Sc Momčilo Đorović, potpukovnik, dipl. inž. VV 4954 Danilovgrad

KONCEPT SIMULACIONOG MODELADA RADARSKOG SENZORA PREPREKA ZA NISKOLETEČE PLATFORME

UDC: 629.735.052

Rezime:

U radu je predložen koncept simulacionog modela radarskog senzora prepreka za niskoleteče platforme. Zasnovan je na fenomenologiji refleksije (raspršenja) elektromagnetskih talasa od površine terena, odnosno na prostornoj selekciji vidljivih elementarnih reflektora (raspršivača) unutar rezolucionih čeliija na površini terena, kao i proceni njihovih doprinosa u odbircima tekućeg prijemnog signala. U suštini, to je koncept simulacionog modela tekućeg prijemnog signala, koji omogućava vernu karakterizaciju prostora (detekciju prepreka na trajektoriji leta) i ocenu parametara prijemnog signala, tj. merenje daljine do prepreke i ugla pod kojim se one vide sa NLP.

Ključne reči: radarski senzor prepreka, niskoleteče platforme, izbeganje prepreka, automatsko praćenje terena, modeli raspršenja, simulacija, odmerak prijemnog signala.

CONCEPT OF COMPUTER SIMULATION MODEL OF OBSTACLE RADAR SENSORS FOR LOW-FLYING PLATFORMS

Summary:

A concept of computer simulation model of obstacle radar sensors for low-flying platform is presented in this paper. It is based on the phenomenology of electromagnetic wave reflection (scattering) from all visual surfaces (scattering) inside the resolutionary cell as well as on the evaluation of its contribution in sampling the current receiving signals. In fact, this concept is a computer simulation model of the current receiving signals, which enables the complete characterization of space: detection of obstacles on the fluent flight track and evaluation of receiving signal parameters (measurement of the range to the obstacle and the angle under which it is seen from a low-flying platform).

Key words: obstacle radar sensor, low-flying platform, obstacle avoidance, automatic terrain searching, scattering models, simulation, received signal sample.

Uvod

Savremena borbena dejstva izvode se po celoj dubini protivničke teritorije, u svim vremenskim i meteorološkim uslovima i uz maksimalno korišćenje iznenađenja. Zbog toga se od savremenih sredstava ratne tehnike (SRT) zahteva: veliki domet, brzo otkrivanje i dejstvovanje po ciljevima u svim meteorološkim uslovima. Ovakvi zahtevi danas se realizuju sredstvima koja dejstvuju brzo, velikog su dometa i prostorne fleksibilnosti, što je od-

Zbog ugroženosti od protivvazdušne odbrane (PVO) ova SRT su primuđena da lete na malim i vrlo malim visinama [1—3], pa se zato i zovu niskoletće platforme (NLP). Ukupan rizik pri letu na malim i vrlo malim visinama sastoji se od rizika da NLP udari o prepreku na zemlji i da bude oboren sistemima PVO sa zemlje (slika 1).

Radi izbegavanja udara o prepreke na zemlji, savremeni NLP opremaju se radarskim senzorima (RS) prednje polusfere [3] ili, kraće, radarskim senzorima prepreka (RSP). Za obavljanje ove funkcije primenjuju se RS iz prostog razloga što samo oni mogu da, u svako dobadana i u otežanim meteorološkim uslovima, obezbede pouzdanе informacije o preprekama na trajektoriji leta.

Istraživanja su pokazala [1] da minimalnu ugroženost imaju NLP opremljeni sa RSP i dobro uvežbanom posadom, pri letu na relativnoj visini od 60 m.

Osnovne pretpostavke u kojima RSP, s obzirom na karakteristike dejstava NLP, obavljaju svoju funkciju su:

- različiti reljef terena (ravničarski, brdovit, planinski, i njihove kombinacije),
- relativno široka rezolucija površina i veliki broj različitih reflektora (raspršivača) na njoj,
- velika brzina obrade signala, s obzirom na visinu leta i relativno malu daljinu do prepreka,
- zahtev za veliku verovatnoću pravilne detekcije, uz minimalnu verovatnoću lažne ubzene.

Funkcije radarskog senzora prepreka na niskoletćim platformama

Funkcija RSP na NLP jeste da obezbedi pouzdanu informaciju o preprekama na trajektoriji leta za sledeće modove rada [1]:

- ručno praćenje terena (terrain clearance radar);
- ručno izbegavanje prepreka (terrain avoidance radar);
- automatsko praćenje terena (terrain following radar).

Za razliku od prvih realizacija, gde je svaki mod rada ostvarivan posebnim RS, savremeni višefunkcijski avionski radari ne samo da obavljaju više funkcija već i funkcije dveju bitno različitih misija [4]: vazduh—zemlja i vazduh—vazduh.

Kod modova rada u misiji vazduh — zemlja nosioci informacija o terenu — moru, ciljevima na njima i hidrometeorološkim pojavama su reflektovani (raspršeni) elektromagnetski talasi. Kod modova rada u misiji vazduh — vazduh situacija je sasvim dru-
htevaju primenu određenih metoda obrade signala radi njihove eliminacije. U ovom radu razmatrane su samo funkcije RSP u modovima rada ručnog izbegavanja prepreka i automatskog praćenja terena.

Slika 2 ilustruje funkciju RSP u modu ručnog izbegavanja prepreka — stvaranja konturne mape. Suština se svodi na preslikavanje terena u pravcima leta NLP na radarski pokazivač. Prepreke na terenu, koje nadišu tzv. bezbednosnu visinu NLP moraju se izbeći.

Funkcija RSP u sistem upravljanja letom u modu automatskog prače-

gacija. Reflektovani — raspršeni elektromagnetski talasi od terena (mora) i ciljeva na njima su smetnje, koje za-
nja terena može se shvatiti pomoću strukturne šeme prikazane na slici 3. RSP i radarski visinomer su senzori

O Z N A K E:

- \(\tau_i \) - širina predajnog impulsa
- \(h_0 \) - zadata bezbednosna visina
- \(t_{kaš} \) - vreme kašnjenja signala reflektovanog od terena
- \(\varepsilon \) - nagib snopa zračenja antene u odnosu na ravan leta

[*Slika 2 — Princip rada RSP za izbegavanje prepreka: a) geometrija formiranja konturne mape terena, b) slika terena prednje polusfere na radarskom pokazivaču*]
ovog sistema. Za svaku prepreku, koja nadvišava bezbednosnu visinu (h_0), RSP određuje njenu udaljenost (r) i ugao (ϵ). Funkcija sistema za upravljanje letom NLP u modu automatskog praćenja terena jeste generisanje upravljačkih signala za njegovo prevođenje iznad prepreka terena. Posle prelaska prepreke, dok RSP traži sledeću, spuštanjem NLP do bezbednosne visine, kao i upravljanje letom iznad stoje u funkcijama koje obavlja računarski podsistem.

U modu ručnog izbegavanja prepreka u sistem upravljanja letom uključen je i pilot, koji, na osnovu radarske slike terena bira putanju leta, tj. odlučuje o manevru u levu ili desnu stranu od prepreke na koju nailazi [2]. Naravno, pri tome RSP obavlja sektorsko skaniranje po azimutu.

![Diagram sistema za praćenje reljefa terena](image)

Sl. 3 — Strukturna šema sistema za praćenje reljefa terena

mora i ravnog terena, obavlja se na osnovu informacija od radarskog visinomera.

U obezbeđenju sigurnog leta NLP, bilo je reč o modu ručnog izbegavanja prepreka ili o automatskom praćenju terena, funkcija RSP svodi se na jednu te istu [2—7]: merenje udaljenosti do prepreka na terenu i uglova pod kojima se one vide. U prvom slučaju radi se o azimutu, a u drugom o elevaciji, respektivno. Veće razlike po

U modu automatskog praćenja terena, u sistem upravljanja nema pilota. Istina, on se može javiti kao nadzorni organ, koji ima mogućnost da koriguje let. Sistem upravljanja letom NLP u ovom modu koristi informacije još i od radarskog visinomera, merača brzine, itd. [2]. Antena RSP u modu automatskog praćenja terena skanira sektorski, u pravcu leta, po elevaciji.

Dostupna literatura i baze podataka ne nude puno informacija o RSP.
Zna se samo da su savremeni avioni bombarderi, npr.: TORNADO ISD, MIRAGE 2000, A/F-18 i drugi, opremljeni radarima za praćenje terena. S druge strane, savremene krstareće rakete ALCM¹, SLCM² (TOMAHAVK), SS-N-3 (SNADDOCK) i druge koriste tzv. TERCOM³ navigacioni sistem. One lete na osnovu podataka o visini terena, koji se nalaze u memorijskoj računari, uz ko-rigovane putanje leta na kontrolnim tačkama. Korekcija se vrši na osnovu razlike između podataka o visini terena, koji postoje u memoriji računara i izmerenih visina terena iznad kojeg raketna trenutno leti. Funkciju senzora u ovom sustavu vrši radarski visinomer.

