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Abstract:

Introduction/purpose: The anomaly-based intrusion detection system
detects intrusions based on a reference model which identifies the normal
behavior of a computer network and flags an anomaly. Machine-learning
models classify intrusions or misuse as either normal or anomaly. In
complex computer networks, the number of training records is large,
which makes the evaluation of the classifiers computationally expensive.

Methods: A feature selection algorithm that reduces the dataset size is
presented in this paper.

Results: The experiments are conducted on the Kyoto 2006+ dataset and
four classifier models: feedforward neural network, k-nearest neighbor,
weighted k-nearest neighbor, and medium decision tree. The results show
high accuracy of the models, as well as low false positive and false
negative rates.

Conclusion: The three-step pre-processing algorithm for feature selection

and instance normalization resulted in improving performances of four
binary classifiers and in decreasing processing time.

Key words: anomaly-based intrusion detection, machine learning,
Kyoto 2006+.

Introduction

Intrusion detection systems (IDSs) monitor computer network
behavior to perform diagnostics of the security status and protect the
network from malicious activities or various anomalies. Intrusion
detection systems can be divided into two basic groups. Misuse or
signature based IDSs detect malware based on knowledge accumulated
from known attacks. Anomaly based IDSs detect deviations from a model
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of usual network behavior. The goal of anomaly detection is to build a
statistical model of normal network behavior and look for activities which
deviate from the created model (Proti¢ & Stankovi¢, 2020, p.7). The main
disadvantage of the signature based IDS is a difficulty to detect unknown
attacks. The biggest challenge in anomaly detection is to identify what is
considered normal. Machine learning (ML) based binary classifiers can
detect anomalies with a high accuracy of prediction. In supervised
learning, the number of training instances collected over a period of time
can be large, which makes the evaluation of the models computationally
expensive. Feature selection reduces the training set, which speeds up
the processing time and increases the accuracy of the classifiers. This
paper shows the results of the experiments of the three-step feature
selection and instances normalization pre-processing algorithm
conducted on the Kyoto 2006+ dataset and four machine learning
models, namely: feedforward neural network (FNN), k — nearest neighbor
(k-NN), weighted k-NN (wk-NN), and medium decision tree(DT).
Accuracy (ACC), false positive rate (FPR), false negative rate (FNR), and
processing time are given.

Feature selection and instances normalization: Three-
step pre-processing algorithm

One of the major issues in supervised ML is a large number of
instances in the training set. The aim of feature selection is to reduce the
dataset size and remove irrelevant features. Furthermore, raw data have
to be pre-processed before being fed to the input of the model so that
effects of one feature cannot dominate the others. In this paper, a three-
step pre-processing algorithm for feature selection is presented. The
algorithm is given as follows:

1 Identify and discard all irrelevant features;

2 Remove features which cannot be normalized into the range [-1,1];

3 Normalize instances into the range [-1,1] by applying the hyperbolic
tangent function:

2
tanh(n):1+62n -1, (1)

where n is the number of instances in the dataset.

Feature selection improves performances of the classifier, saves
memory space and decreases processing time. Additionally, instances
normalization speeds up the model training and reduces the domination
of one feature over the other ones.
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Data collection: The Kyoto 2006+ dataset

The Kyoto 2006+ dataset contains records of real network traffic
data collected from November 2006 to December 2015 at five different
computer networks inside and outside the Kyoto University (Takakura,
2020) (Proti¢, 2018, pp.587-589). During the observation period, over 50
million sessions of normal traffic, 43 million sessions of known attacks
and 426 thousand sessions of unknown attacks were recorded (Proti¢ &
Stankovi¢, 2018, p.44). The dataset consists of 14 statistical features
derived from the KDD Cup '99 dataset (Table 1) and 10 additional
features which enable more efficient investigation (Table 2) (Ashok
Kumar & Venugopalan, 2018), (Song et al, 2011, pp.29-36).

Table 1 — The Kyoto 2006+ Dataset — first 14 features

Tabnuuya 1 — Habop OaHHbix Kyoto 2006+ - 14 nepebix ¢byHKyul
Tabena 1 — Kyoto 2006+ 6asa noGamaka — npeux 14 ampubyma

No Feature Description

1 Duration The length of the connection (seconds).

2 | Service The connection’s server type (dns, ssh, other).

3 Source bytes The number of data bytes sent by the source IP address.

4 | Destination bytes The number of data bytes sent by the destination IP
address.
The number of connections whose source IP address and

5 Count destination IP address are the same to those of the current
connection in the past two seconds.

6 Same_srv_rate % of connections to the same service in the Count feature.
% of connections that have ‘SYN’ errors in the Count

7 | Serror_rate
feature.
% of connections that have ‘SYN’ errors in the Srv_count
(% of connections whose service type is the same to that

8 | Srv_serror_rate - .
of the current connections in the past two seconds)
feature.
Among the past 100 connections whose destination IP
address is the same to that of the current connection, the

9 Dst_host_count ) ;
number of connections whose source IP address is also
the same to that of the current connection.
Among the past 100 connections whose destination IP
address is the same to that of the current connection, the

10 | Dst_host_srv_count ) ; :
number of connections whose service type is also the
same to that of the current connection.
5 - -

11 | Dst_host_same_src_port_rate % of connections whosg source port is the same to that of

— = — = = the current connection in the Dst_host_count feature.

o : : ; :

12 | Dst host serror rate % of connections that have ‘SYN'’ errors in the

— = - Dst_host_count feature.

% of connections that have ‘SYN’ errors in the

13 | Dst_host_srv_serror_rate
Dst_host_srv_count feature.
The state of the connection at the time the connection was

14 | Flag .
written (tcp, udp).
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Table 2 — The Kyoto 2006+ Dataset — additional 10 features
Tabnuua 2 — Habop 0aHHbix Kyoto 2006+ - 10 dononHumernbHbIx hyHKUul
Tabena 2 — Kyoto 2006+ 6a3a nodamaka — dodamHux 10 ampubyma

No Feature Description
Reflects if IDS triggered an alert for the connection; ‘0’ means any
1 IDS_detection alerts were not triggered and an arabic numeral means the different

kind of alerts. The arenthesis indicates the number of the same alert.

Indicates if malware, also known as malicious software, was
observed at the connection; ‘0’ means no malware was observed,

2 | Malware_detection and string indicates the corresponding malware was observed at the
connection. The parenthesis indicates the number of the same
malware.

Means if shellcodes and exploit codes were used in the connection;

‘0’ means neither shellcode nor exploit code were observed, and an

3 | Ashula_detection arabic numeral means the different kinds of the shellcodes or exploit
codes. The parenthesis indicates the number of the same shellcode
or exploit code.

Indicates whether the session was attack or not; ‘1’ means normal. ‘-
4 Label 1" means a known attack was observed in the session, and ‘-2’
means an unknown attack was observed in the session.

Means the source IP address used in the session. The original IP
address on IPv4 was sanitized to one of the Unique Local IPv6
Unicast Addresses. Also, the same private IP addresses are only
valid in the same month; if two private IP addresses are the same
within the same month, it means their IP addresses on IPv4 were
also the same, otherwise are different.

5 | Source_IP_Address

6 Source Port Number | Indicates the source port number used in the session.

Destination IP It was also sanitized.
Address
8 Destination Port Indicates the destination port number used in the session.
Number
Start Time Indicates when the session was started.
10 | Duration Indicates how long the session was being established.

The proposed algorithm discards all categorical features as well as
features for further investigation, excluding the Label feature (step 1),
cuts all features containing instances that cannot be normalized into the
range [-1,1] (step 2) and normalize the rest of instances (step 3). Out of
24 features of the Kyoto 2006+ data set, 17 features are left after the first
pre-processing algorithm step and nine features (5-13) are left after the
pre-processing is done. The Label feature is used for the detection of
anomalies. Scaled instances not only reduce the effects of one feature to
the others but speed up the FNN since the network training is more
efficient if normalization is performed on inputs. If the number of inputs is
23, the sigmoid functions used in the hidden layer become easily
saturated. If the saturation happens at the beginning of the training, the
gradients will be small which may slow down the network training (Proti¢
& Stankovi¢, 2020, p.9).Also, instances are scaled due to the fact that
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distances in the wk-NN model lose accuracy because of a small
difference between the farthest and the nearest neighbors.

Classifier Models

In supervised machine learning, classifiers can be divided into two
groups. Lazy learners, such as the k-NN and the wk-NN, do not focus on
constructing a general model, but store the training data and weight until
a test set appears. Eager learners, such as the FNN, construct a
classification model before getting data for predictions.

k-Nearest Neighbor

The k-NN stores all instances corresponding to the training data into
the n-dimensional space. Classification is computed on a simple maijority
vote of the k-NN of each point, based on the Euclidean distance measure
given with (Proti¢ & Stankovi¢, 2020, p.9):

d(X,y)=\/sZp_l(Xis—ys)2- (2)

The prediction speed of the k-NN is medium as well as memory
usage. Interpretability of the classifier is hard. In the experiments, the
distinction between classes is medium, and the number of neighbors is
set to 10 (Proti¢ & Stankovi¢, 2018, p.48).

Weighted k-Nearest Neighbor

The main idea of the wk-NN is to extend the k-NN so that the
instances within the training set which are particularly close to the new
instance should get a higher weight in the decision than more distant
ones (Tsigkritis et al, 2018, pp.70-84). The distances are transformed
into the weights as follows:

1

W:W. (3)

The wk-NN classifier adapts as the new training data is collected,
which allows the algorithm to respond quickly to changes in the input
during real-time use. In contrast with the fast training stage, the algorithm
requires expensive testing. All the cost of the algorithm is in the
processing time. All characteristics of the classifier are the same as for
the k-NN model except flexibility which is also medium (medium
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distinctions between classes using a distance weight) (Proti¢ &
Stankovi¢, 2018, p.48).

Medium Decision Tree

The Decision Tree is one of the graph-like algorithms which use
branching methods to illustrate every possible outcome of decisions,
where nodes represent features, links represent decision rules and leafs
represent outcomes. The lIterative Dichotomy 3 algorithm (ID3) calculates
entropy and information gain to build a tree (Proti¢ & Stankovi¢, 2020,
p.9). Entropy is a measure which controls how the tree decides to split
the data. If the target feature can take on k different values, then the
entropy of the S relative to this k-wise classification is given as follows:

Entropy (S)= —il p;log, (p,). (4)

where p; represents the proportion of S belonging to the class i. The
information gain represents the expected reduction in entropy based on
the decrease in entropy after the dataset is split on the feature (See
Eq.5).

Gain (S,A)=Entropy (S) - |SS—”|‘Entropy (s,)- (5)
veavlues (A)

The feature with the highest information gain will split first. The
Gain(S,A) of a feature A relative to a collection of examples S provides
information about the target function value; given the value of some other
feature A that splits S into the subsets S, (Proti¢ & Stankovi¢, 2020,
p.10).The characteristics of the medium DT classifier are: fast prediction
speed, low memory usage, easy interpretability and medium model
flexibility, i.e. medium number of leaves for finer distinctions between
classes. The maximum number of splits is 20 (Proti¢ & Stankovi¢, 2018,
p.48).

Feedforward Neural Network

The objective of the FNN is to minimize an output error in
accordance with the back-propagation algorithm. The FNN transfer
function used in the experiments is given with Eq. 6.

yi(W’W):Fi(Zq:Wijfj(Zm:wjixl+Wj0)+Wf0j- (6)
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where x;are inputs, y;are outputs, w and W are weight matrices, fand F;
denote the transfer functions of hidden and output layers, m represents
the number of inputs, q represents the number of outputs, and wj and
Wy denote biases. The objective of the FNN presented in this paper is to
minimize the output error in accordance with the Levenberg-Marquardt
(LM) algorithm (Levenberg, 1944, pp.164-168) (Marquardt, 1963, pp.431-
441).The LM algorithm performs a combined training process: around the
area with complex curvature, the LM switches to the gradient descent
(GD) algorithm until the local curvature is proper to make a quadratic
approximation. Then it approximately becomes the Gauss-Newton(GN)
algorithm which can speed up the convergence (Kwaket al, 2011,
pp.327-340). The structure of the FNN presented in this paper is 9 inputs,
9 weights in the hidden layer and one output. The transfer function in the
hidden layer is tangent hyperbolic while the output layer's transfer
function is linear.

Experiments

A key criterion which differentiates classification techniques is
prediction accuracy which represents the ratio of the number of instances
correctly classified to the total number of instances (See Eq. 7).

TP + TN

ACC = ’
TP +TN + FP + FN

(7)

where TP (true positive) represents the number of positive samples
correctly predicted by the classifier, FN (false negative) represents the
number of positive samples wrongly predicted as negative, FP (false
positive) represents the number of negative samples wrongly predicted
as positive and TN represents the number of negative samples correctly
predicted by the model (Ambedkar & Kishore Babu, 2015, pp.25-29).
Additionally, processing time (t), false positive rate (FPR) and false
negative rate (FNR) are also measurement criteria (Nguyen & Armitage,
2008, p.56). Processing time (t) is a sum of the training and testing time.
FPR represent the fraction of negative samples predicted as a positive
class (See Eq. 8).

FPR=— (8)
CTIN +FP
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FPR is a measure of accuracy for a test. It is defined as the
probability of rejecting the null hypothesis, i.e. it is a probability that a
false alarm will be raised; a positive result will be given when the true
value is negative (Split, 2020). Ideally, FPR should be low (0.1 or less). A
low FPR indicates that the classifier does not classify many irrelevant
examples as relevant (Shirabad et al, 2007, p.198).

FNR represent the fraction of positive samples predicted as a
negative class (Eq.9):

FNR = ————. 9)

FNR is the probability that a true positive will be missed by the
classifier.

The experiments presented here are conducted on three pre-
processed daily records from the Kyoto 2006+ dataset (See Table 3) and
performed using Intel(R), Core(TM) i7-2620M CPU 2.7GHz processor,
with 16GB RAM Installed memory.

Table 3 — Daily records — number of instances
Tabnuua 3 — Konuyecmeo 3k3emnnsipos 8 0eHb
Tabena 3 — bpoj uHcmaHyu no daHy

Day Number of instances
03/02/2007 57278
14/02/2007 58317
27/02/2007 57278

All classifiers are trained so that 70% of daily records are used for
training and 30% are used for testing. The results on accuracy, FPR,
FNR, and processing time are given in Figures 1-4, respectively.
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Accuracy [%]
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FNN WK-NN k-NN DT

Figure 1— Accuracy
Puc. 1 - ToyHocmb
Cnuka 1 - TayHocm

As it can be seen from Figure 1, the wk-NN has the highest
accuracy of all of the models (up to 99.5%). However, the accuracies of
both k-NN and DT are also high (99.4%). The FNN is less accurate than
the other models but its accuracy is still very high (99.2%).

Low FPR (see Figure 2) indicates that the models classify a small
number of relevant examples as irrelevant, so the probability a false
alarm will be raised is very low. Although all models show a low
probability of false alarm, the k-NN model classifies the highest number
of irrelevant examples as relevant.

FNR has the highest value for the DT model, trained on the
14.02.2007 dataset. The lowest value of FNR gives the FNN trained on
the 27.02.2007 dataset. However, FNRs of all classifiers are lower than
0.8%, and lower than 0.2% if DT is not considered as relevant.

As it is expected, the processing time is high for the lazy learners
(the k-NN and the wk-NN) and exceeds 50s. The FNN and the DT show
significantly shorter processing time (more than 10 times).
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False positive rate

0,03
0,025
0,02 =03 02 2007
0,015 14 .02 2007
0,01 m27.02.2007
0,005
0
FNN whk-NN K-NN DT
Figure 2 — False positive rate
Puc. 2 — JloxHornonoxumerbHbili MoKasamersib
Cnuka 2 — Mepa naxHo nosumusHuUx demekuyuja
False negative rate
0,008
0,007
0,006 =03 02 2007
0,005
14 .02 2007
0,004 =
0,003 27 02 2007
0,002
0,001
0

FNN wk-NN k-NN DT
Figure 3 — False negative rate

Puc. 3 — lloxxHoompuyamersbHbIl rnokaszamersib
Cnuka 3 — Mepa naxHo HezamusHux 0emekuyuja
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Processing time [s]
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Figure 4 — Processing time
Puc. 4 — Bpemsi o6pabomku
Cnuka 4 — Bpeme o6pade
Conclusion

The three-step pre-processing algorithm for feature selection and
instance normalization resulted in improving performances of four binary
classifiers and in decreasing processing time.

The algorithm reduced three training sets derived from the Kyoto
2006+ dataset. Accuracy, false positive rate, false negative rate, and
processing time are given as measures of the performances of the
classifiers.

The results show the highest accuracy of the wk-NN model. Low
false positive rates indicate that the models classify a small number of
relevant examples as irrelevant. FNR is significantly higher for the DT
model than for FNN, k-NN, and wk-NN models.

The processing time of the lazy learners is significantly higher than
the processing time of eager learners.
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POJIb NPEABAPUTEJIBHOIO NMPOLUECCUPOBAHUA MNPU
OBHAPYXEHUU ATAK, OCHOBAHHbBIX HA AHOMANNAX
HaHuena [1. Mpotny

BoopyxeHHble cunbl Pecnybnuku Cepbus, NeHepanbHbin wTab,
YnpaBneHve nHopmaTrki 1 TenekoMmyHukaumm (J-6),

LleHTp npuknagHo maTemMaTuKn U SNEKTPOHMKM,
r. benrpag, Pecnybnuka Cepbus

PYBEPUKA TPHTW: 20.00.00 MUHOOPMATUKA,;
20.15.05 UHdbopmaLmMOoHHbIe criyX0bl, ceTn, CUCTEMbI B
uenom
BWO CTATbW: opurmHanbHasa HayyYHas ctatbsl

Pe3swome:

BeedeHue/uenb: Cucmema o0b6HapyxeHUsI amak, OCHO8aHHbIX Ha
aHomarnusix, 6bIsiesisiem 8MOPXEeHUEe 8 KOMIbIOMEPHY cemb,
OCHoO8bI8asiCb Ha 3amaJsioHHoU Modesnu, Kkomopasi udeHmughuyupyem
HopmaribHoe rnosedeHUe KOMIMbIOMEPHoOU cemu, Oemekmupysi
aHomanuro. Modenu MawuHHO20 0b6y4eHusi  Kaccuguyupyrom
8MOPXKEHUs1 unu 3ro0yriompebrieHuss no 08ymM epyrnnam: HopMaribHbIl
mpaguk unu aHomanusi. QueHka Moderneli Kraccugukamopos
s85155emcsi 00CMamoYHO CrI0XHbIM MPOUECCOM, MaK KakK 8 CIIOXHbIX
KOMrbromepHbIX cemsix 60nbwoe Kou4ecmso obyyvarouux 3anuced.

Memodbi: B 0daHHOU cmambe npedcmasreH anzopumm eblbopa
ampubymos, Komopbil yMeHbUaem MHOXXeCm80 OaHHbIX.

Pesynbmamsi: OkcrniepumeHmsb! npoeedeHbl Ha MHOXecmee OaHHbIX
Kyoto 2006+ 6a3bl u Ha 4Yembipex MOOefigxX Kraccughukamopos, ¢
rnomMowbro criedyroujux memodos: Memod HelpOHHOU cemu € rpsMol
ces3bi0, mMemod k-brnuxatiueao coceda, mMemolO B38eWeHHbIX K-
bnuxatiwux cocedell u MemoO Oepeea MPUHAMUS pPeweHul.
Pesynbmambi  npo8edeHHbIX 3KCMEPUMEHMO8 0Ka3asau B8bICOKYH
moyHocmb modened.

Bbi80o0b1: TpexcmyrieH4ambil aneopumm rpedsapumersibHol 0bpabomku
0ns1 8bibopa ampubymos u HopManu3auuu 3K3emriisapos obecrieyurn
yrAyqweHue xapakmepucmuk Yemsipex 6UHapHbIX Knaccughukamopos u
COKpamur1 epemsi 06pabomku OaHHbIX.

Knwouesble cnosa: obHapyxeHue aHomanul, MawuHHoe obydeHue,
KYOTO 2006+.

YTUUAJ NMPENPOLIECYUPAHKA HA OETEKUWJIY HAMAOA
3ACHOBAHMX HA AHOMAJIMJAMA

Harujena . MpoTtuh

Bojcka Cpbuje, NeHepanwTab, YnpaBa 3a TenekomyHvkaumje n nHpopmaTtuky
(J-6), LleHTap 3a npumereHy MaTeMaTuKy U eneKkTPoHUKY,
Beorpan, Peny6nuka Cpbuja
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OBNACT: pauyHapcke Hayke, MHCpOpMaunoHe TexHororuje
BPCTA YJTAHKA: opyrnHanHu Hay4Hu YnaHak

Caxemak:

Yeod/yurb: Cucmem 3a Oemekyujy yrnada Koju ce 3acHU8a Ha 0emeKkyuju
aHomarsuje omkpuea Hamad Ha padqyHapCcKy Mpexy Ha OCHo8Yy
pegepeHmHoe Mmodenia Koju UOeHMUGUKYje HOPMAasIHO [OHalame
padyHapcke Mpexe u Oemekmyje aHomanujy. Modernu MawuHcKo2
yyersa Knacugukyjy ynade unu 3royriompebe y 0se epyne: epymny
HOopMariHo2 caobpahaja u 2pyny aHomarnuja. Y CIIOXeHUM paqyHapCKum
Mpexama 6poj uHcmaHuu y obydasajyhem ckyrny Moxe bumu eeriuku,
wmo eesarnyauyujy modesia Kriacughukamopa YUHU MeLKOM.

Memode: Y pady je nipukasaH anzopumam 3a u3bop ampubyma Koju
CMaHbyje 8erluduHy cKyrna rnodamaka.

Pesynmamu: EkcriepumeHmu cy udeedeHu Ha ckyry noGamaka u3 Kyoto
2006+ 6ase u Ha Yyemupu MmoQlena Kriacugukamopa: modeny feedforward
HeypoHcKa Mpexa, Moderly K-Hajoruxux cyceda, modersly noHOepucaHux
K-Hajoriuxux cyceda u molenty cmabrna o0nyqugama. Pesynmamu
roKasyjy 8ucoKy ma4yHocm modera.

Bakrbyydak: [Npenpouecyupare mpoKopayHUM an2opummom 3a u3bop
ampubyma u HopManu3auyujy UHCmaHuu pe3yimuparo je nobosrbwarem
rnepghopmaHcu Yemupu 6GuHapHa Kracugukamopa U CMaHUIo epeme
npoyecyuparba.

KbyuHe peuu: demekuyuja aHOMarnuja, MaWUHCKO y4erse, Kyoto

2006+.
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