FAKTORSKA ANALIZA POLAZNIH PARAMETARA KOJI NAJVIŠE UTIČU NA MODEL DVOFAZNOG STRUJANJA U CEVI AUTOMATSKE PUŠKE
- nastavak iz broja 3/2000 -

UDC: 623.522:623.442.45]:519.237.7

Regresivna analiza

Nakon prikupljanja rezultata eksperimenta neophodno je pronaći koji od faktora, variranih u eksperimentu, utiču na izlazne karakteristike. Pored opisane disperzivne analize često se koristi i regresivna analiza rezultata eksperimenta, koja mora dati odgovore na sledeća pitanja:
- koliki je uticaj posmatranog faktora na izlazne karakteristike?
- kolike su srednje vrednosti izlaznih karakteristika?
- kolika su rasipanja oko srednjih vrednosti izlaznih karakteristika?
- kako izgleda matematički model posmatranog procesa koji sa zadatim nivoom poverenja aproksimira stvarni proces?

Odgovor na ta pitanja daje funkcija reagovanja (prenosna funkcija) datog procesa.

Rezultati dobijeni eksperimentom predstavljaju funkciju koja zavisiti od mnogobrojnih, poznatih i nepoznatih faktora. Ukoliko se postavi linearna regresija (mada je moguća i regresija višeg reda) rezultata eksperimenta, dobiće se određeni matematički model eksperimenta koji je predstavljen jednačinom linearse regresije, koja predstavlja traženu funkciju reagovanja. Funkcija reagovanja za-

visi samo od posmatranih faktora (tj. od vrednosti izvora promena).

U slučaju kada se izvodi eksperiment sa četiri faktora, jednačina linearne regresije (regresivni polinom) ima oblik:

\[\hat{y} = b_0 x_0 + b_1 x_1 + b_2 x_2 + b_{12} x_{12} + b_3 x_3 + b_{13} x_{13} + b_{23} x_{23} + b_{123} x_{12} x_{13} + b_4 x_4 + b_{14} x_{14} + b_{24} x_{24} + b_{34} x_{34} + b_{124} x_{12} x_{14} + b_{134} x_{13} x_{14} + b_{234} x_{23} x_{24} + b_{1234} x_{12} x_{13} x_{14} x_{23} \]

(18)

gde je:
\(\hat{y} \) – vrednost linearne regresije (regresivnog polinoma),
\(b_i \) – vrednost j-tog regresivnog koeficijenta,
\(x_i \) – vrednost i-tog izvora promene.

Ovako odabrani model stvarnog procesa nosi u sebi grešku koja iznosi:

\[\varepsilon = y - \hat{y} \]

(19)

gde je sa y označena vrednost posmatrane veličine koja je dobijena proračunom u eksperimentu, za određenu kombinaciju nivoa faktora. Pomoću regresivne analize moguće je naći takvu jednačinu linearse regresije (regresivni polinom) \(\hat{y} \) koja će, sa zadatim nivoom poverenja V, aproksimirati stvarnu funkciju rezultata eksperimenta y. Pri tom se razlikuju slučajeve sa i bez ponavljanja, na jednom nivou fak-
torskog plana (kombinaciji nivoa faktora). U ovom radu, s obzirom na to da se analizira slučaj kada nema ponavljanja (radi se o rezultatima proračuna), objašnjen je postupak regresivne analize za slučaj bez ponavljanja.

Prvi korak je da se nade srednja vrednost rezultata eksperimenta:

\[
\bar{y} = \frac{\sum_{i=1}^{2^n} y_i}{2^n}
\]
(20)

gde je \(y_i \) vrednost rezultata na i-tom nivou faktorskog eksperimenta (ukupno ima \(2^n \) nivoa).

Nakon što je izračunata srednja vrednost svih rezultata u jednom faktorskom eksperimentu, računa se vrednost disperzije, takođe pomoću rezultata eksperimenta. Njena vrednost se određuje prema formuli:

\[
S_y^2 = \frac{\sum_{i=1}^{2^n} (y_i - \bar{y})^2}{2^n - 1}
\]
(21)

gde je \(2^n \) ukupan broj rezultata, a \(\bar{y} \) njihova srednja vrednost.

Zatim se izračunavaju vrednosti regresivnog polinoma za svaku kombinaciju nivoa faktora. Pri tome se onaj izvor promena za koji je, na osnovu disperzivne analize ili prema odabranom planu eksperimenta, zaključeno da nema uticaja na rezultate eksperimenta, ne nalazi u regresivnom polinomu, tj. vrednost regresivnog koeficijenta je 0.

Regresivni koeficijenti računaju se prema formuli:

\[
b_j = \frac{1}{2^n} \sum_{i=1}^{2^n} x_{ij} \cdot y_i
\]
(22)

gde je:

\(b_j \) - regresivni koeficijent j-tog člana regresivnog polinoma,

\(x_{ij} \) - elementi matrice faktorskog plana eksperimenta (nekodirane ili kodirane vrednosti).

Nakon što su određene vrednosti regresivnih polinoma, za svaku kombinaciju nivoa faktora izračunava se disperzija neadekvatnosti, koja predstavlja meru odstupanja regresivnog polinoma od stvarnih vrednosti za svaki nivo faktorskog eksperimenta (kombinaciju nivoa faktora), po formuli:

\[
S_{nead}^2 = \frac{\sum_{i=1}^{2^n} (y_i - \bar{y})^2}{2^n - d}
\]
(23)

gde je:

\(y_i \) - vrednost izmerena u eksperimentu na i-tom nivou faktorskog plana,

\(\bar{y} \) - vrednost dobijena regresivnim polinomom na i-tom nivou,

\(d \) - broj članova regresivnog polinoma.

Neadekvatnost se procenjuje pomoću Fišerovog kriterijuma, slično kao kod disperzivne analize, tako što se izračuna parametar:

\[
v_0 = \frac{S_y^2}{S_{nead}^2}
\]
(24)

koji se upoređuje sa Fišerovim kriterijumom \(c = f (V, SS_{im}, SS_{br}) \),

gde je:

\(SS_{im} = 2^n - 1 \) stepen slobode imenioca,

\(SS_{br} = 2^n - d \) stepen slobode brojnioca.

Odnos \(v_0 \) i \(c \) može da bude dvojak:

\(v_0 \leq c \) model je adekvatan sa nivoom poverenja \(V \),
v₀ > c model nije adekvatan (prevelika je Sₑ²_{adeq}).

Ukoliko je potvrđeno da je model adekvatan, dobijeni regresivni polinom u potpunosti predstavlja posmatrani proces, tj. može se reći da će se posmatrani proces odvijati prema dobijenom modelu sa verovatnošću V. Pri izvođenju regresivne analize formira se tabela sa vrednostima koeficijenata kodiranog regresivnog polinoma pomoću koje se utvrđuje uticaj svakog izvora promene, odnosno faktora.

Dobijenim rezultatima, za maksimalni pritisak barutnih gasova i početnu brzinu projektira, analizom adekvatnosti (prema formulama 23 i 24), potvrđena je tvrdnja v₀ ≤ c, što znači da je model adekvatan, a regresivni polinomi će odsli-

kavati posmatrani proces sa izabranim nivoom poverenja.

Rezultati regresivne analize (vrednosti disperzija i regresivnih koeficijenata) za maksimalni pritisak i početnu brzinu, prikazani su u tabeli 7.

Na osnovu rezultata dobijenih regresivnom analizom (tabela 7), uz korišćenje značaja svakog od izvora promene određenog disperzivnom analizom (na osnovu rezultata iz tabele 7), dolazi se do regresivnih polinoma.

Za veličinu maksimalnog pritiska barutnih gasova kodirani regresivni polinom glasi:

\[
p_m = b_0 + b_1X_1 + b_2X_2 + b_3X_3 +
+ b_4X_4 + b_{12}X_1X_2 + b_{13}X_1X_3 +
+ b_{23}X_2X_3 + b_{14}X_1X_4 +
+ b_{24}X_2X_4 + b_{34}X_3
\]

(25)

Tabela 7

<table>
<thead>
<tr>
<th>Disperzija (S_i²)</th>
<th>Rezultat</th>
<th>Regres. koefic. (b_i)</th>
<th>Rezultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{max}</td>
<td>V₀</td>
<td>b_0</td>
<td>P_{max}</td>
</tr>
<tr>
<td>71055,57</td>
<td>892,52</td>
<td>3146,5625</td>
<td>726,875</td>
</tr>
<tr>
<td>16272,19</td>
<td>284,77</td>
<td>73,6875</td>
<td>6,125</td>
</tr>
<tr>
<td>15201,57</td>
<td>141,02</td>
<td>76,5625</td>
<td>8,5</td>
</tr>
<tr>
<td>503,44</td>
<td>0,02</td>
<td>1,6875</td>
<td>-0,25</td>
</tr>
<tr>
<td>29433,69</td>
<td>165,77</td>
<td>51,1875</td>
<td>8,375</td>
</tr>
<tr>
<td>815,82</td>
<td>0,02</td>
<td>1,3125</td>
<td>-0,125</td>
</tr>
<tr>
<td>509,07</td>
<td>26,27</td>
<td>1,4375</td>
<td>0</td>
</tr>
<tr>
<td>16240,32</td>
<td>293,27</td>
<td>b_{12}</td>
<td>-0,0625</td>
</tr>
<tr>
<td>16272,19</td>
<td>284,77</td>
<td>b_{13}</td>
<td>-0,0625</td>
</tr>
<tr>
<td>270,19</td>
<td>15,02</td>
<td>b_{14}</td>
<td>-0,125</td>
</tr>
<tr>
<td>503,44</td>
<td>0,02</td>
<td>b_{15}</td>
<td>-0,125</td>
</tr>
<tr>
<td>815,82</td>
<td>0,02</td>
<td>b_{16}</td>
<td>-0,125</td>
</tr>
<tr>
<td>30080,57</td>
<td>147,02</td>
<td>b_{126}</td>
<td>-0,125</td>
</tr>
<tr>
<td>14747,07</td>
<td>147,02</td>
<td>b_{134}</td>
<td>0</td>
</tr>
<tr>
<td>16240,32</td>
<td>293,27</td>
<td>b_{124}</td>
<td>0</td>
</tr>
<tr>
<td>80904,69</td>
<td>791,02</td>
<td>b_{1234}</td>
<td>0</td>
</tr>
</tbody>
</table>

Srednja vrednost rezultata eksperimenta 3146,5625 726,875
Vrednost disperzije 20645,73 232,12
Suma disperzija 309685,94 3481,75
Maksimalni iznos pojedinačne disperzije 80904,69 892,52
Srednja disperzija 19355,37 217,61

VOJNOTEHNIČKI GLASNIK 4-5/2000. 427
Ovde je \(b_0 \) srednja vrednost maksimalnog pritiska dobijena pri izvođenju eksperimenta, po ranije definisanom faktornom planu. To je kodirani regresivni polinom (svaki od faktora koji je njegov član može da ima samo dve vrednosti: +1 kada je na gornjem nivou i -1 kada je na donjem nivou). Najveći uticaj na maksimalni pritisk ima faktor \(X_2 \) - jedinična brzina sagorevanja, zatim jednak uticaj imaju faktori \(X_1 \) i \(X_4 \) (početna masa barutnog zrna i početna površina barutnog zrna), i na kraju faktor \(X_3 \) - početna masa baruta, što je već potvrđeno disperzivnom analizom.

Regresivnim polinomom (25), uz primenu vrednosti regresivnih koeficijenata za maksimalni pritisak barutnih gasova (iz tabele 7) dobijaju se dve vrednosti maksimalnog pritiska, odnosno njegova gornja i donja granica:

\[
p_m = 3146,5625 + 73,6875 m_{x_2} + 76,5625 u_{x_1} + 51,1875 m_{b_0} + 73,6875 S_{x_2} + 1,6875 m_{x_0} u_{x_2} + 1,3125 m_{x_0} m_{b_0} + 1,4375 u_{x_0} m_{b_0} + 1,5625 m_{x_0} S_{x_2} + 1,6875 u_{x_2} S_{x_2} + 1,3125 m_{b_0} S_{x_0}
\]

\[
p_m = 3430,6875 - \text{kada su faktori na gornjem nivou},
\]
\[
p_m = 2862,4375 - \text{kada su faktori na donjem nivou}.
\]

U odnosu na srednju vrednost maksimalnog pritiska dobija se odstupanje od \(\pm 284,125 \) bara, što ukazuje na to da ovi parametri bitno utiču na maksimalni pritisak barutnih gasova, jer ga menjaju za 9% od svoje srednje vrednosti. Za veličinu početne brzine zrna kodi-rani regresivni polinom glasi:

\[
V_0 = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 \quad (26)
\]

Analogno objašnjenju za prethodni regresivni polinom \(b_0 \) je srednja vrednost početne brzine dobijena pri izvođenju eksperimenta po ranije definisanom faktorskom planu. Očigledno je da najveći uticaj na početnu brzinu zrna ima \(X_2 \) - jedinična brzina sagorevanja, na drugom mestu je \(X_3 \) - početna masa baruta, dok jednak uticaj imaju faktori \(X_1 \) i \(X_4 \) (početna masa barutnog zrna i početna površina barutnog zrna), što je već potvrđeno disperzivnom analizom.

Regresivnim polinomom (26), uz primenu vrednosti regresivnih koeficijenata za početnu brzinu projektila (iz tabele 7) dobijaju se dve vrednosti početne brzine, odnosno njena gornja i donja granica:

\[
V_0 = 726,875 + 6,125 m_{x_2} + 8,5 u_{x_1} + 8,375 m_{b_0} + 6,125 S_{x_2}
\]

\[
V_0 = 756 \text{ m/s} - \text{kada su faktori na gornjem nivou},
\]
\[
V_0 = 697,75 \text{ m/s} - \text{kada su faktori na donjem nivou}.
\]

U odnosu na srednju vrednost početne brzine zrna dobija se odstupanje od \(\pm 29,125 \) m/s, što ukazuje na to da ovi parametri bitno utiču na početnu brzinu projektila, jer je menjaju za 4% od svoje srednje vrednosti.

Prikaz rezultata proračuna

Na osnovu programskog rešenja [1 i 2] izvršen je proračun opisanog modela dvofaznog strujanja, sa srednjim vrednostima analiziranih polaznih parametara. Dobijeni rezultati proračuna mogu se prikazati tabelarno i grafički.

Kako se razmatra nestacionarni problem, osnovna veličina je vreme, a zatim s - masa radnog medijuma koja definiše
<table>
<thead>
<tr>
<th>Vreme</th>
<th>Put</th>
<th>(\varepsilon)</th>
<th>(\rho)</th>
<th>(u)</th>
<th>(u_b)</th>
<th>(E)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm</td>
<td>kg/m³</td>
<td>m/s</td>
<td>m/s</td>
<td>MJ/kg</td>
<td>bar</td>
<td></td>
</tr>
<tr>
<td>0,061</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,00</td>
<td>0,45952</td>
<td>30,67</td>
<td>0,000</td>
<td>0,000</td>
<td>3,952867</td>
<td>307,05</td>
<td></td>
</tr>
<tr>
<td>0,28</td>
<td>0,45964</td>
<td>30,66</td>
<td>0,633</td>
<td>0,435</td>
<td>3,951914</td>
<td>306,83</td>
<td></td>
</tr>
<tr>
<td>0,56</td>
<td>0,45977</td>
<td>30,64</td>
<td>1,229</td>
<td>0,871</td>
<td>3,951034</td>
<td>306,62</td>
<td></td>
</tr>
<tr>
<td>0,84</td>
<td>0,45989</td>
<td>30,63</td>
<td>1,792</td>
<td>1,311</td>
<td>3,950262</td>
<td>306,41</td>
<td></td>
</tr>
<tr>
<td>1,13</td>
<td>0,46002</td>
<td>30,62</td>
<td>2,326</td>
<td>1,756</td>
<td>3,949622</td>
<td>306,21</td>
<td></td>
</tr>
<tr>
<td>1,41</td>
<td>0,46015</td>
<td>30,60</td>
<td>2,835</td>
<td>2,209</td>
<td>3,949128</td>
<td>306,03</td>
<td></td>
</tr>
<tr>
<td>1,69</td>
<td>0,46028</td>
<td>30,59</td>
<td>3,324</td>
<td>2,670</td>
<td>3,948790</td>
<td>305,85</td>
<td></td>
</tr>
<tr>
<td>1,97</td>
<td>0,46041</td>
<td>30,57</td>
<td>3,796</td>
<td>3,144</td>
<td>3,948612</td>
<td>305,68</td>
<td></td>
</tr>
<tr>
<td>2,25</td>
<td>0,46054</td>
<td>30,56</td>
<td>4,256</td>
<td>3,631</td>
<td>3,948593</td>
<td>305,52</td>
<td></td>
</tr>
<tr>
<td>2,53</td>
<td>0,46067</td>
<td>30,54</td>
<td>4,707</td>
<td>4,134</td>
<td>3,948728</td>
<td>305,38</td>
<td></td>
</tr>
<tr>
<td>2,82</td>
<td>0,46081</td>
<td>30,53</td>
<td>5,153</td>
<td>4,654</td>
<td>3,949009</td>
<td>305,24</td>
<td></td>
</tr>
<tr>
<td>3,10</td>
<td>0,46094</td>
<td>30,51</td>
<td>5,598</td>
<td>5,194</td>
<td>3,949424</td>
<td>305,11</td>
<td></td>
</tr>
<tr>
<td>3,38</td>
<td>0,46108</td>
<td>30,49</td>
<td>6,045</td>
<td>5,756</td>
<td>3,949955</td>
<td>304,99</td>
<td></td>
</tr>
<tr>
<td>3,66</td>
<td>0,46122</td>
<td>30,48</td>
<td>6,496</td>
<td>6,342</td>
<td>3,950578</td>
<td>304,88</td>
<td></td>
</tr>
<tr>
<td>3,95</td>
<td>0,46135</td>
<td>30,46</td>
<td>6,953</td>
<td>6,933</td>
<td>3,951263</td>
<td>304,77</td>
<td></td>
</tr>
<tr>
<td>0,00</td>
<td>0,46943</td>
<td>49,90</td>
<td>0,000</td>
<td>0,000</td>
<td>3,941295</td>
<td>507,30</td>
<td></td>
</tr>
<tr>
<td>0,28</td>
<td>0,46963</td>
<td>49,86</td>
<td>1,157</td>
<td>0,954</td>
<td>3,940753</td>
<td>506,79</td>
<td></td>
</tr>
<tr>
<td>0,57</td>
<td>0,46982</td>
<td>49,82</td>
<td>2,280</td>
<td>1,909</td>
<td>3,940251</td>
<td>506,29</td>
<td></td>
</tr>
<tr>
<td>0,85</td>
<td>0,47001</td>
<td>49,78</td>
<td>3,373</td>
<td>2,867</td>
<td>3,939808</td>
<td>505,80</td>
<td></td>
</tr>
<tr>
<td>1,13</td>
<td>0,47021</td>
<td>49,74</td>
<td>4,439</td>
<td>3,831</td>
<td>3,939438</td>
<td>505,32</td>
<td></td>
</tr>
<tr>
<td>1,42</td>
<td>0,47040</td>
<td>49,70</td>
<td>5,480</td>
<td>4,802</td>
<td>3,939149</td>
<td>504,84</td>
<td></td>
</tr>
<tr>
<td>1,70</td>
<td>0,47060</td>
<td>49,66</td>
<td>6,500</td>
<td>5,783</td>
<td>3,938948</td>
<td>504,38</td>
<td></td>
</tr>
<tr>
<td>1,99</td>
<td>0,47080</td>
<td>49,62</td>
<td>7,502</td>
<td>6,775</td>
<td>3,938838</td>
<td>503,92</td>
<td></td>
</tr>
<tr>
<td>2,27</td>
<td>0,47099</td>
<td>49,58</td>
<td>8,489</td>
<td>7,781</td>
<td>3,938819</td>
<td>503,48</td>
<td></td>
</tr>
<tr>
<td>2,56</td>
<td>0,47119</td>
<td>49,53</td>
<td>9,463</td>
<td>8,804</td>
<td>3,938891</td>
<td>503,04</td>
<td></td>
</tr>
<tr>
<td>2,84</td>
<td>0,47139</td>
<td>49,49</td>
<td>10,427</td>
<td>9,844</td>
<td>3,939048</td>
<td>502,62</td>
<td></td>
</tr>
<tr>
<td>3,12</td>
<td>0,47159</td>
<td>49,45</td>
<td>11,383</td>
<td>10,905</td>
<td>3,939284</td>
<td>502,20</td>
<td></td>
</tr>
<tr>
<td>3,41</td>
<td>0,47179</td>
<td>49,41</td>
<td>12,335</td>
<td>11,989</td>
<td>3,939590</td>
<td>501,79</td>
<td></td>
</tr>
<tr>
<td>3,69</td>
<td>0,47199</td>
<td>49,37</td>
<td>13,284</td>
<td>13,097</td>
<td>3,939952</td>
<td>501,39</td>
<td></td>
</tr>
<tr>
<td>3,98</td>
<td>0,47219</td>
<td>49,32</td>
<td>14,233</td>
<td>14,233</td>
<td>3,940351</td>
<td>500,99</td>
<td></td>
</tr>
</tbody>
</table>

Konačnu zapreminu u kojoj se odvija proces, a daje i put projektila u cevi oružja.

Pored maksimalnog pritiska barutnih gasova i početne brzine projektila, kao važnih UB karakteristika, koje su posebno analizirane u ovom radu, postoji čitav niz drugih veličina za koje se u svakom vremenskom intervalu vrši proračun: brzina barutnih zrna, brzina barutnih gasova, poroznost, energija barutnih gasova, gustina barutnih gasova, temperatura površine barutnog zrna, brzina sagorevanja barutnog zrna, relativno sagoresa masa baruta u zapremini i druge. Ovako veliki broj proračunskih veličina predstavlja problem za tabelarno prikazivanje svih veličina, pa se prikazuju samo odabrani parametri.

Radi ilustracije u tabeli 8 prikazan je način tabelarnog prikazivanja rezultata proračuna.

Sl. 1 - Pritisak barutnih gasova

Sl. 2 - Umutrašnja energija barutnih gasova

Sl. 3 - Gustina barutnih gasova
U tabeli 8 date su vrednosti navedenih parametara strajanja u zapremini između dna cevi (čela zatvarača) i dna projektila. Dvo fazni UB modeli u zapremini iza projektila daju različite vrednosti parametara za razliku od klasičnih modela koji daju samo srednje vrednosti ovih parametara. U tabeli 8 je za određeni trenutak u zapremini iza projektila prikazan primer za 15 tačaka za koje se daju vrednosti posmatranih parametara strujanja. Dvo fazni UB modeli odslikavaju karakter promene posmatranih parametara u zapremini iza projektila.

Karakteristike proračuna: pritisak barutnih gasova – p, unutrašnja energija barutnih gasova – e, gustina barutnih gasova – ρ, brzina strujanja barutnih gasova – u i brzina barutnih zrna – u_b, grafički se prezentiraju u MATCAD-u (slike 1 do 5), kao prostorne funkcije vremena i položaja cevi. Sve karakteristike procesa opaljenja u cevi oružja su funkcije dve nezavisne promenljive (t, x), što znači da zavise i od vremena i od položaja u cevi, te se i opisuju prostornim krivim površinama. U tome je i osnovna razlika između klasične teorije unutrašnje balistike i teorije dvo faznog strujanja.

Funkcije su prikazane u aksonometrijskom položaju tako što je horizontalna ravan nezavisnih promenljivih (baza) za-
potpunim faktorskim planom eksperimenta obuhvaćeni su maksimalni pritisak barutnih gasova i početna brzina projektila. Analogno ovoj analizi moguće je da se postupak faktorske analize primeni i na ostale karakteristike strujanja (gustina barutnih gasova, poroznost, energija barutnih gasova, temperatura barutnih gasova, itd...);

postupkom disperzivne i regresivne analize izvršeno je rangiranje odabranih parametara, formirani su regresivni polinomi, dobijene srednje vrednosti za maksimalni pritisak barutnih gasova i početnu brzinu projektila, kao i njihove dozvoljene granice odstupanja. Na osnovu dobijenih regresivnih koeficijenta i formiranih regresivnih polinoma moguća je dalja korekcija odabranih parametara radi usaglašavanja rezultata modela sa rezultatima eksperimenta;

pritisak barutnih gasova i brzinu projektila izvršena je faktorska analiza za određeni vremenski trenutak, odnosno trenutak postizanja maksimalnog pritiska i brzine projektila na ustima cevi (početna brzina);

prupuni faktorski plan eksperimenta 2° primjenjen je u ovom radu na teorijski model dvofaznog strujanja. Na isti način faktorska analiza se može primeniti i na eksperiment na 6], što iziskuje znatno više vremena i novčanih sredstava. Najbolje je da se realizuje kombinacija teorijskog modela i eksperimentalnih istraživanja.

Literatura: