Rezime:

U radu su razmatrani različiti tipovi lasera vojne namene, posebno laserski daljinomeri pogodni za primenu u protivvaždušnoj obrani. Detaljnije je opisan laserski daljinomer tipa Nd-YAG sa Ramanovom ćelijom za povećanje talasne dužine zračenja, koja ga čini bezbednim za oko. Dat je pregled savremenih brzih laserskih daljinomera i predloženi su postupci za poboljšanje merenja daljine.

Ključne reči: laserska tehnika, laserski daljinomer, merenje daljine, Ramanova ćelija, protivvaždušna obrana.

LASER RANGEFINDERS IN AIR DEFENSE

Summary:

Various types of military lasers are discussed, especially laser rangefinders for air defense applications. The paper gives a more detailed description of Nd-YAG laser rangefinder with Raman cell that increases the wavelength of radiation and makes a laser eye-safe. A review of contemporary highfrequency laser rangefinders is given too. Some procedures to enhance the of range measurement are proposed.

Key words: laser techniques, laser rangefinder, range measurement, Raman cell, air defense.

Uvod

Osnovni delovi laserskog daljinomera su laserski predajnik i laserski prijemnik. Daljina se meri tako što predajnik emiutuje kratak svetlosni impuls, koji se odbija od cilja. Deo odbijenog laserskog zračenja dospeva u laserski prijemnik, koji ga detektuje. Daljina do cilja se izračunava na osnovu vremenske razlike između trenutaka detekcije i emisije i poznate brzine prostiranja svetlosti.

Kada se, pored daljine, u realnom vremenu mere i uglovi azimuta (pravca)
i elevacije (visine) cilja, moguće je, kroz postupke praćenja cilja i balističkog pro-
računa, obezbediti veliku verovatnoću pogađanja cilja, čak i nevođenim projek-
tilima. Precizno merenje daljine je uslov za precizno određivanje tačke susreta
projektila i cilja [1], što je naročito važno pri gađanju protivvajkvenskim topovima,
jer se putanja artiljerijskog projektila ne može korigovati u toku njegovog leta.

Merenje daljine može se obaviti i
korišćenjem optičkih uređaja (na primer
teodolita) koji se nalaze na dovoljno
velikom rastojanju – kroz takozvani po-
stupak triangulacije, ali je ovakvo meren-
je mnogo nепreciznije nego lasersko
merenje daljine. Kada se za merenje
koristi nišanski radar, preciznost je bliska
onoj koju postiže laserski daljimomer.
Teorijski postmatrano, merenje daljine la-
serom je najpreciznije, zbog male talasne
dužine laserskog zračenja.

U odnosu na radar, laserski daljino-
mer se pri radu teže otkriva (zbog uskog
snopa zračenja) i vrlo teško ometa. Osim
toga, pri praćenju cilja laserski se može
povremeno i isključivati, bez značajne
degradacije tačnosti praćenja – zahvalju-
jući zasebnim senzorima za merenje
uglova cilja. Na taj način protivniku se
otežava da locira sistem PVO. S druge
strane, isključivanje radara za praćenje,
po pravilu, znači i prekid praćenja cilja.
Čena laserskog daljimomera višestruko je
manja od cene radarskog sistema.

U poredenju s radarom, laser ima i
dođržene nedostatke: manji mu je domet
i osetljiviji je na atmosferske prilike (vlaž-
nost, oblačnost). Osim toga, zbog uskog
snopa zračenja (uslovljenog relativno ma-
lom energijom zračenja) laserski snop se
mora vrlo precizno usmeriti ka cilju,
znatno preciznije nego snop nišanskog
radara.

Navedeni nedostaci lasera su manje
izraženi pri praćenju bliskih ciljeva. Ako
se, uz laserski daljimomer, koristi kamera
i postupak obrade slike, automatsko pra-
ćenje može se postići i bez upotrebe
radara. Ako se koristi termovizijska ka-
mera, omogućeno je praćenje i gađanje
ciljeva noću. Može se zaključiti da lasersko
merenje daljine ima prednost nad
radarskim u sistemima bliske PVO.

