A NOTE ON THE MEIR-KEELER
THEOREM IN THE CONTEXT OF b-METRIC SPACES

Mirjana V. Pavlović a, Stojan N. Radenović b

a University of Kragujevac, Faculty of Science, Department of Mathematics and Informatics, Kragujevac, Republic of Serbia,
e-mail: mpavlovic@kg.ac.rs,
ORCID ID: https://orcid.org/0000-0001-6257-8666,
b King Saud University, College of Science, Mathematics Department, Riyadh, Saudi Arabia,
e-mail: radens@beotel.rs,
ORCID ID: https://orcid.org/0000-0001-8254-6688

DOI: 10.5937/vojtehg67-19220; https://doi.org/10.5937/vojtehg67-19220

FIELD: Mathematics (Mathematics Subject Classification: primary 47H10, secondary 54H25)
ARTICLE TYPE: Original Scientific Paper
ARTICLE LANGUAGE: English

Abstract:
In this note we consider the famous Meir-Keeler’s theorem in the context of b-metric spaces. Our result generalizes, improves, compliments, unifies and enriches several known ones in the existing literature. Also, our proof of Meir-Keeler’s theorem in the context of standard metric spaces is much shorter and nicer than the ones in (Čirić, 2003) and (Meir & Keeler, 1969, pp.326-329).

Keywords: b-metric space, b-complete, b-Cauchy, Meir-Keeler conditions, Picard sequence.

Definitions, notations and preliminaries

Let \((X, d)\) be a standard metric space and \(f : X \to X\) be a self-mapping. In the context of these spaces, the following (Meir-Keeler) conditions are well known: For each \(\varepsilon > 0\) there exists \(\delta = \delta(\varepsilon) > 0\) such that for all \(x, y \in X\) holds

ACKNOWLEDGMENT: The first author is grateful for the financial support from the Ministry of Education and Science and Technological Development of the Republic of Serbia (Metode numeričke i nelinearne analize sa primenama, 174002).
One says that the mapping f defined on the standard metric space (X, d) is contractive if $d(fx, fy) < d(x, y)$ holds, whenever $x \neq y$.

For more details, see (Čirić, 2003, pp.30-33, pp.56-58).

In 1969, Meir-Keeler proved the following:

Theorem 1 (Meir & Keeler, 1969, pp.326-329, Theorem) Let (X, d) be a complete metric space and let f be a self-mapping on X satisfying (1). Then f has a unique fixed point, say $u \in X$, and for each $x \in X$, $\lim_{n \to \infty} f^n x = u$.

Inspired by the above Meir-Keeler theorem, Čirić proved the following, slightly more general result:

Theorem 2 (Čirić, 2003, Theorem 2.5) Let (X, d) be a complete metric space and let f be a self-mapping on X satisfying (2). Then f has a unique fixed point, say $u \in X$, and for each $x \in X$, $\lim_{n \to \infty} f^n x = u$.

The example which follows shows that Čirić’s result is a proper generalization of the famous Meir-Keeler theorem:

Example 3 Let $X = [0, 1] \cup \{3n - 1\}_{n \in \mathbb{N}} \cup \{3n + \frac{1}{3n}\}_{n \in \mathbb{N}}$ be a subset of real numbers with the Euclidean metric and let f be a self-mapping on X defined by

$$fx = 0, \text{ if } 0 \leq x \leq 1 \text{ and } x \in [3n - 1]_{n \in \mathbb{N}},$$

$$fx = 1, \text{ if } x \in \left\{3n + \frac{1}{3n}\right\}_{n \in \mathbb{N}}.$$
Then one can verify that \(f \) satisfies (2) while it does not satisfy Meir-Keeler condition (1). For all details, see (Čirić, 2003, p.33).

Remark 1 Both previous theorems are true if the self-mapping \(f : X \to X \) satisfies condition (3).

Bakhtin (Bakhtin, 1989, pp.26-37) and Czerwik (Czerwik, 1993, pp.5-11) introduced \(b \)-metric spaces (as a generalization of metric spaces) and proved the contraction principle in this context. In the last period, many authors have obtained fixed point results for single-valued or set-valued functions, in the context of \(b \)-metric spaces. Now we give the definition of a \(b \)-metric space:

Definition 1.1 (Bakhtin, 1989, pp.26-37), (Czerwik, 1993, pp.5-11)

Let \(X \) be a nonempty set and let \(s \geq 1 \) be a given real number. The function \(d : X \times X \to [0, \infty) \) is said to be a \(b \)-metric, and only if, for all \(x, y, z \in X \) the following conditions hold:

\begin{enumerate}
 \item \(d(x, y) = 0 \) if, and only if, \(x = y \);
 \item \(d(x, y) = d(y, x) \);
 \item \(d(x, z) \leq s[d(x, y) + d(y, z)] \).
\end{enumerate}

A triplet \((X, d, s \geq 1) \) is called a \(b \)-metric space with the coefficient \(s \).

It should be noted that the class of \(b \)-metric spaces is effectively larger than that of standard metric spaces, since a \(b \)-metric is a metric when \(s = 1 \). The following example shows that, in general, a \(b \)-metric does not necessarily need to be a metric (Chandok et al, 2017, pp.331-345), (Došenović et al, 2017, pp.851-865), (Dubey et al, 2014), (Dung & Hang, 2018, pp.298-304), (Faraji & Nourouzi, 2017, pp.77-86), (Jovanović et al, 2010), (Jovanović, 2016), (Kir & Kiziltunc, 2016, pp.13-16), (Kirk & Shahzad, 2014).

Example 4 Let \((X, \rho) \) be a standard metric space, and \(d(x, y) = (\rho(x, y))^p, p > 1 \) is a real number. Then \(d \) is a \(b \)-metric with \(s = 2^{p-1} \), but \(d \) is not a standard metric on \(X \).

Otherwise, for more concepts such as \(b \)-convergence, \(b \)-completeness, \(b \)-Cauchy and \(b \)-closed set in \(b \)-metric spaces, we refer...

The following two lemmas are very significant in the theory of a fixed point in the context of b-metric spaces.

Lemma 1.2 (Jovanović et al, 2010, p.15, Lemma 3.1) Let \(\{a_n\}_{n \in \mathbb{N} \cup \{0\}} \) be a sequence in a b-metric space \((X,d,s \geq 1)\) such that \(d(a_n, a_{n+1}) \leq kd(a_{n-1}, a_n)\) for some \(k \in \left[0, \frac{1}{s}\right]\), and each \(n = 1,2,...\). Then \(\{a_n\}\) is a b-Cauchy sequence in a b-metric space \((X,d,s \geq 1)\).

Lemma 1.3 (Miculescu & Mihail, 2017, pp.1-11, Lemma 2.2) Let \(\{a_n\}_{n \in \mathbb{N} \cup \{0\}}\) be a sequence in a b-metric space \((X,d,s \geq 1)\) such that \(d(a_n, a_{n+1}) \leq kd(a_{n-1}, a_n)\) for some \(k \in [0,1]\), and each \(n = 1,2,...\). Then \(\{a_n\}\) is a b-Cauchy sequence in a b-metric space \((X,d,s \geq 1)\).

Remark 2 In (Došenović et al, 2017, pp.851-865), it is proven that the previous lemmas are equivalent.

Since in general a b-metric is not necessarily continuous, many papers related with b-metric spaces used the following lemmas to prove the main results.

Lemma 1.4 (Aghajani et al, 2014, pp.941-960, Lemma 2.1) Let \((X,d,s \geq 1)\) be a b-metric space. Suppose that \(\{a_n\}\) and \(\{b_n\}\) are b-convergent to \(a\) and \(b\), respectively. Then
\[
\frac{1}{s^2}d(a,b) \leq \liminf_{n \to \infty} d(a_n,b_n) \leq \limsup_{n \to \infty} d(a_n,b_n) \leq s^2d(a,b).
\]
In particular, if \(a = b\), then we have \(\lim_{n \to \infty} d(a_n, b_n) = 0\). Moreover, for each \(c \in X\), we have

\[
\frac{1}{s} d(a, c) \leq \lim \inf_{n \to \infty} d(a_n, c) \leq \lim \sup_{n \to \infty} d(a_n, c) \leq sd(a, c).
\]

Lemma 1.5 (Paunović et al, 2017, pp.4162-4174, Lemma 2.3) Let \((X, d, s \geq 1)\) be a \(b\)-metric space and \(\{a_n\}\) a sequence in \(X\) such that

\[
\lim_{n \to \infty} d(a_n, a_{n+1}) = 0.
\]

If \(\{a_n\}\) is not \(b\)-Cauchy, then there exist \(\varepsilon > 0 \) and two sequences \(\{m(k)\}\) and \(\{n(k)\}\) of positive integers such that the following items hold:

\[
\varepsilon \leq \lim \inf_{k \to \infty} d(a_{m(k)}, a_{n(k)}) \leq \lim \sup_{k \to \infty} d(a_{m(k)}, a_{n(k)}) \leq \varepsilon s,
\]

\[
\frac{\varepsilon}{s} \leq \lim \inf_{k \to \infty} d(a_{m(k)}, a_{n(k)+1}) \leq \lim \sup_{k \to \infty} d(a_{m(k)}, a_{n(k)+1}) \leq \varepsilon s^2,
\]

\[
\frac{\varepsilon}{s^2} \leq \lim \inf_{k \to \infty} d(a_{m(k)+1}, a_{n(k)}) \leq \lim \sup_{k \to \infty} d(a_{m(k)+1}, a_{n(k)}) \leq \varepsilon s^3.
\]

In particular, if \(s = 1\) and \(\{a_n\}\) is not a \(b\)-Cauchy sequence, then there exists \(\varepsilon > 0\) as well as two sequences \(\{m(k)\}\) and \(\{n(k)\}\) of positive integers such that the sequences

\[
d(a_{m(k)}, a_{n(k)}) \to \varepsilon^+ \quad \text{as} \quad k \to \infty.
\]

Main result

Now, according to the last Lemma (the condition \(s = 1\)), we formulate and prove the following result:

Theorem 5 Let \((X, d)\) be a complete metric space and let \(f\) be a contractive self-mapping on \(X\) satisfying the next condition:

Given \(\varepsilon > 0\), there exists \(\delta > 0\) such that for all \(x, y \in X\)

\[
\varepsilon \leq d(x, y) < \varepsilon + \delta \implies d(fx, fy) \leq \varepsilon.
\]
Then \(f \) has a unique fixed point, say \(u \in X \), and for each \(x \in X \), \(\lim_{n \to \infty} f^n x = u \).

Proof. Let \(x_0 \) in \(X \) be arbitrary. Consider the sequence of iterates \(\{f^n x_0\}_{n=0}^{\infty} \). If \(d(f^n x_0, f^{n+1} x_0) = d(f^n x_0, ff^n x_0) = 0 \) for some \(n \in N \), then \(a_n = f^n x_0 \) is a fixed point of \(f \). Assume now that \(d(f^n x_0, f^{n+1} x_0) > 0 \) for all \(n \in N \). Since \(f \) is contractive, the sequence \(\{d(f^n x_0, f^{n+1} x_0)\}_{n=0}^{\infty} \) is strictly decreasing. Therefore, there exists the limit of this sequence, say \(\varepsilon \), and \(d(f^n x_0, f^{n+1} x_0) > \varepsilon \) for all \(n \in N \). Assume that \(\varepsilon > 0 \). In this case, by hypothesis, there exists a suitable \(\delta = \delta(\varepsilon) > 0 \) such that (5) holds. From the definition of \(\varepsilon \), it follows that there is \(n \in N \) such that

\[
\varepsilon \leq d(f^n x_0, f^{n+1} x_0) < \varepsilon + \delta.
\]

According to (5), we get that

\[
d(f^n x_0, f^{n+1} x_0) = d(f^{n+1} x_0, f^{n+2} x_0) \leq \varepsilon,
\]

a contradiction. Therefore \(\lim_{n \to \infty} d(f^n x_0, f^{n+1} x_0) = 0 \).

Now we show that \(\{f^n x_0\}_{n=0}^{\infty} \) is a Cauchy sequence. If this is not the case, by applying Lemma 1.5 to the sequence \(\{f^n x_0\}_{n=0}^{\infty} \), we get that there exist \(\varepsilon > 0 \) and two sequences of positive integers \(\{m(k)\} \) and \(\{n(k)\} \) such that \(n(k) > m(k) > k \), and sequences (4) tend to \(\varepsilon^+ \) as \(k \to \infty \). Using the condition (5) with \(x = a_{m(k)}, y = a_{n(k)} \) and the \(\delta = \delta(\varepsilon) > 0 \), one obtains that there exists a positive integer \(l \) such that for each \(k \geq l \), we have

\[
\varepsilon \leq d(a_{m(k)}, a_{n(k)}) = d(fa_{m(k)-1}, fa_{n(k)-1}) < \varepsilon + \delta \text{ implies } d(fa_{m(k)}, fa_{n(k)}) \leq \varepsilon.
\]

This contradicts the fact that

\[
d(fa_{m(k)}, fa_{n(k)}) = d(a_{m(k)+1}, a_{n(k)+1}) \to \varepsilon^+ \text{ as } k \to \infty.
\]

Hence, \(\{f^n x_0\}_{n=0}^{\infty} \) is a Cauchy sequence.

The proof is further as in (Čirić, 2003) and (Meir & Keeler, 1969, pp.326-329).
To our knowledge, it is not known whether Meir-Keeler’s and Ćirić’s theorems hold in the context of a b-metric space. Also, there is no known example that confirms that conditions (1) or (2) or (3) holds in the context of b-metric spaces but that f does not have a fixed point.

However, with a stronger condition than (1), we have the positive result. Hence, our main result is the following:

Theorem 6 Let $(X,d,s > 1)$ be a b-complete b-metric space and let f self-mapping on X satisfy the following condition:

Given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$
\varepsilon \leq d(x,y) < \varepsilon + \delta \text{ implies } sd(fx,fy) < \varepsilon,
$$

where $a > 0$ is given.

Then f has a unique fixed point, say $u \in X$, and for each $x \in X$, \(\lim_{n \to \infty} f^nx = u\).

Proof. It is clear that for all $x, y \in X$ we obtain

$$
d(fx,fy) \leq kd(x,y),
$$

where $k = \frac{1}{s^a} \in [0,1)$.

Let $a_0 \in X$ be an arbitrary point. Define the sequence $\{a_n\}$ by $a_{n+1} = fa_n$ for all $n \geq 0$. If $a_n = a_{n+1}$ for some n, then a_n is a fixed point (unique) of f and the results follows.

So, suppose that $a_n \neq a_{n+1}$ for all $n \geq 0$. From the condition (8), we obtain

$$
d(a_n,a_{n+1}) \leq kd(a_{n-1},a_n).
$$

Further, according to (Miculescu & Mihail, 2017, pp.1-11, Lemma 2.2.) we obtain that $\{a_n\}$ is a b-Cauchy sequence in a b-metric space (X,d). By the b-completeness of (X,d), there exists $u \in x$ such that

$$
\lim_{n \to \infty} a_n = u.
$$

Finally, (8) and (10) imply that $fu = u$, i.e. u is a unique fixed point of f in X.
For the following facts and definitions, we refer to (Aghajani et al, 2014, pp.941-960), (Jovanović, 2016) and (Kirk & Shahzad, 2014) and the references therein.

Definition 2.1 Let \(f \) and \(g \) be self-mappings of a nonempty set \(X \) such that \(f(X) \subset g(X) \). Let \(x_0 \in X \) be an arbitrary point. Then \(fx_0 \in g(X) \), so we can assume that \(fx_0 = gx_1 = y_0 \) (say) for some \(x_1 \in X \). Again, \(fx_1 \in g(X) \), so we can choose \(x_2 \in X \) such that \(fx_1 = gx_2 = y_1 \) (say). Similarly, we can construct two sequences \(\{x_n\} \) and \(\{y_n\} \) such that \(y_n = fx_n = gx_{n+1} \) for all \(n \geq 0 \). Here the sequence \(\{y_n\} \) is called a corresponding Jungck sequence for the point \(x_0 \in X \).

Definition 2.2 Let \(f \) and \(g \) be the self-mappings of a nonempty set \(X \). If \(z = fx = gx \) for some \(x \) in \(X \), then \(x \) is called a coincidence point of \(f \) and \(g \), and \(z \) is called a point of coincidence of \(f \) and \(g \). The mappings \(f \) and \(g \) are called weakly compatible if they commute at their coincidence points.

Lemma 2.3 Let \(f \) and \(g \) be the weakly compatible self-maps of a nonempty set \(X \). If \(f \) and \(g \) have a unique point of coincidence \(z = fx = gx \), then \(z \) is the unique common fixed point of \(f \) and \(g \).

Now, we announce the following result which generalizes Theorem 5 in several directions:

Theorem 7 Let \((X,d,s>1) \) be a \(b \)-complete \(b \)-metric space and let \(f,g : X \to X \) be two self-maps such that \(f(X) \subset g(X) \), one of these two subsets of \(X \) being \(b \)-complete. Suppose the following conditions hold:

1. For each \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that
 \[\varepsilon \leq d(gx,gy) < \varepsilon + \delta \implies s^\delta d(fx,fy) < \varepsilon \]
2. and \(fx = fy \) whenever \(gx = gy \),

where \(a > 0 \) is given.
Then f and g have a unique point of coincidence, say $z \in X$. Moreover, for each $x_0 \in X$, the corresponding Jungck sequence $\{y_n\}$ can be chosen such that $\lim_{n \to \infty} y_n = z$. In addition, if f and g are weakly compatible, then they have a unique common fixed point.

Finally, we have an open question:

Prove or disprove the following:

- Let $(X,d,s > 1)$ be a b-complete b-metric space and $f,g : X \to X$ be two given mappings such that $f(X) \subset g(X)$, one of these two subsets of X being b-complete. Assume that the following conditions hold:

 for each $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that $\varepsilon \leq d(gx,gy) < \varepsilon + \delta$ implies $d(fx, fy) < \varepsilon$ and $fx = fy$, whenever $gx = gy$.

Then f and g have a unique point of coincidence, say $z \in X$. Moreover, if f and g are weakly compatible, then they have a unique common fixed point.

References

Faraji, H., & Nourouzi, K. 2017. A generalization of Kannan and Chatterjea fixed point theorem on complete b-metric spaces. Sahand Communications in Mathematical Analysis (SCMA), 6(1), pp.77-86. Available at: https://doi.org/10.22130/SCMA.2017.23831.

Кључне речи: b-метрички простор, b-комплетан, b-Cauchy-јев, Meir-Keeler-ови услови, Picard-ов низ.