Očito funkcije RS na NLP spadaju u misiju vazduh—zemlja, gde su reflektovani (raspršeni) elektromagnetski talasi od površine terena (mora) nosioći informacije o prisustvu prepreka na trajektoriji leta, daljini do njih i uglavnom pod kojima se sa trenutne lokacije NLP one vide.

Osnovni predmet istraživanja u ovom radu je koncept matematičkog, i njemu odgovarajućeg simulacionog modela RSP za NLP, koji treba da budu otvoreni za različite vrste terena, visine i brzine leta NLP, načine i brzine skaniranja snopa zračenja antene, kao i dalje mogućnosti proširenja u prostoru parametara RSP sa osnovnom funkcijom da pribavlja informacije o preprekama na trajektoriji leta.

Dakle, RSP svoju funkciju u sistemu vođenja NLP ostvaruju vršeci detekciju prepreka na terenu i merenjem daljina do njih, i jednog od uglova pod kojim se prepreke vide (azimut ili elevacija). Oblas ištraživanja, matematičkog modelovanja RS i simulacija njihovog rada na računaru, dosta je razvijena. To se posebno odnosi na modele refleksije (raspršenja) elektromagnetskih talasa od različitih vrsta terena, a i analizu i sintezu RS. Značajni radovi iz ove oblasti, devedesetih godina, objavljeni su i u našoj zemlji.

¹ ALCM — Air Launched Cruise Missiles — krstareće rakete lansirane iz vazduha;
² SLCM — Sea Launched Cruise Missiles — krstareće rakete lansirane s mora;
³ TERCOM — TERRain COntour Matching technique ili TERRain COMparison Method — tehnička praćenja konture terena.
no jednake — nema dominantnih raspršivača.

Radarska površina rezolucije čelije, po modelu relativne faze, iznosi:

$$\sigma = \left| \sum_{i=1}^{N} \sqrt{\sigma_i} \exp(-j\beta d_i) \right|^2$$ \hspace{1cm} (1)$$
gde je:

$$\beta = \frac{2 \cdot \pi}{\lambda}$$ — fazna konstanta,

$$\sigma_i = \sigma_0 \cdot A$$ — radarska površina elementarnog raspršivača A,

Polazeći od modela (2), za signal koji nastaje raspršenjem od N elementarnih signala (slika 4), može se napisati:

$$u_k = \sum_{i=1}^{N} u_i \cos(\omega \cdot t - \omega t_i + \varphi_i) = U \cos(\omega \cdot t + \Phi)$$ \hspace{1cm} (3)$$
gde je:

$$u_i$$ — amplituda elementarnog signala, koja zavisi od energetskog potencijala radarskog senzora, njegove udaljenosti od i-tog raspr-

Sl. 4 — Princip raspršenja elektromagnetskih talasa od ciljeva s raspodeljenom radarskom površinom:

a) elementarni signali, b) sumarni signal-suma svih fazora elementarnih signala »osvetljenih« raspršivača

$$d_i$$ — relativna razdaljina izmedu raspršivača.

Kako je, zbog prostornih fluktucijanja elementarnih površina $$\sigma_i$$, teško odrediti međusobna relativna rastojanja $$d_i$$, makar u granicama reda veličine talasne dužine $$\lambda$$, u upotrebi je najčešće tzv. model slučajne faze:

$$\sigma = \left| \sum_{i=1}^{N} \sqrt{\sigma_i} \exp(-j\varphi_i) \right|^2$$ \hspace{1cm} (2)$$
gde je:

$$\varphi_i$$ — slučajna faza uniformne distribucije u granicama [0,2π].

šivača, kao i od raspršnih osobina samog raspršivača;

$$t_i$$ — vreme prostiranja talasa do i-tog raspršivača i natrag;

$$\varphi_i$$ — slučajni fazni pomak (uniformna distribucija u granicama [0,2π]);

$$N$$ — broj elementarnih raspršivača na rezolucionoj čeliji »osvetljenih« površine;

$$U$$ — amplituda sumarnog signala,

$$\Phi$$ — faza sumarnog signala.

S obzirom na to da RSP rade u impulsnom režimu, broj elementarnih
raspršivača u rezolucionim čelijama »osvetljenih« površina određuje se iz vremenskih odnosa prikazanih na slici 5. Za impuls trajanja \(\tau_i \) prijemni signal u trenutku \(t \) nastaje sumiranjem elementarnih signala raspršenih od raspršivača u oblasti \(r_1 = c(t-\tau_i)/2 \) i \(r_2 = -c \cdot t/2 \). Elementarni signali raspršeni od raspršivača na udaljenosti \(r < r_1 \) već su prošli, a od raspršivača na udaljenosti \(r > r_2 \) još nisu došli do prijemne antene. Tako je površina terena, sa kojeg elementarni signali istovremeno dolaze u prijemnu antenu, u obliku isecka kružnog prstena s unutrašnjim i spoljnim poluprečnikom respektivno:

\[
\begin{align*}
 r_{01} &= \sqrt{\left[\frac{c(t-\tau_i)}{2} \right]^2 - h_o^2}, \\
 r_{02} &= \sqrt{\left[\frac{c \cdot t}{2} \right]^2 - h_o^2}.
\end{align*}
\]

Za \(t_0 < t < t_0 + \tau_i \) (\(t_0 = 2h_o/c \)), površina terena sa koje istovremeno stizaju raspršeni elementarni signali je u obliku kruga (slučaj radarskog visinomera), dok se kod RSP radi o većim udaljenostima \((t-t_0 > \tau_i) \), pa su unutrašnji i spoljni poluprečnik prstena u odnosu \(r_{02} = r_{01} + c \cdot \tau_i/2 \cdot \sec \varepsilon \), a rezolucionica površina je samo deo prstena — površina \(S \) (slika 5).

Površina radarske rezolucije čelije izračunava se pomoću izraza:

\[
S = 2 \cdot r \cdot \tan \left(\frac{\Delta \beta}{2} \right) \cdot \frac{c \cdot \tau_i}{2} \sec \varepsilon
\]

gde je:

\[
\begin{align*}
 \tan \varepsilon &< \frac{2 \cdot r \cdot \tan(\Delta \beta/2)}{(c \cdot \tau_i)/2}, \\
 r &= (r_1 + r_2)/2,
\end{align*}
\]

\(\Delta \beta \) — širina snopa zračenja antene po azimutu na nivou pola snage.

Za male širine snopa zračenja antene, koje kod RSP iznose 1 do 3°, izraz (4) dobija jednostavni oblik:

\[
S = r \cdot \Delta \beta \cdot \frac{c \cdot \tau_i}{2} \sec \varepsilon
\]

pri čemu je:

\[
\tan \varepsilon < \frac{r \cdot \Delta \beta}{(c \cdot \tau_i)/2}.
\]

Princip preslikavanja terena na pokazivač RSP, u modu ručnog izbe-

![Sl. 5 — »Osvetljena« i rezoluciona čelija površinskog cilja za impulsni signal i mali ugao nagiba snopa zračenja antene](image)

192

VOJNOTEHNIČKI GLASNIK 2/97.
gavanja prepreka, zasnovan je na serijskom pretraživanju prostora po azimutu u sektoru \((\beta_1, \beta_2)\) oko pravca leta, dok je \(\varepsilon=\text{const.}\). Sa druge strane, funkcija RSP u modu automatskog praćenja terena svodi se na specijalan slučaj moda ručnog izbegavanja prepreka, gde je \(\beta=\text{const.},\) a snop zračenja antene skanira po elevaciji u sektoru \((\varepsilon_1, \varepsilon_2)\) oko horizontalnog pravca leta \(\varepsilon_0=0\).

Koncept simulacionog modela RSP za NLP zasnovan je na fenomenologiji refleksije (raspršenja) elektromagnetskih talasa od površine terena, odnosno na prostornoj selekciji vidljivih elementarnih reflektora (raspršivača) unutar rezolucionalnih čelija na površini terena, koji učestvuju u formiranju tekućeg prijemnog signala, kao i proračunu njihovog doprinosa u odmerku tekućeg prijemnog signala na ulazu u antenu. U suštini, to je koncept simulacionog modela tekućeg prijemnog signala, koji omogućava vernu karakterizaciju prostora (detekciju prepreka na trajektoriji leta), i ocenu parametara prijemnog signala, tj. merenje daljine do prepreke i ugla pod kojim se ona vidi sa NLP.

Struktura simulacionog modela

Na osnovu opisanog principa rada RSP za NLP (modovi ručnog izbegavanja prepreka i automatskog praćenja terena), jedna od mogućih struktura simulacionog modela prikazana je na slici 6. Model je dekomponovan na odvojene blokove, pri čemu svaki od njih može biti realizovan u simulacionom programu, kao deo jedinstvenog programa ili kao potprogram. Za istraživanja širokog spektra problema pogodnija je realizacija blokova u obliku potprograma, jer omogućava struktuiranje modela RSP različite složenosti uz minimalne prepravke programa.

U blok za formiranje tekućeg prijemnog signala spadaju:

- elektrodinamički DMT;
- model snopa zračenja antene;
- generator šuma,
- blok za formiranje tekućeg prijemnog signala.

Uticaj parametara RSP trajektorije leta NLP i načina skaniranja snopa zračenja antene na formiranje tekućeg prijemnog signala, kao što se vidi i sa slike 6, direkton je.

Pri eksperimentisanju sa simulacionim modelima veoma je važno dobro izabrati početne podatke. Loše izabrani početni podaci daju neočekivane rezultate i dovode u sumnju valjanost razvijenog modela.

U početne podatke računarskog simulacionog modela RSP za NLP spadaju:

- parametri kretanja NLP (visina \(h_0\), i vektor brzine \(\vec{V}_i\));
- oblik trajektorije leta (pravolinijska ili manevarska);
- način kretanja (jednolikom ili promenljivom brzinom);
- parametri RSP (talasna dužina \(\lambda\), impulsna frekvencija \(f_i\), impulsna snaga \(P_i\), dužina impulsa \(\tau_i\), osetljivost prijemnika,...);
- dimenzije snopa zračenja antene (širina po azimutu \(\Delta\beta\), i elevaciji \(\Delta\varepsilon\));
- širina sektora osmatranja (po elevaciji ili azimutu).
Trajektorija leta NLP određuje se na osnovu njegovih početnih koordinata i parametara kretanja. Kako je modelovanje trajektorije leta NLP u re-

![Diagram]

Sl. 6 — Struktura simulacionog modela

almim uslovima složen problem, u ovom radu se predlažu jednostavni modeli kretanja, iz najmanje dva razloga. Prvo, zato što je on temeljito obrađen u nizu klasičnih monografija iz lasti vođenja i upravljanja, i drugo, zato što postoji čitava lepeza problema koja se može rešavati ne uzimajući u obzir realne uslove leta konkretnog NLP. Primena prostih modela kretanja znatno će uprostiti razvoj simulacionog modela RSP za NLP i ubrati njegov rad.

Skaniranje snopa zraćenja antene može biti u kategoriji (u sektoru ε_α, ε_β) ili po azimutu (u sektoru β_1, β_2), u pravcu leta NLP što zavisi od modera rada. U oba slučaja, snop zraćenja antene skanira jednolikom brzinom.

Elektrodinamički DMT treba da sadrži sve elemente koji omogućavaju što realniji opis procesa raspršenja elektromagnetskih talasa od realnog terena. Osnovna karakteristika, koja se koristi za opis procesa raspršenja, jeste srednji intenzitet raspršenja, tj. srednja specifična radarska površina σ_0.

Vrednost σ_0 zavisi od: upadnog ugla elektromagnetskih talasa na površinu raspršivača, talasne dužine, vrste raspršivača (vegetacija, golet, itd.), godišnjeg doba (vlažnost, vodljivost površine), trenutnih vremenskih prilika, brzine vetra i vrste polarizacije elektromagnetskih talasa, gde dominantni uticaj ima upadni ugao. Do ove karakteristike terena dolazi se mernjem. U klasičnoj literaturi iz oblasti radarske teorije nalaze se rezultati mnogobrojnih merenja σ_0 za različite vrste reljefa terena, vegetacije, godišnja doba, noseće frekvencije itd., provedena pedesetih i šezdesetih godina. Svi navedeni faktori imaju slučajni karakter.

U osnovi elektrodinamičkog DMT, s obzirom na proizvoljan izbor trajektorije, visinu i brzinu leta NLP kao i brzinu, ravan i sektor skaniranja snopa zraćenja antene, nalaze se dva slučajna površinska polja [18]:

— polje reljefa terena, koje zavisi od uzajamnog rasporeda visina određenog dela terena,

— polje raspršivača, koje zavisi od vrste raspršivača: prirodnog (pašnjaci, šume, oranice, itd.), ili veštackih (putevi, piste, gradsko zemljište, pruge, mostovi, reke itd.).

Sum potiče od samog RSP kao posledice termičkih efekata u antenskom delu i prijemniku. Modelira se kao additivni beli šum i dodaje korisnom signalu. Atmosferske pojave su, takođe, izvori suma, ali u ovom radu ne uzimaju se u obzir.

U bloku za formiranje tekućeg prijemnog signala, na osnovu proračuna trenutne lokacije i položaja pokretnog snopa zraćenja antene, određuje se presek elektrodinamičkog DMT i modela snopa zraćenja antene, što, zapravo,
predstavlja izdvajanje »vidljivih« elementarnih površina.

Odmerak tekućeg prijemnog signala formira se vektorskim sumiranjem svih elementarnih signala reflektovanih od »vidljivih« elementarnih površina unutar rezolucije čeliće. Simulacija efekata raspršenja elektromagnetskih talasa uzima u obzir karakteristike raspršivača koji se na elementarnim površinama terena nalaze, šum prijemnika, kretanje NLP i snopa zračenja antene. Vreme se uzima u obzir kroz računanje trenutne vrednosti prijemnog signala za svaki reflektovani impuls, koji se zove tekući prijemni signal. Pod tekućim prijemnim signalom podrazumeva se kompleksna anvelopa signala $u(t)$ raspršenog od terena. Efekti sekundarnog i viših redukovanja, difrakcije elektromagnetskih talasa, uz pretpostavku da predajni signal trpi samo jednu transformaciju na putu RSP — teren i obratno, zanemari su.

Struktura simulacionog modela RSP za NLP i njemu odgovarajućeg računarskog programa, zasnovana je na principu njegovog rada i mehanizmu preslikavanja terena na radarski pokazivač. Predloženi model je dekomponovan na blokove, pri čemu bi se svaki od njih, u računarskom programu, realizovao različito strukturiranje modela i istraživanja oba mode njegovog rada.

Zaključak

U obezbeđenju sigurnog leta NLP, bilo je reč o modu ručnog izbegavanja prepreke ili o automatskom praćenju terena, funkcija RSP svodi se na [2-7]: detekciju prepreke na terenu i merenje udaljenosti do njih, kao i ulaza pod kojim se one vide. U prvom slučaju radi se o azimuthu, a u drugom o elevaciji, respektivno. Za ova dva moda veće razlike postoje samo u funkciji koje obavlja računarski podsistem.

U modu ručnog izbegavanja prepreka u sistem upravljanja letom uključen je i pilot, koji, na osnovu radarske slike terena, biri putanju leta, tj. odlučuje o maneuvri u levu ili desnu stranu od prepreke na koju nailazi [2]. Pri tome RSP vrši sektorsko skaniranje po azimuthu.

U modu automatskog praćenja terena, pilota u sistem upravljanja nemaju mada se on može pojaviti kao nadzorni organ, koji ima mogućnost da koriguje let. Sistem upravljanja letom NLP u ovom modu koristi informacije i od radarskog visinomera, merača brzine, itd. [2]. Antena RSP u modu automatskog praćenja terena skanira sektorski (u pravcu leta), po elevaciji.

U radu je predložen koncept simulacionog modela RSP za NLP koji je zasnovan na fenomenologiji refleksije (raspršenja) elektromagnetskih talasa od površine terena, odnosno na prostorenoj selekciji vidljivih elementarnih reflektora (raspršivača) unutar rezolucionih čelić na površini terena, koji učestvuju u formiranju tekućeg prijemnog signala, kao i proceni njihovog doprinosa u odmerku tekućeg prijemnog signala na ulazu u antennu. U suštini, to je koncept simulacionog modela tekućeg prijemnog signala, koji omogućava vernu karakterizaciju prostora (detekciju prepreke na trajektoriji leta), i ocenu parametara prijemnog signala, tj. merenje daljine do prepreke i ugla pod kojim se one vide sa NLP.

Struktura simulacionog modela RSP za NLP i njemu odgovarajućeg računarskog programa, zasnova bi se na principu njegovog rada i mehanizmu preslikavanja terena na radarski
pokazivač. Predloženi model je dokomponovan na blokove, pri čemu bi se svaki od njih u računarskom programu realizovao kao potprogram, što bi omogućavalo različito strukturiranje modela RSP za NLP uz minimalne inter-

LITERATURA:

