SISTEM ZA AUTOMATIZOVANO PRIKUPLJANJE PODATAKA VAZDUŠNOG OSMATRANJA

Opisan je sistem za automatizovano prikupljanje podataka vazdušnog osmatranja koji se koristi za odbranu od napada iz vazduha. Osnovne pretpostavke uspešne odbrane od napada iz vazduha su pravovremene i tačne informacije o položaju i kursu leta objekta koji vrši napad. Ispunjenje ova dva uslova moguće je samo ako se koristi više različitih izvora informacija (pasivni i aktivni senzori), automatizovano prikupljanje i obrada podataka i distribucija rezultata.

Uvod

Razvoj vojne nauke u svetu sve više stavlja u prvi plan ratna dejstva u vazdušnom prostoru, jer to omogućavaju savremena ratna sredstva i sistemi naoružanja. Ovakva koncepcija naročito to dolazi do izražaja u ograničenim ratovima i u zadnje vreme izraženim vojnim intervencijama. Međunarodna zajednica, tehnički superiornija, pokušava ostvariti svoje ciljeve često uz izgovor da rešava konfliktne situacije među drugim državama. Pri tome teži da iznenadnim i silovitim napadima iz vazduha nanese poraz drugoj stratni, bez upotrebe kopnenih snaga. Iako se svetskaja javnost učešće da se napadaju samo vojni ciljevi, iskustva iz dosadašnjih vojnih intervencija pod okriljem Ujedinjenih nacija pokazuju da u takvim borenim dejstvima iz vazduha najviše stradaju civilni i civilni objekti. Svetske sile imaju razrađenu strategiju i koncepciju napada iz vazduha, kao i prioritet ciljeva na zemlji koji se pokušavaju uništiti.

Iako su zapadne sile tehnički supe riorne i dobro opremljene, postoje realne šanse da se izvodi odbrana od napada iz vazduha kojom se štite objekti i stanovništvo i nanose neprijatelju gubićim u tehnici. Odbrana od napada iz vazduha mora biti dobro organizovana (poželjno je da bude tehnički što bolje opremljena) i, prije svega, pravovreme na. U napadu iz vazduha neprijatelj će pokušati da maksimalno koristi iznadenje i elektronski rat (ometanje i zavaravanje PA sredstvima (fizičko uništenje radara i ostalih PA sredstava). Za uspješnu odbranu od napada iz vazduha neophodno je pravovremeno uočavanje neprijateljskog objekta koji izvodi napad.

Opis sistema za automatizovano prikupljanje podataka vazdušnog osmatranja (SAPPVO)

Sistem za automatizovano prikupljanje podataka vazdušnog osmatranja prikazan je skicom na slici 1.

Uzeto je osam različitih i, za naše prilike, karakterističnih izvora: 2 rada ra različitog tipa, 3 vizualne osmatračke stanice (VOST), 2 susedna informativna centra koji u svom sastavu imaju radare velikog dometa i susedni centar SAPPVO. Sva nabrojana sredstva su potpuno mobilna, jer su ugrađena na odgovarajuća vozila, opremljena sredstvima veze i prenosa podataka (modemi, radio-uređaji, itd.).

Ovaj sistem je namjenjen:
— da automatizovanim načinom prikupi informacije od više izvora o stanju u vazdušnom prostoru;
da te informacije prikaže u odgоварajućem obliku;
da na osnovu njih prikaže sintetizovanu sliku situacije u vazduhu;
da omogući komandiru da izvrši izbor cilja i dodeli ga vatrenoj jedinici, i
da izvrši automatizovani prenos podataka o cilju na vatrenu jedinicu koja bi ga na osnovu toga zahvatila, pratila i uništila.

Sistem omogućava istovremeni automatizovani prijem podataka od više neunificiranih izvora (maksimalno do 8). Pod pojmom neunificiranih izvora podrazumevaju se različiti izvori koji mogu da uče cilj u vazduhu, kao što su radari različitih vrsta, zatim visueltne osmatračke stanice ili drugi pasivni ili aktivni senzori, a razlikuju se, pored ostalog, po tipu poruke i brzini prenosa podataka. Informacije o odabranom cilju prenose se na vatrenu jedinicu koje mogu biti opremljene različitim vrstama naoružanja.

Senzori

Uprošćena blok-szema sistema sa 8 izvora informacija prikazana je na slici 2.

Prednost upotrebe 8 izvora informacija vidi se iz sledećeg opisa: radar može otkriti objekat u vazdušnom prostoru ako se taj objekat nađe u snopu energije koju zrači radarska antena i ako je efektivna radarska refleksna površina objekta takve veličine da količina reflektovane energije bude iznad praga osetljivosti radarskog prijemnika.

Na slici 3 prikazana je idealizirana tipična karakteristika radarske antene u vertikalnoj ravni.

Sa slike se može videti da se cilj može otkriti samo ako se nalazi u šarfranom delu. Vidi se, takođe, da se ugaao u vertikalnoj ravni u odnosu na horizontalnu sastoji od tri ugla \(\beta_1, \beta_2, \beta_3 \). Avioni koji lete suviše nisko, tako da se iz tačke \(\theta \) vide pod uglom manjim od \(\beta_1 \), ostaju nevidljivi za radar bez obzira na daljinu. Isti slučaj je i za avion koji leti tako da se vidi iz tačke \(\theta \) pod uglom većim od \(\beta_2 \). Zbog toga se može reći da radar ima mogućnost otkrivanja ciljeva u određenom opsegu visina i na određenoj daljinii. Prostor u kome radar može otkriti cilj dobije se kada se šarfrana površina zarošta za ugaao od 360\(^\circ\) oko vertikalne ose. Pri konstrukciji radara pokušava se dobiti karakteristika koja bi zadovoljila sve oprećne uslove, što se, naravno, završava kompromisom. Tako, obično, imamo slučaj da radari većeg dometa imaju slabe mogućnosti otkrivanja niskih ciljeva, ali imaju visok plafon otkrivanja (mogu da otkriju avion na velikim visinama), dok radari malog dometa imaju dobre mogućnosti otkrivanja ciljeva na malim visinama, ali i mali plafon.

Na slici 4 prikazana je nekakva rezultujuća karakteristika sistema. Slika se vidi da se potrebom ovakvog sistema povećava verovatnoća uočavanja cilja na malim visinama, što i jeste glavna svrha ovakvog sistema, jer se napred klasičnim sredstvima (kakav se najčešće očekuje i izvodi) izvodi sa malih visina. Na slikama 3 i 4 prikazane su mogućnosti detekcije ciljeva koje proističu iz konstruktivnih osobina radara, dok zakrivljenost Zemljine površine i reljef, koji imaju negativan uticaj na mogućnost otkrivanja ciljeva na malim visinama, nisu posebno isticani.

Pored ovih negativnih uticaja, neprijatelj će sigurno, u slučaju napada, koristiti i aktivna dejstva, da onemogući otkrivanje svoga prisustva ili da bar smanji verovatnoću otkrivanja.

Bez detaljnije analize može se reći da je SAPVO optorniji na elektronska dejstva. Radari su različitog tipa i rade na različitim frekvencijama (čak
i u različitim frekventnim područjima) i imaju različite otpornosti na ometanje. Ukoliko bi neprijatelj i uspeo da ometa sve radare u isto vreme, što je teško, ostaju VOST-ovi koji se ne mogu ometati elektronskim sredstvima, jer su pasivni senzori, a, uz to, takvim ometanjem neprijatelj bi otkrio svoje prisustvo, pa i položaj.

Veći broj senzora koncentrisanih na nekom prostoru povećava verovatnoću otkrivanja ciljeva i smanjuje mogućnost ometanja ukoliko se izvrši sinteza informacija.
Centar SAPPVO

Informacije o situaciji u vazduhu iznad osmatrate teritorije, prikupljene na mestima senzora, prenose se u centar sistema za automatizovano prikupljanje podataka vazdušnog osmatranja (CSAPPVO), koji se nalazi u kliniji montiranoj na vozilu. U klinini se na-

laže sredstva za vezu, prijem i prenos podataka, računar za obradu podataka, izvori napajanja i ostala oprema.

Računar u CSAPPVO-u, šematski prikazan na slici 5, jeste standardni personalni IBM kompatibilan računar (386 sa kolor monitorom, tastaturom, mišem i ostalom opremom), proširen posebno projektovanim interfejsom sa

Sl. 5

Sl. 6
modemima, kontrolerom i memorijom sa dvostrukim pristupom.

Ovaj interfejs služi za:
— prijem podataka od izvora informacija;
— prepoznavanje tipa poruke;
— proveru ispravnosti poruke;
— raspakivanje poruke;
— komunikaciju sa personalnim računarom, i
— prenos obrađenih podataka za odabrane ciljeve na vatrene jedinice.

Blok-šema interfejsa prikazana je na slici 6.

Projektovani interfejs podržava sve asinhrone i sinhrono modove prenosa, kao i većinu standardnih komunikacijskih protokola, kao što su npr. HDLC, SDLC, itd. Svaki ulazni i izlazni kanal opremljen je FSK modemom kompatibilnim na CCITT V21 i V23, te BELL 202 i 212 standardima.

Svi parametri se mogu programirati eksternalno, preko tastature personalnog računara. Fizičko rešenje interfejsa je u obliku standardnog modula koji se ugrađuje u slot personalnog računara. U slučaju potrebe mogu se ugraditi dva ovakva modula, čime se kapacitet povećava na 16 kanala.

Personalni računar prikazuje primljene informacije na kolor monitoru u panoramskom obliku i to za svaki izvor posebno. Za svaki izvor prikazuje se oznaka pozicije cilja, pridruženi broj cilja i ostali podaci, zavisno od toga što senzor dostavlja (kurs, brzina ili vektor brzine, itd.). Pripadnost informacije određenom senzoru na ekranu se manifestuje preko boje i oblika simbola za oznaku pozicije (za svaki senzor simbol druge boje i oblika).

Na ekranu se ne prikazuje primarna, već samo sekundarna slika. Pored ciljeva na ekranu monitora može se prikazati raspored i vrsta vatrenih jedinica kojim se komanduje iz centra. Informacije o položaju i vrsti vatrenih jedinica prikazuju se na monitoru na zahtev operatora, i mogu se isključiti.

Isti je slučaj i sa senzorima, tako da se na ekranu mogu prikazivati informacije od svih senzora.

Komunikacija između računara i operatora odvija se putem miša, preko tzv. »pull down« ili »pop up« menija ili preko tastature. Deo ekran u rezervisan je za prikaz alfanumeričkih informacija o ciljevima. Na osnovu prikupljenih informacija od senzora vrši se sinteza informacija i generisanje integralne jedinstvene slike u vazdušnom prostoru iznad osmatrane teritorije. To se radi uzimajući u obzir statističke parametre svakog senzora, tako da je generisana slika, sa maksimalnom verovalnošću, slična stvarnoj situaciji u vazduhu. Iako je ova funkcija realizovana potpuno automatski, operator ima mogućnost da unese korekcije ili da je potpuno preuzme.

Softver sistem

U hardverskom smislu, SAPPVO predstavlja distribuirani sistem, pa je logično da će takav biti i softver sistema.

Već smo u opisu centra rekli da on sadrži jedan standardni personalni računar sa dodatnim interfejsom za prijem i prenos podataka. Za interfejs je razvijen namenski softver koji realizuje tražene funkcije, i čiji je dijagram toka prikazan na slici 7.

Po uklošenju računara, kontroler na ploči interfejsa komunicira sa personalnim računarom radi postavljanja početnih parametara. Tom prilikom za svaki prijemni i predajni kanal (od 1 do 16) definiše se tip poruke, sinhrogrupa, brzina prenosa i, eventualno, neki drugi parametri. Po dobijanju ovih parametara kontroler, svakom ulaznom i izlaznom kanalu, pridružuje odgovarajuću oblast memorije, konfigurisanu kao tzv. FIFO stack. Time je završena inicijalizacija kanala. Kako se prijem i predaja podataka odvija preko prekida, to su aktivnosti u kanalima na dijagramu toka prikazane paralelno.
Sl. 7
Opisâćemo samo aktivnosti u jednom prijemnom i jednom predajnom kanalu. U prijemnom kanalu nema, praktično, nikakve aktivnosti, dok se ne detektuje sinhrogrupa, koja označava da su počeli stizati podaci. Podaci se primaju i čuvaju u privremenoj memoriji dok se ne prini kompletna poruka. Kada se ona primi, provedava se da li je poruka ispravno primljena, na osnovu ostatka ili pariteta ili na drugi način, zavisno od tipa poruke. Ako je poruka ispravno primljena podaci se prenose i puni se prijemni »stack« do- tičnog kanala. Kad se »stack« napuni, kontroler je završio sa tim kanalom. Isti proces se odvija u svim prijemnim kanalima. Memorija, ugrađena na ploči interfejsa, jeste tzv. dual port RAM. Kada kontroler napuni »stack« za bilo koji prijemni kanal, personalni računar pristupa »stacku« i očitava ga potpuno nezavisno od kontrolera. Slične aktivnosti se odvijaju za predajni kanal sa tim razlikom da kontroler samo ispituje da li je personalni računar napunio predajni »stack«. Ako jeste, kontroler dodaje sinhrogrupu i, eventualno, oslič 8. Po uključenju sistema vrši se unošenje i postavljanje parametara sistema (unošenje koordinata sopstvenog položaja, orijentacije, broja senzora, tipa poruka, sinhrogrupa za poruke, položaja vatrenih jedinica, itd.). Kada su parametri sistema postavljeni, prelazi se na normalan rad sistema. Kroz komunikaciju sa interfejsom za prijem i predaju podataka provedava se da li su od nekog senzora stigli podaci. Ukoliko su stigli, vrši se prikaz tih podataka i nastavlja se sa testiranjem novih podataka od ostalih senzora. Kad se pregledaju svi senzori, vrši se sinteza slike i prikazuje sintetizovana slika. Sve što se prikazuje na ekranu šalje se putem standardnih komunikacionih kanala na izdvojeni personalni računar, a po potrebi, na periferije (štampač, disk, itd.).

Komunikacija sa operatorom odvija se u prekidu, tako da je na dijagramu prikazana paralelno. Ako je došlo do akcije operatora i ako je neki od ciljeva pridružen nekoj vatrenoj jediniči, njegovi podaci se automatski prebacuju u »stack« izlaznog kanala, a oda-

tale parametre poruke i šalje ih na izlazni kanal.

Softversko rešenje obrade u centru prikazano je dijagramom toka na

tle ih kontroler šalje na vatrenu jediniču. Uz ove aktivnosti vrši se i testiranje ispravnosti sistema i javljanje grešaka.

VOJNOTEHNIČKI GLASNIK 4/33.
Sl. 8 (DRUGI DEO)
Zaključak

Opisani SAPPVO predstavlja veoma fleksibilan sistem. Kako se za prikupljanje informacije o stanju u vazdušnom prostoru koristi više potpuno nezavisnih i prostorno dislociranih izvora različitih karakteristika, to znači da će sistem imati informacije o stanju u vazduhu i u slučaju da neki od izvora informacije, iz bilo kojih razloga, ispadne iz normalnog rada (tehnička neispravnost, ometanje, fizičko uništenje, itd.). Strogo gledano, sistem će biti aktiviran i obavljati funkciju otkrivanja ciljeva i informisanja vatrenih jedinica, sve dok je aktiviran centar sistema i bar jedan izvor informacija.

Posebno se mora istaći činjenica da izvori informacija nisu ni po čemu specifični i strogovvezani za određeni centar sistema. U suštini, a to i jeste vrlo važna karakteristika SAPPVO-a, centar sistema može da integrirše informacije od svih izvora, koji se nalaze na teritoriji centra, u okviru dometa radio-veza, i potrebno je samo da centar zna pozicije izvora i tip poruke. Pozicija izvora informacija nije sadržana u poruci, tako da se ona posebno dostavlja i unosi u računar centra u pripremnom režimu rada. To znači da se u toku rada mogu uključivati novi senzori, odnosno konfiguracija sistema je dinamički promenljiva.

Opisano rešenje može se koristiti za automatizaciju prikupljanja podataka u drugim sistemima, posebno u telemetriji (meteorološka osmatranja, seismološki sistemi, osmatranje velikih građevinskih objekata, itd.).

Literatura:

[10] S. Lin, An Introduction to Error — Correcting Codes;

[17] Intell, 197. Microcommunications Handbook;
[18] Intell, 1988. 8 — Bit Embedded Controller Handbook;