Uvod

Proces planiranja je osnovni element funkcije upravljanja resursima održavanja, a planovi održavanja su bitan element strukture sistema održavanja.

Da bi upravni organi radili valjane planove, pratili njihovu realizaciju i donosili odluke, potrebno je, pored ostalog, da poznaju i prate kapacitete radne snage za održavanje i mogućnosti njegovog iskorištenja.

Planski kapacitet u praksi često varira iz perioda u period u funkciji različitih promena i poremećaja u sistemu održavanja i njegovoj okolini [1]. Variiranje kapaciteta neposredno utiče, kako na planiranje, tako i na proces upravljanja održavanjem. Napor na objektivizaciju uticaja i stabilizaciji kapaciteta proizvodnih struktura predstavlja postupak od posebnog značaja u procesu upravljanja resursima sistema održavanja.

Baza podataka informacionog sistema održavanja (BP ISO) osnovna je pretpostavka realizacije tog postupka, a model za proračun kapaciteta radne snage jedan od segmenata njegovog ostvarenja.

Modaliteti kapaciteta

Kapacitet radne snage organizacije (OJ) za održavanje predstavlja količinu rada koji ona može dati u određenom vremenskom periodu.

Za svakog radnika — OJ može se utvrditi [2]:

- potencijalni kapacitet (K_p),
- bruto-kapacitet (K_b),
- neto (planski)-kapacitet (K_n).

Do podataka o kapacitetima radne snage OJ može se doći sumiranjem pojedinog modaliteta kapaciteta izračunatog za pojedinog radnika.

Potencijalni kapacitet predstavlja količinu rada koji radnik — OJ može maksimalno ostvariti u razmatranom vremenskom periodu.

Potencijalni kapacitet radnika (K_{pr})

$$K_{pr} = d \cdot s$$ \hspace{1cm} (1)

d — broj dana u planskom periodu
s — broj radnih časova u danu.

Potencijalni kapacitet OJ (K_p)

$$K_p = \sum_{i=1}^{n} K_{pri}$$ \hspace{1cm} (2)

n — planirani broj radnika.

Bruto-kapacitet predstavlja količinu rada koji radnik — OJ može
ostvariti kad se broj dana u planskom periodu umanji za broj neradnih dana (subote, nedelje, praznici) i broj dana godišnjeg odmora.

Bruto-kapacitet radnika \((K_{br}) \)
\[
K_{br} = d_r \cdot s_r \quad (3)
\]
\[
d_r = d - d_n \quad (4)
\]

\(d_r \) — broj radnih dana u planskom periodu,
\(d_n \) — broj neradnih dana u planskom periodu.

Bruto-kapacitet OJ \((K_b) \)
\[
K_b = \sum_{i=1}^{n} K_{br_i} \quad (5)
\]

Neto (planski) — kapacitet predstavlja količinu rada koju radnik — OJ može ostvariti u realnim uslovima rada u zadanom planskom periodu.

Neto-kapacitet radnika \((K_{nr}) \)
\[
K_{nr} = d_r \cdot s_e \cdot \eta \quad (6)
\]

\(s_e \) — broj efektivnih radnih časova u danu,
\(\eta \) — stepen iskorišćenja kapaciteta.

Neto-kapacitet OJ \((K_n) \)
\[
K_n = \sum_{i=1}^{n} K_{nr_i} \quad (7)
\]

Forma izražavanja kapaciteta

S obzirom na to da se raspoloživi kapacitet radne snage najčešće utvrđuje radi planiranja održavanja, pogodno je da se period utvrđivanja raspoloživog kapaciteta poklapa sa planskim periodom (period za koji se utvrđuje zahtevani kapacitet za održavanje). Takođe je pogodno da forma iskazivanja imajućeg i zahtevanog kapaciteta bude identična, jer to pojednostavljuje nijehovu komparativnu analizu.

Za operativno (mesečno) planiranje dovoljno je zahtevani i imajući kapacitet izraziti po kvalifikacijama radne snage u okviru specijalnosti (sl. 1). Za periode duže od jednog kalendarског meseca potrebno je kapacitet proizvodnih radnika proračunavati po mesecima, a u okviru jednog meseca po kvalifikacijama i specijalnostima.

Tako razvrstani kapaciteti bitna su pretpostavka valjanog planiranja, jer je većina specijalnosti radne snage za održavanje međusobno nezamenljiva,

\[Sl. 1 \] Schematic prikaz kapaciteta radne snage po specijalnostima

Opis modela za proračun kapaciteta radne snage

Podaci potrebni za proračun kapaciteta koriste se iz odgovarajućih datoteka BP ISO [3].

Ulanzi podaci u model:
— interval proračuna zadat u datumskom obliku \((d_i; d_j) \),
— jedinstveni matični broj građana (JMBG);
— period prisustva radnika u procesu održavanja \((d_i; d_j) \);
— dnevna satnica radnika \((s) \);
— stepen iskorišćenja kapaciteta radnika \((\eta) \).

Sistemski dijagram toka modela za proračun kapaciteta prikazan je na slici 2 i sastoji se u sledećem:

1. Proračun kapaciteta izvodi se za period koji može biti proizvoljan, a određuje se preko datuma \(d_i \) i \(d_j \), pri čemu je \(d_i \) početak, a \(d_j \) kraj vremenskog intervala \(d_L \).

\[
d_L = d_j - d_i \quad (8)
\]

Za periodu duže od jednog kalendarског meseca kapacitete se računaju po mesecima.
2. Kapaciteti se računaju za svakog radnika o kojem postoje podaci u datotekama RADNIK I PERRAD. U dotocići RADNIK sadržani su osnovni podaci o svakom radniku do kojih se dolazi po sredstvom jedinstvenog matičnog broja građana (JMBG). Datoteka PERRAD sadrži podatke o prisutnosti radnika u procesu održavanja. Preko datuma d3 i d4 definisan je početak perioda prisutnosti i odsutnosti radnika, respektivno. Preko datuma d5 i d6 definisana je odsutnost radnika po svim osnovama: gođnje odmor, bolovanje, službeni put, itd. Period za koji se define odsutnost radnika mora biti jednak ili duži od perioda za koji se računaju kapaciteti. Ključno polje datoteke PERRAD je jedinstveni matični broj građana.

3. Preko šifre specijalnosti (SIF_SPEC) iz datoteka RADNIK u datoteci SPECIJAL identifikuje se naziv specijalnosti za razmatranog radnika. Šifra specijalnosti je ujedno i ključno polje datoteke SPECIJAL.

Podatak o dnevnoj satnici (s) sadržan je u polju DNE_SATN, a podatak o stepenu iskorištenja kapaciteta (η) u polju STEP_ISK u datoteci RADNIK.

4. Kapaciteti se računaju za radnike koji su u zadanom periodu prisutni u procesu održavanja, što se ustanavljava komparativnom analizom perioda dL i d.

\[d = d_k - d_n \] \hspace{1cm} (9)

\(d_n \) — početak perioda prisustva radnika u intervalu \(d_L \),
\(d_k \) — kraj perioda prisustva radnika u intervalu \(d_L \).

U zavisnosti od odnosa perioda \(d_L \) i d varijable \(d_n \) i \(d_k \) prema [4] mogu primiti sledeće vrednosti (sl. 3):

a) \(d_n = d_3; d_k = d_4 \) \hspace{1cm} (10)

b) \(d_n = d_5; d_k = d_3 \) \hspace{1cm} (11)

c) \(d_n = d_6; d_k = d_3 \) \hspace{1cm} (12)

d) \(d_n = d_1; d_k = d_2 \) \hspace{1cm} (13)

Po utvrđivanju broja dana prisutnosti razmatranog radnika u procesu održavanja (d), po formuli (4) računa se broj radnih dana prisutnosti radnika.

Sl. 2 Sistemski dijagram toka modela za pro-račun kapaciteta radne snage

5. Množenjem broja dana prisutnosti radnika (d) sa brojem radnih časova u danu (s) prema (1) računa se potencijalni kapacitet, a proizvod broja radnih dana (d_5) i radnih časova prema (3) daje brutokapacitet radnika.
Ummnoškom broja radnih dana, dnevne satnice i stepena iskorišćenja kapaciteta prema (6) računa se neto (plan-ski)-kapacitet. Vrednost planskog kapaciteta može se dobiti množenjem bruto-kapaciteta sa stepenom iskorišćenja.

Zaključak

Kapaciteti radne snage osnovni su element sistema održavanja, a njihovo poznavanje i praćenje pretpostavlja su nalazašnja optimalnih mogućnosti za izvođenje propisanih i potrebnih radova održavanja u realnom vremenu.

Opisani model na svom izlazu daje podatke o imajućim kapacitetima po specijalnostima radne snage razmatrane organizacione jedinice koji, u osnovi, omogućuju:
- adekvatno upravljanje resursima održavanja;
- izradu realnih planova angažovanja imajućeg kapaciteta;
- analizu odnosa zahtevanog i imajućeg kapaciteta;
- uravnoteženje opterećenja kapaciteta zahtevima za održavanje, itd.

Model je orijentisan za automatizovan postupak proračuna kapaciteta implementacijom na personalnom računaru. Podaci potrebni za proračun koriste se iz odgovarajućih datoteka baze podataka informacionog sistema održavanja.

Spisak literature: