatnih anjona, za razliku od trovalentnog oblika koji je manje toksičan i može da gradi teško rastvorni $Cr(OH)_3$. Zbog toga, najzastupljeniji postupak za smanjenje koncentracije Cr(VI) u otpadnim vodama je hemijska redukcija do Cr(III) u kiseloj sredini (pH ~ 2), a zatim taloženje $Cr(OH)_3$ u baznoj sredini [1].

Brojni nedostaci ovog postupka, kao što su velika potrošnja hemikalija, nedovoljna efikasnost i nastajanje sporednih produkata uslovili su istraživanja u cilju razvoja ekonomičnih, efikasnih i ekoloških postupaka redukcije Cr(VI).

Jedan od načina da se poveća efikasnost redukcije, smanji potrošnja hemikalija i nastajanje sporednih produkata jeste primena fotokatalitičke redukcije dejst-

Adresa autora: Jana Petrović, Univerzitet u Beogradu, Inovacioni centar Tehnološko-metalurškog fakulteta, Beograd, Karnegijeva 4

e-mail: petrovicj@tmf.bg.ac.rs Rad primljen: 15.07.2024. Rad prihvaćen: 06.08.2024.

vom UV ili vidljivog zračenja. Titan(IV)-oksid (TiO₂) je našao primenu u fotokatalitičkoj oksidaciji i redukciji zagađujućih materija u vodi zbog izuzetne hemijske i fotohemijske stabilnosti, netoksičnosti, hidrofilnosti i dostupnosti [2]. Ipak, primena TiO₂ kao fotokatalizatora je ograničena pre svega zbog široke zabranjene zone (3,0 - 3,2 eV, u zavisnosti od kristalnog oblika), zbog čega se granica apsorpcije nalazi u UV oblasti, a takođe i zbog visokog stepena rekombinacije fotogenerisanih elektrona (e⁻) i šupljina (h⁺) [3]. Za ekonomičnost procesa fotokatalize od velikog značaja je mogućnost aktiviranja fotokatalizatora vidljivom svetlošću, zbog čega se primenjuju modifikacije usmerene na suženje zabranjene zone TiO₂, uz istovremeno bolje razdvajanje e⁻ i h⁺. Pokazano je da se na ova svojstva može uticati obrazovanjem heterospoja TiO2 sa drugim poluprovodnicima sa užom zabranjenom zonom [4-6] ili ugljeničnim materijalima, ali i nanočesticama metala koje imaju ulogu kokatalizatora [7]. Zahvaljujući uskoj zabranjenoj zoni (~2,4 eV) i odgovarajućim pozicijama valentne i provodne zone, CdS sa TiO₂ formira heterospoj tipa II, što znači da nakon aktiviranja CdS vidljivim zračenjem, elektroni prelaze sa provodnog nivoa CdS na provodni nivo TiO₂, usled čega se smanjuje stepen rekombinacije [3]. Ipak, upotreba CdS u fotokatalizi je naišla na ograničenje zbog moguće fotokorozije koja je izraženija kada se koristi samostalno [8, 9]. Pretpostavka je da dodatkom elektron donora u sistem koji ima ulogu hvatača šupljina može da se utiče na smanjenje fotokorozije, a takođe se dodatno doprinosi povećanju efikasnosti.

Kada se nanočestice metala deponuju na površinu poluprovodnika, obrazuje se Šotkijeva barijera pomoću koje je omogućen prenos naelektrisanja i prostorno razdvajanje e⁻ i h⁺ [10]. Ovo je prvenstveno pokazano u slučaju nanočestica plemenitih metala (Ag, Au, Pt), ali i za čestice prelaznih metala, npr. Cu koji je značajno pristupačniji [11]. Takođe, TiO₂ u kombinaciji sa nanočesticama metala pokazuje aktivnost pod dejstvom vidljivog zračenja zahvaljujući ispoljavanju tzv. "localized surface plasmonic resonance (LSPR)" efekta tako da nanočestice apsorbuju vidljivo zračenje i doniraju elektrone poluprovodniku na čijoj se površini dalje odigravaju reakcije redukcije [7, 10]. Iako je teško utvrditi da li je Cu prisutan na površini TiO₂ kao elementarni Cu, jon ili oksid (Cu_xO), neosporno je da je fotokatalitička aktivnost Cu-modifikovanog TiO₂ pod dejstvom vidljivog zračenja značajno poboljšana [12]. Dodatno, nanočestice metala mogu da budu prenosnici elektrona u višekomponentnom kompozitnom fotokatalizatoru, ukoliko se nalaze između dva poluprovodnika, čime se obrazuje tzv. z - šema. Prednost ovakog sistema u odnosu na heterospoj tipa II je veći redukcioni potencijal e- i veći oksidacionom potencijalu h^+ , jer se posredstvom nanočestica metala e^- sa provodnog nivoa jednog fotokatalizatora rekombinuju sa h^+ na valentnom nivou drugog fotokatalizatora [7].

U ovom radu su sintetisani kompozitni fotokatalizatori nanošenjem nanočestica Cu i/ili CdS na TiO₂ sa ciljem povećanja efikasnosti fotokatalitičke redukcije Cr(VI) pod dejstvom vidljive svetlosti. Za sintezu je korišćen TiO2 sintetisan nehidrolitičkim sol-gel postupkom [13], koji je pokazao veliku efikasnost pri fotokatalitičkoj oksidaciji organskih supstanci pod dejstvom UV zračenja. Nanočestice Cu se obično deponuju hemijskom redukcijom Cu²⁺ jakim redukcionim sredstvom, kao što je NaBH₄, a u ovom radu je korišćen ekstrakt lišća hrasta, kao ekološko sredstvo za redukciju [14]. U cilju ravnomernog deponovanja CdS na TiO2 ili Cu-TiO2, primenjena je termička razgradnja tiouree u prisustvu Cd2+. Fotokatalitička efikasnost sintetisanih kompozita pod dejstvom vidljive svetlosti je ispitana u poređenju sa TiO_2 pri pH = 3, u prisustvu ili bez prisustva limunske kiseline kao "hvatača" šupljina.

2. EKSPERIMENTALNI DEO

U eksperimentima je korišćen TiO_2 koji je sintetisan u prethodnim istraživanjima [13]. Za sintezu CdS kao polazna jedinjenja su korišćeni tiourea (CH₄N₂S) (Merck) i Cd(CH₃CO₂)₂·2H₂O (Thomas Tyrer & co, London). Za deponovanje nanočestica Cu na TiO₂ korišćen je CuCl₂ (Laphoma, Skoplje), a za redukciju Cu²⁺ ekstrakt lišća hrasta.

Za pripremu CdS-TiO₂ kompozita korišćena je termička razgradnja tiouree: $0,5 \text{ g TiO}_2$ je pomešano sa 30 cm³ CH₄N₂S koncentracije 1 mol/dm³, nakon čega je dodato 12,5 cm³ Cd(CH₃CO₂)₂·2H₂O, koncentracije 0,2 mol/dm³. Suspenzija je zagrevana na 60°C pod refluksom, uz mešanje tokom 5 h. Nakon centrifugiranja, čvrsta faza je ispirana destilovanom vodom nekoliko puta. Dobijen je bledo žuti talog koji je sušen na 100°C tokom noći (uzorak CdS-TiO₂).

Ekstrakt lišća hrasta (ELH) je pripremljen zagrevanjem 10 g osušenog lišća hrasta potopljenog u 250 cm³ destilovane vode na 80°C uz konstantno mešanje tokom 15 min. Nakon zagrevanja, ekstrakt je odvojen od lišća filtracijom na Bihnerovom levku.

Suspenzija dobijena mešanjem 0,5 g TiO₂ i 40 cm³ ELH je smeštena u ultrazvučno kupatilo na 5 min, a pH vrednost je podešena na 5. Nakon produvavanja azota u toku 5 min, u suspenziju je dodato 13 cm³ CuCl₂ koncentracije 0,2 mol/dm³ (zapreminski odnos suspenzija/rastvor CuCl₂ ~ 3:1) i mešanje u struji azota je nastavljeno još 30 min. Suspenzija je ostavljena da odstoji 24 sata, nakon čega je čvrsta faza odvojena centrifugiranjem i ispirana apsolutnim etanolom 4 puta. Dobijen je braonkasti talog koji je sušen u vakuum sušnici na 60°C tokom 12 sati (uzorak Cu-TiO₂).

Trokomponentni fotokatalizator Cu-TiO₂-CdS je sintetisan deponovanjem CdS na Cu-TiO₂, na isti način kao u slučaju TiO₂ (prah tamno žute boje).

Za karakterizaciju sintetisanih fotokatalizatora korišćene su sledeće tehnike i metode:

- Infracrvena spektroskopija sa Furijeovom transformacijom (FTIR) na Thermo Scientific Nicolet iS10 uređaju, u režimu totalne refleksije.
- DRS spektroskopija na Shimadzu 2600 UV-Vis spektrofotometru sa ISR-2600-Plus integrisanom sferom i BaSO4 kao referentnim standardom. Kubelka-Munk transformacija je korišćena za dobijanje apsorpcionog spektra na osnovu podataka o reflektansi (R). Iz zavisnosti Kubelka-Munkove funkcije F(R) od talasne dužine određene su granice apsorpcije λg iz preseka tangente na linearni deo zavisnosti sa abscisom [15].
- Skenirajuća elektronska mikroskopija sa emisijom polja (FESEM), na Tescan Mira3 XMU, na 20 kV.
- Energetska disperziona spektroskopija (EDS) na SEM mikroskopu Jeol JSM 5800 sa SiLi X-Ray detektorom Oxford Link (Isis series 300, UK).
- Adsorpcija azota na temperaturi tečnog azota (BET metoda) za određivanje specifične površine (SBET), zapremine mezopora (Vmeso), zapremine mikropora (V_{micro}) i raspodele veličine pora.

Fotokatalitička redukcija Cr(VI) je ispitivana korišćenjem rastvora Cr(VI) koncentracije 10 mg/dm³ koji je pripremljen rastvaranjem K₂Cr₂O₇ u destilovanoj vodi, pri pH = 3. Eksperimenti su izvođeni dispergovanjem 0,01 g fotokatalizatora u 40 cm³ rastvora Cr(VI), sa ili bez dodatka 0,133 cm³ limunske kiseline, koncentracije 20 g/dm³. Fotokatalitička redukcija je izvođena u reaktoru sa vodenim plaštom, a disperzija je ozračivana lampom (Philips, 125 W), uz filter (GG400 Farbglass SCHOTT) koji je propuštao samo zračenje talasnih dužina > 400 nm (simulirana vidljiva svetlost).

Rastojanje lampe od reaktora je u svim slučajevima bilo isto, a zračenje istog intenziteta. Disperzija je mešana na magnetnoj mešalici sve vreme tokom ozračivanja. Pre početka zračenja prvo je praćena koncentracija Cr(VI) u disperziji fotokatalizatora u mraku, kako bi se odredilo vreme za koje se uspostavi adsorpciono-desorpciona ravnoteža. Nakon toga, interval zračenja je bio 15 min, i za svako merenje je uziman 1 cm³ suspenzije koji je profiltriran. Koncentracija Cr(VI) je određivana na UV-Vis spektrofotometru (Shimadzu UV-1800), očitavanjem apsorbance na 542 nm, pri čemu je kao bojitelj korišćen 1,5 difenil karbazid.

3. REZULTATI I DISKUSIJA

U tabeli 1 su prikazani maseni procenti (*w*) pojedinih elemenata u sintetisanim fotokatalizatorima. EDS semikvantitativna analiza je potvrdila prisustvo očekivanih elemenata u fotokatalizatorima, ali i nekih elemenata u malom procentu (nije prikazano u tabeli 1) koji potiču iz hemikalija/materija korišćenih za sintezu. Na primer, hlor (0,27 mas. %) u Cu-TiO₂ verovatno potiče iz CuCl₂, a fosfor (0,20 mas. %) iz ELH.

Teorijski sadržaj CdS u uzorku CdS-TiO₂ je mnogo veći (~ 42 mas. %) od ostvarenog (mas. % Cd + mas. % S = 2,96), što ukazuje na nepotpunu razgradnju uree pri datoj temperaturi sinteze. Ipak, postignut je približno stehiometrijski odnos 1:1, s obzirom da je atomski odnos Cd i S u ovom uzorku 1,27, odnosno nisu nastale značajnije količine Cd(OH)₂, što se dešava kada se primenjuje postupak razgradnje uree u baznim uslovima [16]. Svetlo žuta boja ovog uzorka takođe ukazuje na mali sadržaj CdS.

Tabela 1. Sastavi (mas.%) TiO₂ i kompozitnih fotokatalizatora određeni EDS metodom

Uzorak	TiO ₂	CdS-TiO ₂	Cu-TiO ₂	Cu-TiO2- CdS
w(Ti)	46,88 ± 1,36	48,51 ± 4,54	38,76 ± 5,44	31,86 ± 3,84
w(O)	53,11 ± 1,36	48,46 ± 4,57	59,52 ± 5,51	61,55 ± 4,38
w(Cd)	-	2,42 ± 0,23	-	3,51 ± 0,24
w(S)	-	0,54 ± 0,061	-	2,99 ± 0,36
w(Cu)	-	-	1,14 ± 0,30	$0,10 \\ \pm 0,046$

I u Cu-TiO₂ sadržaj Cu je mnogo manji od teorijskog (~ 25 mas. %). Moguće je da količina čvrste faze ELH nije bila dovoljna za potpunu redukciju prisutnih Cu²⁺ jona, ali i da nije ostvaren dovoljno čvrst kontakt između nanočestica Cu i TiO2 tako da su ispiranjem uklonjene. Poznato je da ekstrakti lišća sadrže polifenole kao redukciona sredstva, ali i druge komponete koje mogu da se adsorbuju na sintetisane čestice i na taj način ih stabilizuju [14]. Uslovi deponovanja čestica Cu (koncentracija rastvora CuCl₂ i zapreminski odnos ELH/rastvor CuCl₂) izabrani su na osnovu prethodne optimizacije sinteze nanočestica gvožđa [17]. Moguće je da su usled adsorpcije komponenata ekstrakta nastale čestice veoma stabilne u vodenoj sredini, koje se zbog toga nisu deponovale na površinu TiO2. Ipak, količina Cu je na nivou prethodnih istraživanja [11, 18]. Dodatno, iako nizak, ovaj sadržaj Cu je doprineo da boja uzorka bude braonkasta, mada boja uzorka može biti rezultat i adsorpcije komponenti ekstrakta.

Činjenica da je sadržaj Cu u Cu-TiO₂-CdS još niži (0,10 mas. %) govori u prilog pretpostavci da se ostvaruje nedovoljno čvrsta veza između nanočestica i površine TiO₂. Verovatno je da se tokom deponovanja CdS na Cu-TiO₂ deo nanočestica bakra "otkačio" sa površine uzorka. U poređenju sa CdS-TiO₂, prisutan je nešto veći sadržaj Cd, ali i značajno veći sadržaj S tako da je atomski odnos Cd:S = 0,33. Moguće je da su tokom sinteze trojnog fotokatalizatora prisutne komponente ELH potpomogle adsorpciju tiouree, što je rezultovalo u većem sadržaju sumpora u ovom uzorku. Ipak, bez obzira na mali sadržaj Cu, boja Cu-TiO₂-CdS je slična boji Cu-TiO₂, tako da je očito značajan uticaj adsorbovanih komponenti ELH na boju uzoraka.

Da bi se potvrdile navedene pretpostavke o prisustvu komponenti ELH u uzorcima sa Cu, kao i da bi se utvrdile prisutne hemijske veze u uzorcima, korišćena je FTIR metoda (slika 1). U FTIR spektrima svih uzoraka uočava se široka traka od 3000 do 3600 cm⁻¹ koja potiče od istežućih vibracija O-H grupa iz molekula vode adsorbovanih na površini TiO₂ [19]. Kod svih uzoraka se javlja i traka na ~1630 cm⁻¹ usled savijajućih vibracija O-H veza molekula vode. S obzirom da su u pitanju uzorci na bazi TiO₂, u svim spektrima su prisutne trake od 500 do 1000 cm⁻¹ koje potiču od Ti-O i Ti-O-Ti veza u kristalnoj rešetki TiO₂ [19].

Slika 1 - FTIR spektri fotokatalizatora

Na FTIR spektrima uzoraka koji su dobijeni modifikovanjem TiO₂ sa CdS i/ili Cu uočavaju se i trake koje potiču od primesa. U sintezi uzoraka sa CdS je korišćen Cd(CH₃CO₂)₂, tako da traka na 1400 cm⁻¹ verovatno potiče od simetričnih i asimetričnih istezanja veza u acetatanim jonima koji su ostali adsorbovani [19]. Kod Cu-TiO₂ naročito se uočava prisustvo traka u oblasti od 1000 do 1800 cm⁻¹, koje ukazuju na prisustvo komponenti ELH: 1030 cm⁻¹ - usled C-N istežućih vibracija alifatičnih amina ili C-O-C veza; 1210 cm⁻¹ - usled vibracija -C-O-H veza polisaharida, 1340 cm⁻¹ - usled istežućih vibracija aromatičnih amina, 1620 cm⁻¹ - usled C=C istežućih vibracija aromatičnih prstenova i 1720 cm⁻¹ - usled vibracija C=O veza. Pretpostavka da je u uzorku Cu-TiO₂-CdS prisutna tiourea ne može se potvrditi na osnovu karakteristične trake za istežuće vibracije C=S veze (na 740 cm⁻¹), jer se preklapa sa trakom za Ti-O i Ti-O-Ti veze. Međutim, za razliku od spektara ostalih uzoraka, traka u oblasti 3000 do 3600 cm⁻¹ u spektru ovog uzorka ima dva pika, pa se može pretpostaviti da pik na oko 3200 cm⁻¹ odgovara istežućim vibracijama N-H veza tiouree.

U tabeli 2 su prikazani rezultati određivanja S_{BET} , V_{meso} , V_{micro} , ukupne zapremine pora (V_{uk}), srednje veličine mezopora (D_{sr}) i prečnika najzastupljenijih pora (D_{max}). Adsorpciono-desorpcione izoterme (nisu prikazane) svih uzoraka su tipa IV, što ukazuje na kapilarnu kondenzaciju usled dominantnog prisustva mezopora, dok histerezis tipa H1 po IUPAC-ovoj klasifikaciji [20] ukazuje da su pore približno uniformne veličine i pravilnog oblika.

Tabela 2. Teksturalne karakteristike fotokatalizatora

Uzorak	TiO ₂	CdS- TiO ₂	Cu- TiO ₂	Cu-TiO ₂ - CdS
$S_{\rm BET} [m^2/g]$	55,5	58,8	54,3	19,6
$V_{\rm uk} [{\rm cm}^3/{\rm g}]$	0,172	0,208	0,113	0,059
V _{meso} [cm ³ /g]	0,173	0,207	0,107	0,058
V _{micro} [cm ³ /g]	0,0154	0,0166	0,019	0,0068
D _{sr} [nm]	8,67	10,1	7,29	8,74
D _{max} [nm]	8,47	8,68	6,50	6,35

S obzirom na mali sadržaj deponovanog CdS u CdS-TiO₂ (tabela 1), teksturalne karakteristike ovog uzorka i TiO₂ su slične (tabela 2), pri čemu su S_{BET} i zapremine pora nešto veće u slučaju CdS-TiO₂, što je verovatno posledica nanošenja CdS u obliku finih aglomerata na TiO₂. Dodatno, uočava se da je $D_{\text{sr}}>D_{\text{max}}$, dok su ove dve vrednosti približno iste kod čistog TiO₂. Ovo može da ukaže da su se tokom deponovanja CdS obrazovale krupnije pore u odnosu na one u TiO₂.

Sličan histerezis je prisutan i kod Cu-TiO₂, s tim što se javlja na nižim relativnim pritiscima ukazujući na zastupljenost manjih mezopora, što je i potvrđeno manjim vrednostima za D_{max} i D_{sr} u odnosu na prethodne uzorke. Na osnovu rezultata u tabeli 2, vidi se da je V_{meso} smanjena, a V_{micro} uvećana, što može da ukaže na to da su se čestice Cu deponovale unutar mezopora, verovatno u obliku finih aglomerata, u okviru kojih su nastale mikropore. Samim tim, bez obzira na smanjenje V_{meso} , S_{BET} je ostala skoro ista kao i kod TiO₂. Za razliku od prethodnih kompozitnih fotokatalizatora, kod Cu-TiO₂-CdS je značajno smanjena S_{BET} usled značajnog smanjenja V_{meso} i V_{micro} . Uzevši u obzir povećan sadržaj sumpora koji je utvrđen EDS metodom (tabela 1), može se pretpostaviti da se tiourea adsorbovala na unutrašnjoj površini mikro i mezopora, što je dovelo do smanjenja veličine, a samim tim i zapremine pora.

SEM analizom je utvrđeno da TiO₂ sadrži fine sferične čestice, manje od 50 nm, koje su aglomerisane tako da obrazuju veće klastere nepravilnog oblika (slika 2a). Nije uočena značajna razlika morfoloških karakteristika kompozitnih fotokatalizatora u odnosu na TiO₂, verovatno zbog male količine nanetog CdS (slika 2b). Ipak, pošto je pokazano da CdS-TiO₂ ima nešto veću S_{BET} u odnosu na TiO₂, smatra se da je CdS deponovan na površinu u obliku finih aglomerata koji se ne uočavaju jasno zbog male količine ili zbog toga što su čestice približno iste morfologije i veličine kao i čestice TiO₂. U slučaju uzorka Cu-TiO₂ i Cu-TiO₂-CdS, iako su značajno smanjeni S_{BET} , V_{meso} i V_{micro} , na SEM mikrografijama te promene nisu mogle biti uočene.

Slika 2 - SEM mikrografije uzoraka (a) TiO₂ (b) CdS-TiO₂

Određivanjem UV-Vis difuziono-refleksionih spektara, na osnovu zavisnosti F(R) od talasne dužine zračenja (slika 3) utvrđene su granice apsorpcije λ_g , na osnovu kojih su određene vrednosti energija zabranjene zone (E_g) pomoću jednačine $E_g = 1240/\lambda_g$ [15]. Kao što je prikazano na slici 3, granica apsorpcije za čist TiO₂ je na 374 nm, a vrednost E_g iznosi 3,32 eV, što je nešto veće od teorijske vrednosti za anatas [15]. Ovi rezultati pokazuju da TiO₂ može da se aktivira samo dejstvom UV zračenja. Na DRS spektru CdS-TiO₂ (slika 3) uočavaju se dve granice apsorpcije: na 382 nm, što odgovara granici apsorpcije TiO₂, koja je malo pomerena ka većim talasnim dužinama u odnosu na čist TiO₂, i na ~500 nm, što odgovara granici apsorpcije CdS. Postojanje dve granice apsorpcije ukazuje na obrazovanje heterospoja između TiO2 i CdS [3]. Ovi rezultati ukazuju da bez obzira što je količina deponovanog CdS mala (~ 3 mas.%), ipak je dovoljna da kompozitni fotokatalizator može da apsorbuje vidljivo zračenje, što bi trebalo da doprinese fotoaktivnosti CdS-TiO₂ pod dejstvom vidljivog zračenja.

U slučaju Cu-TiO₂ takođe može da se uoči tzv. crveni pomeraj praga apsorpcije u odnosu na TiO₂ (slika 3), što može da se objasni teorijom Murakami i saradnici, a to je da joni metala koji su adsorbovani na površini TiO₂ mogu da apsorbuju zračenje od oko 470 nm, pri čemu dolazi do nastajanja Ti³⁺ vrsta u TiO₂ [21]. Na dobijenom DRS spektru se ne uočava deo koji ukazuje na postojanje LSPR efekta Cu čestica, možda zbog toga što ih je jako malo ili zbog toga što je Cu prisutan u obliku jona, a ne kao elementarni. Nasuprot tome, Aguilar i saradnici su TiO2 dopirali bakrom i takođe je došlo do sužavanja zabranjene zone, ali u ovom slučaju zahvaljujući prisustvu d orbitala bakra u zabranjenoj zoni TiO₂. Pokazano je da na taj način dobijeni modifikovani fotokatalizator može da apsorbuje vidljivo zračenje [22]. Dakle, na dobijenom apsorpcionom spektru se, pored malog pomeranja granice apsorpcije ka većim talasnim dužinama, uočava i značajna apsorpcija u vidljivom delu spektra. Može se pretpostaviti da je suženju zabranjene zone doprinelo dopiranje TiO₂ bakrom, dok je povećana apsorpcija u vidljivoj oblasti posledica adsorpcije jona ili deponovanja nanočestica Cu na površini TiO2.

Na DRS spektru Cu-TiO₂-CdS uočava se nešto značajnije pomeranje praga apsorpcije, na ~ 456 nm (slika 3), što odgovara energiji zabranjene zone od 2,72 eV. Iako su sadržaji CdS i Cu relativno mali, očigledno su dovoljni da doprinesu užoj zabranjenoj zoni nego u prethodnim slučajevima. Za razliku od DRS spektra CdS-TiO₂, ovde se ne uočava jasna granica apsorpcije za CdS, odnosno karakterističan "pad" na apsorpcionoj krivoj, ali postoji značajna apsorpcija u vidljivoj oblasti.

Slika 3 - Određivanje granice apsorpcije fotokatalizatora na osnovu zavisnosti F(R) od talasne dužine zračenja

Efikasnost sintetisanih fotokatalizatora za fotokatalitičku redukciju Cr(VI) je ispitivana pod dejstvom vidljivog zračenja, pri pH = 3, sa i bez limunske kiseline kao "hvatača" šupljina. U skladu sa očekivanim, s obzirom na širinu zabranjene zone, efikasnost TiO₂ je bila zanemarljiva (slika 4a).

Tokom uravnotežavanja u mraku, utvrđeno je da dolazi do smanjenja koncentracije Cr(VI) u rastvoru.

U slučaju TiO₂, ovo smanjenje je praktično zanemarljivo, što ukazuje na mali kapacitet adsorpcije TiO₂ za Cr(VI) anjone, dok je značajno veće za kompozitne fotokatalizatore (slika 4). Moguće je da kompozitni fotokatalizatori imaju veći kapacitet adsorpcije za Cr(VI), ali i da dolazi do hemijske redukcije Cr(VI) deponovanim česticama CdS i/ili Cu. Nakon uspostavljanja ravnoteže tokom 60 minuta, uzorak CdS-TiO₂ pokazuje veću, ali ne značajno veću, aktivnosti u odnosu na TiO₂, što je verovatno rezultat malog suženja zabranjene zone (slika 3) i malog sadržaja CdS (tabela 1).

Smanjenje koncentracije Cr(VI) u mraku u slučaju Cu-TiO₂ je verovatno posledica i redukcionog delovanja adsorbovanih komponenti ELH, čije je prisustvo utvrđeno FTIR analizom (slika 1). Iako je smanjenje koncentracije Cr(VI) u mraku značajno, uočava se još veće smanjenje koncentarcije pod dejstvom vidljivog zračenja. Za povećanje aktivnosti u vidljivom spektru moguće je da su zaslužni Cu²⁺ adsorbovani na površini, mada je moguće i da je došlo do dopiranja TiO₂ bakrom, uzevši u obzir suženje zabranjene zone (slika 3). Ipak, na osnovu dobijenog apsorpcionog spektra Cu-TiO₂ vidi se da uzorak apsorbuje vidljivo zračenje, tako da se rezultati fotokatalize najpre mogu objasniti prisustvom Cu čestica na površini TiO₂.

Kada se uporede rezultati dobijeni za Cu-TiO2-CdS u odnosu na CdS-TiO₂, gde je sadržaj CdS približno isti tj. nizak, uočava se znatno veća fotokatalitička efikasnost uzorka Cu-TiO₂-CdS (slika 4a). Prema DRS analizi, ovaj uzorak ima najveće suženje zabranjene zone tako da je to verovatno razlog najveće efikasnosti pod dejstvom vidljive svetlosti u poređenju sa ostalim uzorcima. Iako je sadržaj Cu mali u ovom uzorku, očigledno je dovoljan da doprinese povećanju aktivnosti. Vrlo je moguće da i te male količine čestica Cu omogućavaju obrazovanje tzv. z-šeme, gde čestice Cu imaju ulogu posrednika za prenos elektrona sa CdS na TiO₂. Očigledno je da drastično smanjena specifična površina kod ovog uzorka nije najbitniji parametar kada je u pitanju efikasnost fotokatalitičke redukcije Cr(VI).

S obzirom da je jedan od najvećih problema tokom fotokatalize izuzetno brza rekombinacija e⁻ i h⁺, dodatak "hvatača" šupljina omogućuje povećanje efikasnosti sprečavanjem reoksidacije nastalih Cr(III). Dodatak limunske kiseline kao "hvatača" šupljina (slika 5b) je doveo do značajnog povećanja efikasnosti svih kompozitnih fotokatalizatora, ali i TiO₂. Ova pojava je već primećena u prethodnim istraživanjima i može da se objasni činjenicom da se molekuli limunske kiseline adsorbuju na površini TiO₂, pri čemu se obrazuje kompleks koji doprinosi pomeranju praga apsorpcije u vidljivi deo spektra (eng. charge-transfer-complex mediated photocatalytic process) [23, 24]. Za obrazovanje kompleksa na površini TiO₂ smatra se da su odgovorne karboksilne grupe limunske kiseline, tako da obrazovani kompleksi mogu da se aktiviraju vidljivim zračenjem pri čemu se elektroni prenose na provodni nivo TiO₂ [24]. S obzirom da kompozitni fotokatalizatori nisu imali značajno povećanje efikasnosti u odnosu na čist TiO₂ u datim uslovima, verovatno je usled deponovanja CdS i Cu na površinu TiO₂ smanjena mogućnost za adsorpciju limunske kiseline i obrazovanje kompleksa na površini.

Slika 4 - Fotokatalitička redukcija Cr(VI) sintetisanim fotokatalizatorima bez (a) i sa limunskom kiselinom (b)

4. ZAKLJUČAK

U ovom radu TiO2 je modifikovan deponovanjem nanočestica CdS i/ili Cu tako da se obrazuje heterospoj i dobiju kompozitni fotokatalizatori koji mogu da se aktiviraju dejstvom vidljivog zračenja u procesu fotokatalitičke redukcije Cr(VI). Na osnovu dobijenih rezultata pokazano je da mala količina deponovanih nanočestica CdS i Cu na TiO2 značajno doprinosi pomeranju praga apsorpcije u vidljivu oblast, kao i da obrazovanje z-šeme između navedenih materijala obezbeđuje dodatno povećanje efikasnosti. Dobijeni rezultati predstavljaju odličnu osnovu za dalju optimizaciju sastava kompozitnih fotokatalizatora na bazi TiO2, CdS i Cu u cilju dobijanja efikasnih fotokatalizatora za redukciju šestovalentnog hroma.

5. ZAHVALNICA

Ovaj rad je finansiran od strane Ministarstva nauke, tehnološkog razvoja i inovacija Republike Srbije, kroz projekat E!13305 INSOLT-CHR i ugovore br. 451-03-65/2024-03/200135 i 451-03-65/2024-03/200287.

LITERATURA

- Lathe A, Palve M. A. A review: Engineered nanomaterials for photoreduction of Cr(VI) to Cr(III), *Journal of Hazardous Materials Advances*, Vol. 12, 100333, 2023.
- [2] Guo Q, Zhou C, Ma Z, Yang X. Fundamentals of TiO₂ Photocatalysis: Concepts, Mechanisms, and Challenges, *Advanced materials*, Vol. 31, No. 50, 1901997, 2019.

- [3] Yadav K. S, Jeevanandam P. Thermal decomposition approach for the synthesis of CdS–TiO₂ nanocomposites and their catalytic activity towards degradation of rhodamine B and reduction of Cr(VI), *Ceramics International*, Vol. 41, No. 2, Part A, pp. 2160-2179, 2015.
- [4] Liu J, Li Y, Ke J, Wang Z, Xiao H. Synergically Improving Light Harvesting and Charge Transportation of TiO₂ Nanobelts by Deposition of MoS₂ for Enhanced Photocatalytic Removal of Cr(VI), *Catalysts*, Vol. 7, No. 1, 30, 2017.
- [5] Bouziani A, Park J, Ozturk A. Synthesis of α-Fe₂O₃/TiO₂ heterogeneous composites by the sol-gel process and their photocatalytic activity, *Journal of Photochemistry and Photobiology A: Chemistry*, Vol. 400, 112718, 2020.
- [6] Jiang H, Li M, Liu J, Li X, Tian L, Chen P. Alkalifree synthesis of a novel heterostructured CeO₂-TiO₂ nanocomposite with high performance to reduce Cr(VI) under visible light, *Ceramics International*, Vol. 44, No. 3, pp. 2709-2717, 2018.
- [7] Jeon J, Kweon H. D, Jang JB, Ju J. M, Baek J. Enhancing the Photocatalytic Activity of TiO₂ *Catalysts*, Advanced sustainable systems, Vol. 4, No. 12, 2000197, 2020.
- [8] Ning X, Lu G. Photocorrosion inhibition of CdSbased catalysts for photocatalytic overall water splitting, *Nanoscale*, Vol. 12, No. 3, pp. 1213-1223, 2020.
- [9] Wang M, Cai L, Wang Y, Zhou F, Xu K, Tao X, Chai Y. Graphene-Draped Semiconductors for Enhanced Photocorrosion Resistance and Photocatalytic Properties, *Journal of the American Chemical Society*, Vol. 139, No. 11, pp. 4144–4151, 2017.
- [10]Zhao X, Zhang G, Zhang Z. TiO₂-based catalysts for photocatalytic reduction of aqueous oxyanions: State-of-the-art and future prospects, *Environment International*, Vol. 136, 105453, 2020.
- [11]Wu M, Duan T, Chen Y, Wen Q, Wang Y, Xin H. Surface modification of TiO₂ nanotube arrays with metal copper particle for high efficient photocatalytic reduction of Cr(VI), *Desalination and Water Treatment*, Vol. 57, No. 23, pp. 10790-10801, 2015.
- [12]Guan H, Zhou X, Wen W, Jin B, Li J, Zhang S. Efficient and Robust Cu/TiO₂ Nanorod Photocatalysts for Simultaneous Removal of Cr(VI) and Methylene Blue under Solar Light, *Journal of the Chinese Chemical Society*, Vol. 65, No. 6, pp. 706-713, 2018.
- [13]Petrović R, Tanasković N, Đokić V, Radovanović Ž, Janković-Častvan I, Stamenković I, Janaćković Đ. Influence of the gelation and calcination temperatures on physical parameters and photocatalytic activity of mesoporous titania powders synthesized by the nonhydrolytic sol–gel process, *Powder Technology*, Vol. 219, pp. 239-243, 2012.

- [14] Udayabhanu, Reddy LN, Shankar MV, Sharma SC, Nagaraju G. One-pot synthesis of Cu–TiO₂/CuO nanocomposite: Application to photocatalysis for enhanced H₂ production, dye degradation & detoxification of Cr (VI), *International Journal of Hydrogen Energy*, Vol. 45, pp. 7813-7828, 2020.
- [15]Qutub N, Singh P, Sabir S, Sagadevan S, Oh W. Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO₂ nanocomposite, *Scientific Reports*, Vol. 12, No. 5759, 2022.
- [16] Tak Y, Hong JS, Lee S. J, Yong K. Solution-Based Synthesis of a CdS Nanoparticle/ZnO Nanowire Heterostructure Array, *Crystal Growth & Design*, Vol. 9, No. 6, pp. 2627–2632, 2009.
- [17]Petrović R, Tehničko-tehnološki izveštaj o realizaciji projekta E!13305 INSOLT-CHR za period 01.11.2019. - 31.10. 2020, Tehnološko-metalurški fakultet, Beograd, 2020.
- [18] Yin R, Ling L, Xiang Y, Yang Y, Bokare DA, Shang C, Enhanced photocatalytic reduction of chromium (VI) by Cu-doped TiO₂ under UV-A irradiation, *Separation and Purification Technology*, Vol. 190, pp. 53-59, 2018.
- [19]Kaur A, Umar A, Anderson AW, Kansal KS. Facile synthesis of CdS/TiO₂ nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination, *Journal of Photochemistry and Photobiology A: Chemistry*, Vol. 360, pp. 34-43, 2018.
- [20]Lowell S, Shields JE, Thomas MA, Thoemmes M, Characterization of Porous Solids and Powders: Surface Area Pore Size and Density, Ed. Kluwer Academic Publishers, Dordrecht Netherlands, 2004.
- [21]Murakami N, Chiyoya T, Tsubota T, Ohno T. Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength, *Applied Catalysis A: General*, Vol. 348, No. 1, pp. 148-152, 2008.
- [22] Aguilar T, Navas J, Alcantara R, Fernandez-Lorenzo C, Gallardo JJ, Blanco G, Martín-Calleja J. A route for the synthesis of Cu-doped TiO₂ nanoparticles with a very low band gap, *Chemical Physics Letters*, Vol. 571, pp. 49-53, 2013.
- [23]Wang N, Zhu L, Deng K, She Y, Yu Y, Tang H. Visible light photocatalytic reduction of Cr(VI) on TiO₂ in situ modified with small molecular weight organic acids, *Applied Catalysis B: Environmental*, Vol 95, No. 3-4, pp. 400-407, 2010.
- [24]Djellabi R, Ghorab FM. Photoreduction of toxic chromium using TiO₂-immobilized under natural sunlight: effects of some hole scavengers and process parameters, *Desalination and Water Treatment*, Vol. 55, No. 7, pp. 1900-1907, 2015.

SUMMARY

SYNTHESIS OF PHOTOCATALYSTS FOR THE REDUCTION OF HEXAVALENT CHROMIUM BY MODIFICATION OF TIO₂ WITH NANOPARTICLES OF CU AND/OR CDS

In this work, TiO₂-based composite photocatalysts were synthesized for the photoreduction of Cr(VI) by deposition of CdS and/or Cu nanoparticles. Oak leaf extract was used as a reducing agent for the synthesis of Cu nanoparticles. Although the deposited amount of Cu was small (~ 1.1 wt%), it resulted in a shift of the absorption edge to the visible region and a significantly higher efficiency compared to TiO₂. Deposition of ~ 3 wt% CdS resulted also in a higher activity under the visible light compared to TiO₂, but lower compared to Cu-TiO₂. The best results were obtained with the ternary photocatalyst, probably due to the formation of a z-scheme in which the deposited Cu acts as a mediator for electron transfer between CdS and TiO₂. The addition of citric acid as a hole "scavenger" allowed a further increase in activity, even in the case of TiO₂.

Key Words: titanium dioxide; photocatalytic reduction; Cr(VI); visible irradiation