Tipovi lasera vojne namene

Postoji veliki broj tipova lasera, zavi-
sno od materijala od kojeg su izrađeni
(čvrsti, tečni, gasoviti) i načina dovođenja
energije (optičko, električno, hemijsko,
mehaničko,...). Laseri se razlikuju po
tehnologiji izrade, snazi zračenja, stepenu
korisnosti, talasnoj dužini, učestalosti im-
pulse izlazne energije, itd. Laseri koji se
najčešće koriste u vojne svrhe mogu se
podeliti u tri grupe [2]:

- laserski čvrstog tela,
- gasni laser,
- poluprovodnički laseri.

Laserski čvrstog tela

Prvi laserski daljimomeri bili su ru-
binski i pojavili su se početkom šezdesetih
godina. Rubinski laseri zrače crvenu sve-
tlost talasne dužine 0,69 mikrometara. S
obzirom na to da je ovakvo zračenje
vidljivo i opasno za oko, da su stepen
iskorišćenja i učestalost ponavljanja im-
pulsa rubinskih lasera mali, oni nisu naro-
čito pogodni za vojnu primenu.

Sedamdesetih godina pojavljuju se
Nd-YAG i Nd staklo-laseri. Konverzija
energije u njima obavlja se posredstvom
neodima (Nd). Atomi ovog aktivnog ele-
menta utisnuti su u matricu kristala itri-
jum-aluminijum-silikat (Y₃Al₂(SiO₄)₃) ili
u polikristalnu matricu (specijalno staklo). Nd laseri se odlikuju velikom snagom impulsa (do 30 MW, obično 2 do 5 MW, pri čemu je energija impulsa 0,04 do 0,09 J), velikom učestalošću (do 30 Hz) i vrlo dobrim iskorišćenjem energije. Zrače u infracrvenom području – talasna dužina im je 1,06 μm. Snop zračenja ima izuzetno malu divergenciju i male energetske gubitke pri prolasku kroz atmosferu. Sve to ih čini izuzetno pogodnim za vojnu primenu, pa je većina lasersa u vojnoj upotrebi upravo tipa Nd-YAG.

Na žalost, zračenje od 1,06 μm je vrlo štetno za oči, jer razara mrežnjaču. Zato se pri vežbnoj upotribe ovakvih lasersa moraju preduzeti posebne mere opreza: poslužiocu nose naočare sa zaštitnim filterom, laser se ne sme usmeravati ka ljudstvu, itd. Krajem sedamdesetih godina počela je da se koristi takozvana Ramanova ćelija, koja se dodaje Nd-YAG lasersu ili umeće u njega, a talasnu dužinu zračenja podiže sa 1,06 μm na 1,54 μm. Ovakvo zračenje je bezopasno za oko, jer se absorbuje u tečnom delu oka, pre nego što dospe do mrežnjače [3].

Zračenje lasera čvrstog tela kompatibilno je sa vidljivom svetlošću, pa se za usmeravanje laserskog zraka i vidljive svetlosti može koristiti jednak sklop sočva, prizmi i ogledala. Ova činjenica pojednostavljuje ugradnju laserskih daljinnomera čvrstog tela u nišanske sprave borbenih sredstava.

Gasni laseri

Reffleksija zraka CO₂-lasera od cilja manja je nego kod lasersa čvrstog tela, naročito ako je cilj vlažan, hladan ili pokriven snegom (zbog veće apsorpcije zračenja). Ipak, najvažniji nedostatak ovih lasersa je visoka cena – oni su dva do tri puta skuplji od Nd-YAG lasersa.

Poluprovodnički laseri

Aktivni materijal poluprovodničkih lasersa je kombinacija poluprovodnika (Ga As, In Ga P, itd. [2]). Kroz taj materijal propušta se električna struja velike gustine. Ovi laseri emituju zračenje u opsegu od 0,7 do 0,9 μm, a vršna snaga im je svega nekoliko stotina vati. Ako se tome doda i velika divergencija snopa – oko 20 stepeni (naspram nekoliko stoth
delova stepeni kod Nd-YAG lasera), može se zaključiti da su poluprovodnički laseri slični izvorima nekoherentne svetlosti i da se mogu koristiti samo za merenje jako malih daljina. Postoje nago-veštaji da će se razviti laserske diode sa stabilnijom talasnog dužinom i snagom većom stotinu puta od dosadašnje, što bi povećalo njihovu primenu u vojnoj oblasti, ali ne i za merenje daljine u PVO, gde se zahtevaju mnogo veće snage laserskog zračenja.

Laserski daljinomer tipa Nd-YAG

Posebna pažnja biće posvećena Nd-YAG laserskom daljinomeru, jer se on, zbog velike efikasnosti i niske cene, najviše koristi, uprkos činjenici da je opasan po ljudsko zdravlje.

Laserski daljinomer treba da emituje zrake u kratkim impulsima (14 do 20 ns), što se može postići zamenom jednog od paralelnih ogledala (slika 1) obrtnom prizmom (Q-prizma). Stimulisanje zračenje u tom slučaju se odvija samo u kratkom vremenskom periodu kada je refleksivna površina prizme praktično paralelna sa nepomičnim ogledalom. Kada to nije slučaj, nema višestruke refleksije laserskih zraka, rasipanje energije u laserskoj šupljini je veliko i ne formira se izlazni snap. Laserski daljinomeri za sisteme PVO su repetitivni – mere daljinu 10 do 25 puta u sekundi. Mala divergencija snapa i velika snaga impulsa zračenja ovih daljinomera omogućuju domete merenja daljine koji zadovoljavaju potrebe bliske PVO.

![Sl. 2 – Laserski daljinomer UAL 11612](image)

Tipičan Nd-YAG laserski daljinomer za sisteme PVO – ERICCSON UAL 11612, prikazan je na slici 2. Funkcionalna šema predajnika ovog daljinomera prikazana je na slici 3. Bleskalica se napaja strujom iz okidačkog kola (kole sadrži kondenzator i tiristor za okidanje), preko okidačkog transformatora, koji diže napon na 15 do 20 kV [5]. Električno kolo za formiranje impulsa (prigušnica i
kondenzator) omogućava da blesak lampe bude pravilan. Okidanje bleskalice sinhronizuje se korišćenjem beskontaktnog davača (pick-up), a samo okidanje je. Neposredno pre emitovanja zraka daljnomer šalje signal za postavljanje brojača na nulu. Brojač služi za merenje vremena između emitovanja zraka i pri-

![Diagram](image)

Sl. 3 – Funkcionalna šema odašiljača daljnomera

vrši se neposredno pre nego što deflekciona prizma dođe u položaj totalne refleksije. Može se uočiti da se, umesto jedne rotirajuće prizme, koristi jedna rotirajuća i jedna nepomična prizma, čime se dvostruko skraćuje trajanje laserskog impulsa u odnosu na rešenje s jednom prizmom.

Laserski prijemnik – jedinica sa zasebnom optikom, sadrži uskopojasni filter (interferencijski filter) i prijemnu diodu (kod pomenutog daljnomera to je lavinska silicijumska dioda), na koju se fokusira priljeno lasersko zračenje. Dioda detektuje prijem reflektovanog laserskog impulsa. Uloga filtera je da spreči da nelaserska svetlost iz okoline aktivira diodu.

Daljnomerom upravlja računarska jedinica, razmenjujući signale TTL-nivoa (0 do 5 V). Pojedinačno merenje daljine počinje tako što računarska jedinica pošalje daljnomeru signal koji startuje okidačko kolo i otpočinje dovođenje energije reflektovanog zraka. U trenutku emitovanja laserskog zraka daljnomer šalje signal za startovanje brojača, a u trenutku prijema reflektovanog zraka daljnomer šalje signal za zaustavljanje brojača. Ukoliko nema laserskog odraza, brojač se zaustavlja kada dođe do kraja brojnog opsega.

Izmerena daljina predstavlja umnožak sadržaja davača i kvanta daljine. Za kvant daljine 5 m, koji je najčešći kod laserskih daljnomera u PVO, učestalost brojača treba da bude 30 MHz. Savremeniji laserski daljnomeri imaju u sebi brojačku elektroniku i sa računarom komuniciraju preko serijske veze (RS-422, RS-485 i dr.).

Laseri Nd-YAG bezbedni za oko

Istaknuto je da zračenje Nd-YAG lasera, talasne dužine $\lambda = 1,06 \, \mu m$, oštećuje vid, a da laserski zraci od 1,54 \, \mu m nisu opasni za oko. Ovaj ozbiljni nedosta-
tak Nd-YAG lasera može se otkloniti, ako se talasna dužina zračenja poveća sa 1,06 μm na 1,54 μm. Ovo pomeranje talasne dužine može se ostvariti korišćenjem gase metana pod pritiskom od 30 bara, smeštenog u takozvanu Ramanovu ćeliju, koja se postavlja ispred Nd-YAG lasera ili umeće u samu lasersku šupljinu (slika 4). Talasna dužina laserskog zraka koji izlazi iz odašiljača konvertuje se u veću talasnu dužinu postupkom stimulisanog vibratnog Ramanovog rasejanja [3], u cilindru s metanom. Kao i laserska šupljinu, Ramanova ćelija predstavlja optički rezonator. Na izlazu iz ćelije postavlja se još i filter za blokiranje zaostalog zračenja od 1,06 μm, kako bi se obezbedilo da izlazni snop bude sasvim bezopasan za oko.

Umetanjem Ramanovog rezonatora između refleksivnih površina (ogledalo, prizma), odnosno u lasersku šupljinu, pojednostavljuje se i pojeftinjuje konstrukcija lasera, a povećava efikasnost konverzije i kvalitet izlaznog zraka. Ovakvo rešenje je pouzdanije, jer je manje delova koji se podešavaju (rektifikuju), a veći intenzitet zračenja energije.

Stimulisano Ramanovo rasejavanje otvoreno je još 1962. godine, ali je počelo praktično da se koristi za razvoj laserskih daljnimera tek krajem sedamdesetih godina. Prvi Nd-YAG laseri poboljšani Ramanovim rezonatorom pojavili su se na tržištu sredinom osamdesetih godina, da

![Diagram Nd-YAG lasera sa Ramanovom ćelijom](image)

Sl. 4 – Funkcionalna šema Nd-YAG lasera sa Ramanovom ćelijom

bi u devedesetim on postao standardna opcija za laserske daljnimere.

U tabeli su dati osnovni podaci za više savremenih laserskih daljnimera, namenjenih PVO [6]. Neki od njih prikazani su na slici 5.

Zahtevi za laserski daljnomer u bliskoj PVO

U sistemima PVO se izmerena daljina cilja, zajedno sa izmerenim uglovima azimuta i elevacije cilja, koristi u postupku praćenja za ocjenjivanje (određivanje) vektora brzine i ubrzanja cilja (videti npr. [7]). Na osnovu ovih veličina određuje se tačka susreta projektila i cilja i oruđe usmerava u pravcu koji taj susret obezbeđuje. Da bi se ostvarilo uspješno praćenje i gađanje brzih ciljeva, položaj cilja mora da se meri sa dovoljno velikom tačnošću, učestalošću i pouzdanošću.

Pri projektovanju sistema upravljanja vatrom sa elektro-optičkim nišanskim uređajem, koji se nalazi u sklopu sistema PVO, treba postaviti zahteve za laserski daljnomer čija se ugradnja planira.
Sl. 5 – Savremeni laserski daljinomeri za sisteme PVO
Savremeni Nd-YAG laserski daljinomeri u PVO

<table>
<thead>
<tr>
<th>Naziv</th>
<th>Zemlja</th>
<th>Talasna dužina (μm)</th>
<th>Masa (kg)</th>
<th>Energija impulsa (J)</th>
<th>Frekvenca (Hz)</th>
<th>Opseg daljina (m)</th>
<th>Divergencija – vidni ugao (mrad)</th>
<th>Prijemnik (mrad)</th>
<th>Tačnost (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMRAD LV 350</td>
<td>Norveška</td>
<td>1,06</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>150–9 995</td>
<td>-</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>GEC–Marconi 629</td>
<td>Britanija</td>
<td>1,06</td>
<td>6</td>
<td>0,06</td>
<td>10</td>
<td>300–10 000</td>
<td>-</td>
<td>-</td>
<td>2,5</td>
</tr>
<tr>
<td>Ericsson UAL 11612</td>
<td>Švedska</td>
<td>1,06</td>
<td>12</td>
<td>0,09</td>
<td>10</td>
<td>450–10 000</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Ericsson UAL 11636</td>
<td>Švedska</td>
<td>1,06</td>
<td>10</td>
<td>0,08</td>
<td>do 25</td>
<td>200–20 475</td>
<td>1,5 (3)</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Ericsson Eye-safe</td>
<td>Švedska</td>
<td>1,54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>El-Op HLR-ES</td>
<td>Izrael</td>
<td>1,54</td>
<td>14</td>
<td>-</td>
<td>10–20</td>
<td>250–19 995</td>
<td>2</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Eloptrro LR-40</td>
<td>Juž. Afrika</td>
<td>1,54</td>
<td>13,3</td>
<td>0,02</td>
<td>12,5 (20)</td>
<td>do 20 400</td>
<td>1,2</td>
<td>1,2</td>
<td>5</td>
</tr>
<tr>
<td>Eloptrro LT-20</td>
<td>Juž. Afrika</td>
<td>1,06</td>
<td>17</td>
<td>0,08</td>
<td>-</td>
<td>200–65 535</td>
<td>1 (4)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Cilas THS 304–06</td>
<td>Francuska</td>
<td>1,54</td>
<td>30</td>
<td>-</td>
<td>2–20</td>
<td>300–40 000</td>
<td>-</td>
<td>-</td>
<td>4,5</td>
</tr>
<tr>
<td>Zeiss-Eltro CE658</td>
<td>Nemačka</td>
<td>1,54</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>12,5</td>
<td>do 40 000</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Zeiss-Eltro HELEM II</td>
<td>Nemačka</td>
<td>1,54</td>
<td>2,5</td>
<td>15</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Litton NT-90</td>
<td>SAD</td>
<td>1,06</td>
<td>10</td>
<td>0,09</td>
<td>20</td>
<td>do 20 000</td>
<td>0,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hughes HR</td>
<td>SAD</td>
<td>1,54</td>
<td>-</td>
<td>0,035</td>
<td>15 (20)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alenia GAQ-4</td>
<td>Italija</td>
<td>1,06</td>
<td>11,5</td>
<td>-</td>
<td>20</td>
<td>300–10 235</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>

Osnovni zahtevi za laserski daljinomer, sa stanovišta procesa praćenja cilja i upravljanja vatrom, u ovom slučaju su:
- opseg merenja daljine,
- učestalost merenja daljine (repeticija),
- tačnost merenja daljine.

Pored ovih zahteva, daljinomer treba da zadovolji još niz drugih zahteva, sa stanovišta eksploatacije i održavanja (opseg radnih temperaturi, vlažnost, pouzdanost rada, ...), što neće biti razmatrano u ovom radu.

Opseg merenja daljine određen je donjom i gornjom granicom merenja daljine. Donja granica uslovljena je činjenicom da lasersko zračenje, reflektovano od čestica iz okolnog vazduha (naročito čestica vode), ima dovoljno energije da aktivira laserski prijemnik (što prouzrokuje pogrešno merenje daljine cilja). Radi toga elektronski snop laserskog daljinomera treba da spreči merenje daljine ispod vrednosti koja se obično kreće od 200 do 300 metara. Ovakva donja granica merenja daljine je prihvatljiva, s obzirom na to da se cilj vrlo retko i vrlo kratko nalazi na tako malim daljinama.

Gornja granica merenja daljine uslovljena je efikasnim dometom oruda PVO i vremenom koje treba da protekne od zahvata cilja i prvog merenja daljine do otvaranja vatre. Artillerijska oružja PVO obično imaju kalibre do 40 mm i efikasan domet do 4 000 metara. Raketi sistema PVO obično imaju domet do 10 000 m. Vreme koje je neophodno da postupak praćenja dostigne tačnost potrebnu za gađanje, računajući od prvog merenja daljine, zavisi od tipa praćenja (poluautomatsko, automatsko), načina kretanja cilja, ali i od tipa oružja i projektila koji se koriste. Može se usvojiti da se ovo vreme kreće od jedne do pet sekundi. Ako se usvoji da je najveća brzina kretanja cilja na malim visinama do 600 m/s, onda on za to vreme može preći najviše 3 000 metara. Za gornju granicu za merenje daljina može se usvojiti zbir dometa oruža i dužine koju cilj
može preći za vreme od početka merenja daljine do otvaranja vatre. Tako je gornja granica za artiljerijska oruđa bliske PVO 7 000 metara, a za raketa oruđa bliske PVO do 13 000 metara.

Vrednosti opsega merenja daljina koje daju proizvođači lasera (tabela) treba razmatrati s rezervom, jer neke od njih predstavljaju samo tehničku mogućnost, ostvarljivu jedino u izuzetno pogodnim uslovima merenja. Efektivna gornja granica merenja daljine laserskim daljinnomerom, za realne ciljeve PVO, ne prelazi desetak kilometara.

U slučaju automatskog praćenja cilja korišćenjem TV ili termovizijeske kamere poželjno je da učestalost merenja daljine bude 25 Hz, kako bi laser radio sinhronizovano s kamerom. U slučaju poluautomatskog praćenja [10], koje podrazumeva aktivno učešće operatora u celom toku praćenja i obezbeđuje precizno otvaranje vatre protivavionskim topom samo kada se cilj kreće pravolinijski konstantnom brzinom, učestalost merenja daljine od 10 metara sa vremenom je zadovoljavajuća.

Predlog postupaka za poboljšanje merenja daljine

U sistemima bliske PVO sve se više koriste elektro-optički (optoelektronski) automatski uređaji za praćenje, koji sami detektuju cilj u prostoru i mere njegove uglove u odnosu na stajnu tačku, korišćenjem televizijeskih ili termovizijeskih kamere. S obzirom na to da ove kamere, po evropskom standardu, daju sliku cilja svake 0,04 sekunde i da se slika sastoji od dve poluslike, koje su međusobno isprepletane, a koje se generišu svake 0,02 sekunde – merenje uglova cilja i praćenje cilja obično se odvija sa učestalosti od 25 ili 50 Hz. Računarska simulacija pokazuje da praćenje cilja sa učestalosti od 25 Hz obezbeđuje efikasno upravljanje vatrom protivavionskih topova, naročito ako se i merenje daljine obavlja sa istom učestalosti.

Tehnički nije problem napraviti laser koji meri daljinu s učestalosti od 25 Hz, ali je tada, zbog većeg temperaturnog naprezanja, potrebno koristiti kvalitetnije materijale i bolje rešiti hlađenje lasersa, što povećava njegovu cenu. Većina savremenih lasersa ima maksimalnu dopuštenu učestalost 20 Hz ili manju, pa se zbog toga javlja problem sinhronizacije merenja daljine s merenjem uglova cilja i postupkom praćenja. Predlog rešenja ovog problema izložen je u nastavku.

Neka je t trenutak u kojem su izmereni uglovi cilja, a \(t_L \) njemu najbliži trenutak u kojem je laserom izmerena daljina – \(y_d(t_L) \). Izmerena daljina svodi se na trenutak t na sledeći način:

\[
y_d(t) = y_d(t_L) - (t_L - t)v_d(t)
\]

gde je \(v_d \) ocena radijalne brzine cilja (brzine promene daljine cilja), dobijena u postupku praćenja, korišćenjem ocena vektora položaja i brzine cilja. Korišćenje vrednosti \(y_d(t) \), određene prethodnom reacijom, umesto vrednosti \(y_d(t_L) \), koju daje laserski daljinnomer, kompenzuje asinhronost merenja daljine.
Navedena jednačina omogućava i da se daljina koja se meri predviđa i u kratkim periodima kada laserski snop promašuje cilj ili kada dolazi do lažnih merenja (usled refleksije od drugog, bliškog cilja ili objekta, kao i usled greške u radu laserskog prijemnika), što u praktiki nisu retke pojave (tipična verovatnoća pojave lažnih merenja je oko 0,5% [5]).

Osim od cilja, u laserski prijemnik gotovo uvek dospeva i deo zračenja koje se odbija od obližnjih čestica atmosfere (na udaljenosti od nekoliko metara do par desetina metara). Zbog toga elektronika u laserskom uređaju treba da blokira slanje signala za zaustavljanje brojača vrlo kratko vreme nakon laserske emisije.

Laserski prijemnik šalje signal kad god prijemnu diodu osveti laserski zrak. To može biti zrak reflektovan od cilja, nekog drugog objekta ili od atmosfere – naročito kada u njoj ima kapljica vode. Tako se pri jednom poslatom laserskom impulsu može detektovati više od jednog laserskog odraza. Samo jedan odraz može biti od praćenog cilja ili su svi registrirani odrazi lažni.

Da bi se povećala pouzdanost merenja treba sprovedi sledeće aktivnosti:
- ispitati valjanost izmerene daljine,
- očitavati daljine koje odgovaraju većem broju registovanih laserskih odraza, kako bi se smanjila verovatnoća da se izgubi merenje, zato što je pravom odrazu prethodio lažni.

Predlaže se sledeći postupak za ispitivanje valjanosti izmerenih daljina. Ispituje se uslov:

$$|y_d - d| < \Delta d_{lim}, \Delta d_{lim} > 0,$$

gde je d ocena daljine u posmatranom trenutku merenja, a Δd_{lim} dopušteno odstupanje. Ocena daljine dobija se na osnovu ocene vektora položaja cilja u posmatranom trenutku, a ocena ovog vektora dobija se u postupku praćenja cilja, na osnovu prthodno obavljene merenja. Smatra se da je y_d valjano merenje daljine, ako je dati uslov ispunjen. U početnom trenutku, kao i u slučaju da nije izmerena valjana daljina ni jednom na vremenskom intervalu $(t - \Delta t_{lim}, t)$, Δd_{lim} uzima maksimalnu vrednost: $\Delta d_{lim} = \Delta d_{max}$, a zatim eksponencijalno opada:

$$d_{lim}(t) = \lambda d_{lim}(t - \Delta t), 0 < \lambda < 1$$

evse vrednosti $\Delta d_{lim} = \Delta d_{min}$. Δd_{lim} je unapred zadato vreme.

Da bi se smanjila mogućnost gubitka podataka o cilju zbog registovanja laserskih odraza koji ne potiču od cilja, nakon slanja laserskog impulsa, treba registrovati dva laserska odraza i meriti vreme putovanja laserskog zraka za svaki registrovani odraz. Dakle, treba koristiti dva ili više laserskih brojača i ispitivati validnost podataka o daljini koje daju svi korišćeni brojači.

Zaključak

Pri izboru određenog modela Nd-YAG laserskog daljinomera treba voditi računa da svojim osobinama (tačnost, opseg, učestalost merenja) zadovolji potrebe sistema u koji se ugrađuje. U radu se preporučuju brojčane vrednosti ovih osobina u slučaju upotrebe laserskog daljinomera u sistemima bliske PVO.

Ako je učestalost merenja daljine manja od učestalosti rada uređaja za praćenje (što je najčešći slučaj) podaci koje daje laser moraju se usklađiti sa podacima koje daju ostali senzori. Rešenje za ovaj problem predloženo je u radu.

Takođe, predložen je postupak za ispitivanje valjanosti podataka koje šalje laserski daljinomer. Zbog povremene pojava lažnih podataka predlaže se da se za merenje daljine koriste dva ili tri laserska brojača.

Literatura: