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Abstract:

Introduction/purpose: Starting from the Hamiltonian an alternative de-
scription of quantum mechanics has been given, based on the sum of all
possible paths between an initial and a final point.

Methods: Theoretical methods of mathematical physics. Integral method
based on the path integral.

Results: The method and concepts of the path integral could be applied
to other branches of physics, not limited to quantum mechanics.

Conclusions: The Path Integral approach gives a global description of
fields, unlike the usual Lagrangian approach which is a local description
of fields.
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Path integral

The standard formulations of quantum mechanics, developed by
Schrodinger, Heisenberg and others in the 20-ies, have shown to be equi-
valent to one another soon thereafter.

In 1933, Dirac (Dirac, 1933) made the observation that the action plays
a central role in classical mechanics — he considered the Lagrangian formu-
lation of classical mechanics to be more fundamental than the Hamiltonian
one, but it seemed to have no important role in quantum mechanics as it
was known at the time. He arrived at the conclusion that the propagator
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in quantum mechanics “corresponds to” e(i/™S5 where S is the classical
action evaluated along the classical path.

In 1948, Feynman developed Dirac’s suggestion (Feynman, 1948), and
succeeded in deriving the third formulation of quantum mechanics, based
on the fact that the propagator can be written as a sum over all possible
paths, not just the classical one, between the initial and final points (Feyn-
man, 1950, 1951). Each path contributes (/"5 to the propagator. So
while Dirac considered only the classical path, Feynman showed that all
paths contribute: in a sense, the quantum particle takes all paths and the
amplitudes for each path add according to the usual quantum mechanical
rule for combining amplitudes.

This discovery remains valid even for relativistic quantum mechanics,
represented by quantum field theory. While the usual Lagrangian approach
is a local description, the path integral approach corresponds to a global
description of fields, being integrated over all possible configurations.

Young’s experiment

Suppose to create a Gedankenexperiment inspired by the original
Young'’s two slit diffraction experiment (Feynman & Hibbs, 1965). A source
S emits non classical particles (for instance, electrons) that end on a de-
tector sited in O. In between, there is a screen with two slits, A; and As.
The source emits particles at the time ¢ = 0 that are detected at the time
t = T. From quantum mechanics, we know that because of the superpo-
sition principle, the amplitude of particle detection is obtained by summing
over all possible amplitudes, that is, the amplitude of travelling through the
slit A; to O, and the amplitude of travelling through the slit A5, namely

2
A(Starting from S, detected at 0) = > A(S = 4, > 0), (1)
i=1

and of course one sums over different A;s when having more slits than two.
Add now another screen between A and O, with slits B;. Then another
one between B and O with slits C; and so on. We have to add all these
intermediate steps, so in the limit of infinite screens with the infinite number

of slits we have the relation

A(From S detected at O travelling in the time T') =
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Z A(S — O in the time T for a particular path) , (2)
path

so we have to sum over all possible paths that start from S and end in O in
the time T.

We shall now fully translate eq. (2) in the quantum mechanics language.
Remember that the Hamiltonian H is the generator of time translations, so
the amplitude to propagate from an initial point ¢; to a final point ¢z in a
time T is given by

(qr e | qr) . (3)

Dirac suggested, and Feynman first used eq. (3) to obtain an expression
for eq. (2) by splitting each path into infinitesimal elements and then taking
the continuum limit.

Divide the time T in N parts each lasting ¢t = T//N, then eq. (3) could
be rewritten as

(qr e TH| qr) = (qr ‘efizStHefi&tH eI gy (4)

the term ¢~ being repeated N times. Now use the fact that |¢) is a
complete set of states, thatis, [dq/(27)'/? |¢)(¢| = 1, and insert 1 between
every exponential factor exp(—idtH):

(qr e qr) =
Aﬁ/d% <QF‘€_i6tH‘QN—1><QN—1 ’e‘i“H’qzv_z>---
o) Ve
(aa |7 | 1) qy e 1) (5)

Feynman'’s formulation of quantum mechanics

The key ingredient of eq. (5) is the factor (g1 |e~**| ¢;). From quan-
tum mechanics we know the explicit form of the Hamiltonian function,

A2

_ P 5
H= 24 V(i). ®)

where p, ¢ are the usual operators with eigenspace p|p) = plp), ql¢) =
q|q). Since the spaces ¢ and p are connected via a Fourier transformation,
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they have the property that (¢|p) = ¢4, (p|q¢) = e~4, and the p space is
complete as well as the ¢ space: [dp/(27)'/? |p)(p| = 1 . From the explicit
form of the Hamiltonian (6),

. e » .
" i0tH _ e i0tp /Qme 0tV (§)

; (7)

and by a judicious insertion of factors 1 coming from the completeness of
the ¢ and p spaces we find

(gj+1 ‘e_iétH‘ ;) =
% / dq / dp (g1 ’e*i‘”’?/ 2’”’ p)(p 6*i5tv(‘§)‘ a)al g;) - (8)
Itis clear that for any function f, f(¢)|q) = f(¢)|q) and f(p)|p) = f(»)Ip)

because it is acting on eigenstates. Therefore, we could drop the symbol
of the operator in eq. (8) and write

<Qj+1 ‘e—i&H‘ QJ> —
1 —i8tp?/2m —i
o~ /dq /dpe otp*/2m =18tV (@) (0. | p)(p | g){q| gj) =
/ dg / dp o010 /2m =BV (@) iy g =ipa g (g _ )

e~ 0tV (a5) /dp e~ 10tp?/2m ip(d541—45) (9)

We could readily recognise that the last integral over p is Gaussian and
can be solved with the aid of eq. (57) of (Fabiano, 2021a):

(gj+1 ‘e_i&H‘ q) =

o\ 1/2
o0tV (g;) /dp o~ 10tP?/2m Lip(q;41—4;) — ,—i6tV ;) <_2mm> y
ot

o\ 1/2
e[im(qj+1—qj)2}/25t _ e—iStV(qj) <_2g”m> eiét(m/?)[(%+1—q1)/5t}2 ) (10)
t

Putting this result into eq. (5) gives us

(ar e | ar) =
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N/2 N-1

(—27”'7”> 11 / dg; /D S ) V@)Y (qq)
=0

ot

where qo = ¢; and gy = gr. We can now go to the continuum limit, that is,
§t — 0 or N — +o0, SO we can replace [(g;+1 — g;)/6t]? with ¢* and sums
with integrals.

A very important definition is the integral over paths:

—omim\ V2 ¥
/Dq“) = Nlirfoo< 5t ) 1 /d% ’ 12)
j=0

where the D symbol means that one has to integrate over all possible paths
q(t) with fixed start and ending points, ¢(0) = ¢y and ¢(T') = qr. Itis a
functional integration.

We have thus obtained the so called path integral representation for the
amplitude:

(ar | i) = [Daft) iV [y i cnd - (13)

Comparing both sides of eq. (13), one could notice that starting from the
Hamiltonian we have naturally ended up with the Lagrangian. In classical
mechanics, the action S is defined starting from the Lagrangian as S(q) =
fOTdt L(q,q), and is a functional of ¢(t). By restoring Planck’s constant &
and by dropping the explicit ¢ notation for the functional measure, we could
rewrite eq. (13) as

(qr

| gr) = [Dg /S0 (14)

It is worth noticing that the quantum mechanical amplitude of eq. (14)
involves the explicit calculation of the classical action S. The path integral
is the only occurrence where the action is explicitly needed, where in all
other cases only the extremisation of the action, that is, the equations of
motion, are required.

Schrodinger equation

Our next step is to derive the Schrédinger equation by means of path
integral formalism. Since itis a differential equation we need only to find out
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the infinitesimal evolution of the wave function in time and space. Setting
the initial conditionsast; =0, ¢, = ¢, tp =t,qp. =q;dt =tandn=¢ —q
are infinitesimal. The time and space evolution for the wave equation from
the point (0, ¢) to the point (¢, t) is given by

—+00
¥(g,t) = / dq' K(g,t;¢',0)9(q’,0) , (15)
where K is the evolution amplitude with proper normalisation, as || =
1. From eq. (10), we have the explicit form for a propagation amplitude
between two points, so restoring & we can write

oy — (Y2 sta{m/2)la-a) /802 -V(a)}
K(q.6t:q,0) = (5= ) e . (18)

By changing the integration variable to n = ¢’ — ¢ and reinserting eq. (16)
into eq. (15), we obtain

mo\Y2 [T st n ] m/ 2 52—V (g}
v = (5i) [ ane Hen o an

Now, we have two infinitesimal quantities, n and 6t. Because of the
speed of light, we have the limit /6t < 1 and both are infinitesimals of the
same order. So we can expand the potential and the wave function at the
same time

o-iot/nV(gin) _q _ ;0 [V(g) +nV'(q) + O(*)] =

h
1%V (g) — V(@) + OGP, ) (18)
and )
(g +m) = (a,0) +n¢/(¢,0) + 50*¥" (¢, 0) + O() . (19)

Plugging Taylor expansions back in eq. (17) yields

m 1/2 [+oo o,
_ imn?/(2h6t)
96,00 = (555 / dne X

¥(g,0) — z"%vm)wm, 0) + n' (g, 0) + %n%”(q, 0)+0@6t*, %) | . (20)
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By inspection, the integral in 7 is reduced to Gaussian momenta given
in eq. (58) of (Fabiano, 2021a), where linear terms vanish because of sym-
metry. By resolving integrals, we obtain

4000 = (57) [(2”77“&)1/2 (v0.0) -5 vi@ia0) +

2mihdt m

¥"(q,0) + O(5t%)

omitiot\ V2 ihot
2m

m

B0+ 3t | 00,0~ 5V @0(a.0)| £ 06 (@)

After moving the first term (¢, 0) to Ihs and dividing it by ¢, we obtain

. i 2 2
(q,5t) — $(g,0) {_ﬁf?Q n V(qﬂ P(0,0)+ 06, (22)

ot h

and by taking the limit ¢ — 0 we obtain the time dependent Schrddinger
equation

ih

2 2
81/’(%37” _ [_ﬁag + V(q)] b(g,t) . (23)

Relativistic field theory

Instead of dealing with fixed initial and final positions ¢; and ¢r we are
often faced with specifying more general initial and final states |I) and |F').
Then we are interested in calculating (F|e~*"*|I), that can be obtained
from eq. (13) by inserting two complete sets of states

#lem = [ [dor dar (Flaedar | ad@lD . (@4

Almost always initial and final states are the same, that is, the ground
state |0). The amplitude (0|e~*T*|0) is denoted by Z,

Z = (0le""0) (25)

because Zustandssumme, that is, the “sum over states” was the original
German term for the partition function.

The path integral formalism can be extended from quantum mechanics
to continuum field theories that describe physical systems with an infinite
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numbers of degrees of freedom. Starting from ¢(¢), a 0 + 1 dimensional
case for quantum mechanics (we have just discretised the time coordinate
in section Young’s experiment) to a field theory in 1+ 1 dimensions for sim-
plicity, ¢(x,t), the procedure is completely analogue. The new step is the
space discretisation - the length L of space has to be divided in infinitesimal

parts 6z such that
L
dox = N (26)
and by denoting the coordinate as x,, = mdz, with ¢(x,,,) = ¢, for 0 <

m < N’ we can define the functional integral over the field ¢ like:

N’

=0
in complete analogy to eq. (12). The action is now of course a function of
¢ and 9,9, S(¢) = [dPx, L(¢,0,0).

An essential difference from the quantum mechanical case, however, is
that, from a mathematically rigorous point of view, the integral just defined
in eq. (27) is divergent in the continuum limit. This difficulty is obviated by
absorbing the divergence into a normalisation constant N when computing
quantities such as, for instance, the partition function of eq. (25):

Z=N / D eli/MS(@) (28)

From this expression for Z, we see that the integral in the classical limit
h — 0 is given by a phase S multiplied by a large quantity, that is, a rapidly
oscillating quantity. Mathematically, it is clear that the major contribution to
the path integral comes from fields that extremise the action, while other
configurations tend to cancel each other by symmetry. Those fields are the
ones that satisfy
95(¢)
0
and such fields are by definition classical fields ¢ that solve Lagrange
equations

=0, (29)

9 oL oL
“5(au¢cl) B 5¢cl .
To prove this statement, we will use the so-called saddle point method
or stationary phase method that applies when the integral could be writ-
ten as some exponential function. For a review on the subject, see, for

(30)




instance (Fabiano & Mirkov, 2022). We can expand the action in series to
read

525(¢cl)
dp?

where the linear term is missing by definition because the action is station-

ary. By plugging this result back into eq. (28) we have, yet another time, a

Gaussian integral in infinite dimensions that can be solved with the aid of
eq. (60) of (Fabiano, 2021a):

ﬂ@=SWM+1<

: )P 406 - 0af). (1)

‘Z_N&wwmo[”mirﬂu+omﬂ (32)
= det[S" (per)] ’

and it is clear that the exponential term is the essential contribution as 7 —
0.

Free field
We begin with the Lagrangian

L= (067 -] | (33)

that describes the so called free or Gaussian theory. The equation of mo-
tion is the well-known Klein—Gordon equation describing a relativistic bo-
son particle of the mass m

(O4+m?)p=0, (34)

where [0 = 0"0,, is the d’Alembert operator, with a plane wave solution
¢(z,1) = ei@=*7) and a dispersion relation w? = k2 + m?2. Before writing
the amplitude, it is customary to add a term like J(x)¢(x) in the Lagrangian,
where J(z) is the so-called source function whose actual form is not rele-
vant, provided integrals are convergent, as will be clear later. We have

and focussing on the action integrating by parts, and provided the fields ¢
fall off sufficiently rapidly at infinity, we could rewrite it as

/dﬁiua@Q—nﬂ&y+ww:/h# P;¢¢F+nfw2+J¢ - (36)
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By putting this new form back into eq. (35)
Z-N / D ¢t Jart {=La(C+m?)+s} (37)

one obtain once again a Gaussian integral, quite similar to the one of
eq. (57) of (Fabiano, 2021a). This time, however, a and b are not num-
bers, but matrices. Consider the generalisation of the Gaussian integral to
matrices, then we have

+oo  ptoo +oo NV N %
T s emper - [T T i
/_OO /_OO /_OO il;[ldxze _[det(A)] e . (38)

where x- A-x = z;A;;2; and J - x = J;;z;, with repeated indices summed
over. To prove eq. (38), diagonalise A by an orthogonal transformation
O:A =071 D-0, where D is a diagonal matrix with elements given
by all eigenvalues of A. This operation is always possible because A is a
definite positive matrix, otherwise the integral would not converge. Define
anew variabley = O-x, thatis, y; = O;;x;, then the exponential will reduce
to a sum of squares:

X-A-X::L‘iAijaCj:y-O_l-A-O-y:}"D'y:yiDiiyi~ (39)

The Jacobian of such transformation is 1 by definition, so eq. (38) re-
duces to a product of one dimensional Gaussian integrals, which proves
the formula for J = 0. If not a further step is needed, a variable translation
defined as y’ = y + A~1.J, which again does not change the integration
measure, dy’ = dy.

Coming back to eq. (37), the role of A is here played by the differential
operator — (O + m?). Its inverse is given by the function D that obeys

— (O +m)D(z—y) =W (= -y), (40)

because, since we are dealing with the continuum, Kronecker’s delta ¢;;
for the definition of inverse operators Aj‘,j have to be replaced by Dirac’s
delta functions §*) (x — ). The resulting function D is the well-known free
propagator for a scalar relativistic particle of the mass m, here written as
a less familiar function of the coordinates = instead of its more popular

Fourier transform.
1002



We end up with
Z(J) = Ce~ WA [ [dlzdy J@)D=y)I(y) = W) (41)

where D(z — y) obeys eq. (40). The overall normalisation factor C clearly
does not depend on J, but on the determinant of D which has no interest.
Observe that C = Z(J = 0) so that

Z(J)=Z(J = 0)e) | (42)

and
_ 1 / /d4xd4yJ D(z — y)J(y) (43)

is only quadratic in J, while Z(.J) depends on arbitrarily high powers of .J.

Green functions

By going in momentum space, eq. (40) is easily solvable (Schwinger,
1951). Remembering the Dirac delta function in momentum space

4 .
(e =9) = [ Mo (44)
m
one obtains A o)
d*k ety
Diw—y) = / S (45)

With the help of egs. (59) and (61) of (Fabiano, 2021a), it is possible
to obtain the explicit form for D(z) in Euclidean space. By rewriting the
denominator with eq. (61) of (Fabiano, 2021a) and computing the Gaussian
integral, we obtain

Dley= L [ Tar et -
- 2DgD/2 |, o
1 K(D—Q)/2(’37D (D—2)/2

2m) D2 |z|0-272 " 7 (46)
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where K, (z) is a Bessel function. For a half integer argument, Bessel
functions reduce to elementary functions, for example in D =1

1
- —m|z|
D(x) o€ , (47)
while for D =3 )
_ —m|z|
D(x) 747r|x]6 . (48)

Equation (46) can be used to obtain asymptotic behaviours for D(z);
one finds for |z| — 400

T 1/2 - - - —m|x
D(z) = (§> (27)~D/2| | (= D/241/D)y (D/2-3/2) =mlal (49

while for |z| — 0 we have
I _ppn(D _Dy2
D(z) = 477 r 5 1) |z for D > 2, (50)

and D
D(z) = (4m)~P/?1 (1 - 2) mP=2 for D < 2 (51)

respectively.

We shall see next the importance of the source function. From eq. (35),
we see how a functional derivative in J(x) will furnish us the expectation
value of the field. Using the fact that

J

57 W =@ -y, (52)

as per definition of a functional derivative, from Z(.J) we could obtain the
propagator, or the time ordered two point function as

"9)

It is straightforward to generalise this expression to an n—point function:

G(x1,29,...,xn) = 1"(0|Tod(x1)d(x2) ... d(zy)| 0) =
o"nZ(J)
0J(21)0J (z2) ...0J (xy)

(54)

J=0




Explicitly calculating the four point function yelds:

4
O ITole) o)l 0) = — ot S

= G(x1 — 29)G (23 — x4) + G(x1 — 23)G (22 — 24)+
G(Q?l — IE4)G(I’2 — xg) s (55)

the sum of all possible combinations of x; comes out because of the func-
tional derivative that sports also a Dirac’s delta. In this manner, we have
derived Wick’s theorem on contractions starting purely with c-numbers ex-
pressions.

Z(J) can also be written as a power series in .J. Calling

nZ(J)
0J(21)0J (x2) ... 0J (xn) | ;g

Z(")(xl,xg, ey Ty)

(56)

and noting besides the equivalence with eq. (54), we can write

+oo
Z(J):Z(]T;/.../dxl...dmn J(x1) .. T (@) 2 (@1, a) . (5T)

In this manner, we have shown that path integral formalism can rederive
all the expressions earlier known of canonical formalism without using ope-
rators algebra.

Connected graphs

When analysing Feynman graphs, there are two distinct types of dia-
grams: connected and disconnected graphs (Coleman, 1985): the latter
can be separated into two, or more, distinct parts without cutting a line; not
so for the former. For instance, a propagator is a connected graph.

Z(J) is also known as the generating functional, and it generates both
types of Feynman diagrams described above. However, in a variety of
physical problems, for example renormalisation theory, and statistical me-
chanics, it is useful to generate only connected graphs. Also, the scattering
amplitude receives contribution only from connected diagrams. We have
already defined such generating functional in eq. (42), called W (.J). By
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neglecting the normalisation constants, we have the relation’
W(J) = —ilog Z(J) (58)

among two generating functionals. By taking repeated derivatives with re-
spect to J, we find

2w iz sz i &Z (59)
(5J(x1)5J(x2) N Z2 (5J(.T}1) 5J(x1) Z2 (5J($1)(5J($1) ’
and
oW (i 8z 6%z N
5J<$1)5J(.%’2)5J($3)(5J(1‘4) N Z2 5J(x1)5J($2) (5J(.T3)5J<l’4)
. i 5tz
permutatmns) — E5J(x1)5J(:c2)5J(:z:3)5J(m4) . (60)

Following the Taylor expansion of eq. (57), we could write an analogous
series for W:

“+oo
W(J):EO;!/.../dml...dxn J(a1) . T @)W (). (61)

By taking J = 0 and comparing the two series, we arrive at:
WO (@1, 22) = 2O (21,22) , (62)

rather unsurprising as the propagator is connected. To higher orders, ho-
wever, the relations becomes non-trivial:

w® (r1,22,23,24) =1 A (a:l,xQ)Z(2) (r3,24) + permutations} +
ZW (21, 29, 23, 24) . (63)

It is possible to prove that W generates only connected graphs to all
orders, that is, that W (") is the n—point connected Green function.

10Observe the similarity of 17 to the free energy.




Effective action

Besides connected and disconnected diagrams, there is another impor-
tant class of Feynman graphs, the one patrticle irreducible (1PI) diagrams.
These diagrams cannot be disconnected by cutting any internal line. In
other terms, one cannot obtain two Feynman diagrams by cutting a line of
the 1Pl diagram. Sometimes they are also known as strongly connected
diagrams, because they are basically diagrams connected by more than
one line.

They have a generating functional called effective action, defined by a
Legendre transformation (Coleman, 1985)

I(6) = W(J) - / dtx T(2)(z) (64)

The fields ¢ and J have a duality relation among them, like p and ¢
coordinates in Hamiltonian and Lagrangian formalism. The inverse trans-
formation gives the relation

W(J) =T(¢) + / dz J(z)o(x) . (65)
Deriving eq. (64) with respect to ¢ gives us
T'(¢)
= —J €T 5 66
S0~ '@ (66)
while the derivative of eq. (65) with respect to J furnishes us with the result
W(J) _
570 ~ @) (67)

By comparing egs. (54) and (67) we also see that

g Z(J) _ {0]6(x)|0)
5.J(x) (0[0)

= @l (68)

thatis, the classical field, defined as the vacuum expectation value (VEV) of
the quantum field, could be obtained by deriving the generator of connected
graphs W with respect to the source field J.
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By taking repeated differentials of eqgs. (66) and (67) we find

B 2w _ 09(x)
) =55 w0a ) eI (©5)

and o,y = 52T _ 6J(z) (70)
T 56(2)6(y)  db(y)

I'(z,y) and G(z,y) are inverse of each other. Treating them as matrices
with continuous indices, we could write

4 [ W 52T _
/ @y Gy, 2) = / Y 5T )50(0) 56(0)o0(=)
1, 08(z) 8J(y) _ dg(z) —sWp_ 5
[ S 550 = s =) ()

About the third derivatives of functionals, it is clear from the last line of
eq. (71) that [d*y G(z,y)I'(y,z) does not depend on J. In fact, by taking
the derivative with respect to .J(u) we find

1) W 52T
5.7 () / Ay G, y)(y,2) = 0= / Y T8I )3T 59050 ()
: 52w 83T
[ s eI (72)

Now for the second term we can write

/d4 52W 1) [ 52T }_
Y 57(2)67(y) 57 (u) [06(y)od(z)|

4 W 4, 00y) b 52T B
/ Y ST w67() / Y 57 (u) 56 () {w(yw(z)] -

N
[ s [ o sy T

because 6¢(y')/0J(u) = —G(u,y’). By combining egs. (72) and (73) one
obtains

/ 4 W or
Y 5 T(2)07 ()07 (u) 66(y)86(2)

4 52W 4 7 / 63F
/ T 5@ / Y Gl ) 56000 (74)




To summarise, every derivative of I' with respect to J could be swapped
with a derivative in ¢ and an integration with the Green function G, that is,

0 4/6¢() 0 _ 4,7 w1 g
57w = a5 57(0) 5907 /dyG<’y>5¢<y'>' (75)

As with Z and W, it is possible to expand I" as a power series in ¢:

+001
=N "— [ .. [day...dz, d(z1) .. p() D (21, .. 2) . (76)
ngom/ [ 1 1

It is possible to show that T (z,... z,) is the sum of all 1Pl Feynman
graphs with n external lines.

We can expand the effective action I'(¢) in momentum space, in powers
of momentum. If one considers renormalisable theory, then the effective
action could be written as:

o) = [ast [-vio)+ 5002z +..| 77)
where Z(¢) is the wave function renormalisation, see eq. (14) of (Fabiano,

2021b). The term without derivatives, V' (¢), is called effective potential. To
express it in terms of 1Pl Green functions, we have to write I'™ in momen-

tum space:
(0, = [ [ O

(27r)46(4)(l<:1+...+k:n) kit thnen) (”)(k:l,...,kn). (78)

Putting this expression in eq. (76) and expanding in the powers of mo-
menta k; gives

S [ [ [ e
—nzon! 1-- '”(271')

/d% itk thn) @ ik @t @) o

~

{I‘(")(O,...,0)¢(x1)...¢(xn)—1—...} -
/d% > L. 0@+ ) (79)
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where we have used the fact that (2m)*%@W(ky + ... + k,) =
[diz elhit-Fka)w  Comparing egs. (79) and (77) we see that the nth
derivative of the effective potential V' (¢) is the sum of all 1P| diagrams with
n external lines carrying zero momenta, that is, with k; = 0 for all i:

+o0
1 n n
V(g) == —T0,....0) [o(x)]" . (80)
n=0
Effective potential: an example
Suppose we have a generic Lagrangian written as

L=35(00° V(o). (81)

In this case, a closed form for W (J) is impossible to obtain. How-
ever, it can be evaluated using the saddle point approximation described in
egs. (31)-(32). The saddle point field ¢,(x) is determined by the equation

SW(D)|  _ dS(e) + [d'y J(y)o(y)]
06y, 69(x) b

Writing the explicit form of the Lagrangian of (eq. 81) and integrating by
parts the kinetic term, that is, [d*z 8,00"¢ = — [d*z $5?¢ yields

0?ds(x) + V'[ps(2)] = J(z) . (83)

To estimate Z, we define the integration variable as ¢ = ¢, + 6, restore
h and write

=0. (82)

Z(J) = eW/MW) _ / D I/MIS@)+74]

e(i/M)[S(¢s)+7¢:] /pg, oli/1) [d'z 3[(06)2 V" (6.)8?] 7 (84)
having expanded in Taylor series of ¢ — ¢, as in eq. (31):
525 2 "
Wd)s—a + V7 (¢gs) . (85)

We observe that for any operator A, det A = [], a;, where qa; are its
eigenvalues. So [[,a; = eX:!°8% and this implies det A = eTrl°e4. The
last part of eq. (84) reads

(/PS(6)+76.] / D i/ Jd'e 1[0~V (6.)5] _




. 1/2
Li/mS(6)+T6.) [ 2miR _
det 5" (¢,)

et/ D)[S(¢:)+T¢:]+ 7 log(2mih)— 3 Trlog S”(¢) (86)

By dropping irrelevant constant terms, we have determined an explicit
expression for W

W (J) = [S(¢s) + Jos] + %Tr log [07 + V"(¢s)] + O(R*) . (87)

The first term gives the classical contribution to the Green’s function.
The next term in # gives the first quantum corrections to the Green'’s func-
tions. Next is the Legendre transformation, for which

_OW_ 0[5(¢s) + Jbs] 05

=57~ 5s 5]

+¢s+ O(h) = ¢, +O(h),  (88)
and so for the effective action

T'(¢) = S(¢) + %Tr log [0% + V" (¢s)] + O(R?) (89)
and the effective potential

Ver(6) = V(9) + 3 Telog [0 + V" (9,)] + OG7) . (90)

It is clear that in general it is not possible to obtain a closed form for
the eigenvalues of the operator in eq. (85). We need to introduce some
simplifications: the configurations we will study will be the ones for which
¢ is independent of z. In this case, V”(¢) becomes a constant related to
a mass, u(¢)?. The operator 9> + V"(¢) becomes translationally invari-
ant and is easily evaluable going to momentum space. After obtaining the
eigenvalues of the operator, we have to calculate the logarithm and sum
over for trace. Therefore

Trlog [0 + V" (¢)] = /d4x (z [log [0* + V"(¢)]| z) =

4
Jtte [ G talkh og [62 + V()] | hla) =

4
/ (gwl; log [-k* +V"(¢)] , (91)
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after having inserted a complete set of states. Going to Euclidean
space (Fradkin, 1959) and writing the mass term, we have to deal with
the expression

T0%) =~ ryp [ 4K Jog (% 4 1%) | (92)

1
(2m)*
which as it stands is terribly divergent at infinity, faster than a fourth power.
However, if we derive three times with respect to ;ﬂ we obtain a finite func-

tion,
dBZ(MQ) (3)/,,2 2 4 1
—— =TI (u%) = e )4/dk( =

(dp?)? k2 4 p2)?
) 2 +o0 k3 1
i / dk - . (93)
Emify O R 2P 32
By integrating three times in ;.2 we have
o plogp? > 4
T(p?) = —=— 4+ A+ Bu® + Cu?* (94)

6472

as well as three integration constants that can be reabsorbed in the original
Lagrangian by renormalisation.

For example, suppose that V(¢) = %¢? + 4¢*, then for the effective
potential we would have obtained

(¢)*log u(9)*

Var(9) = 5 6” + o + B2 (95)

Loop expansion

We have done perturbative calculations where the expansion parame-
ter is given by the coupling constant of the theory. Now we will organise
the perturbation theory in a different form, of loop expansion, that is an ex-
pansion in increasing number of independent loops of Feynman diagrams.
At first order we find the Born diagrams or tree level diagrams, that is, di-
agrams without loops. The next order consists of diagrams with one loop,
with integration on internal momenta. Then diagrams with two loops, and
so on. The loop expansion described has a small expansion parameter

given by Planck’s constant .
1012



Let 7 be the number of internal lines and V' the number of vertices in
a Feynman diagram. Then the number of independent loops L will be the
number of independent internal momenta after taking into account the mo-
mentum conservation in each vertex. One combination of momenta con-
servation will correspond to the overall conservation of external momenta,
so the number of contributing vertices will have to be diminished by 1. The
number of independent loops in a given Feynman diagram will therefore
be given by the expression

L=I-(V-1)=I-V+1. (96)

In order to relate this loop formula to the powers of 7, we have to restore
first its value. From the equal time commutator of canonical variables, we
recall that

[6(x,), 7y, t)] = ihd® (x —y) , (97)

therefore the propagator in momentum space will furnish us with a factor
h:
d*k ih

=(0|T = [ et 98

Gla) = OITo@)o0)]0) = [ G ™ e (98

The other place where h appears is in the action of the path integral,

[D¢ e/MS9) As this corresponds to the interaction Lagrangian in the
interaction picture

e[é [d*a Eim(qﬁ)] , (99)

this means that each vertex carries a 1 /A factor. So for any given Feynman
diagram, the power P of & that appears, i, is given by

P=I-V=L-1. (100)
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WHTEIPAIT MO TPAEKTOPUM B KBAHTOBOW TEOPUUM
nonA

Hukona ®abuaHo

Benrpaackuin yHusepcuteT, MHCTUTYT aaepHbIX nccrnegoBaHui
«BuHuya» — MHcTUTYT rocygapcteeHHOro 3HaveHus ans Pecny6nukm
Cepbus, . Benrpaa, Pecnybnnka Cepbus

PYBEPUKA T'PHTW: 29.05.03 Maremartundeckne Metoabl
TeopeTudeckon usnku,
29.05.23 PenaTtnBmcTcKas kKBaHTOBas Teopust.
KsaHTOBasi Teopus nons
29.05.33 3nekTpomarHMTHOE B3aumModencTeune
BW CTATbW: 0630pHas cTatbs

Pesrome:

BeedeHue / uenb: Ucxods u3 eamunibmoHuaHa 8 Hacmosiuwel
cmambe 0aHO allbmepHamueHoe ornucaHue KeaHmosol Mexa-
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HUKU, OCHOB8aHHOe Ha CyMMe 8CeX 803MOXXHbIX mpaeKmopuﬁ
Me)KOy Ha4yarnbHOU U KOHEYHOU moYKamu.

Memodsi: Teopemudeckue memodbl MamemMamu4yeckol ¢husu-
Ku. MlHmeepanbHbIl Memod Ha OCHo8e UHMmMezparsna o mpaekx-
mopusim.

Pesynbmamel: Memod u KoHuenuuu uHmezpasna rno mpaek-
mopusiM Mo2ym rnipumeHsmcesi 8 dpyaux obrnacmsix (hu3uku, He
o2paHu4uBasiCb K8aHmMoBoU MexaHUKOU.

Bbigo0b1: [odx00 uHmezpana rno mpaekmopusim daem ececmo-
POHHee onucaHue rnonell 8 omnu4ue om 0bbI4HO20 fazpaHxe-
8020 nodxoda, Komopsll ripedcmasrisem JfiokanbHOe onucaHue
noned.

Kntoyesnie criosa: UHmMeeparsi rno mpaekmopusam, KeaHmoeas
MexaHuKa, KeaHmoeseasi meopus riosis.

WHTEMPAN NMYTA Y KBAHTHOJ TEOPNJAMA MNOJbA

Hukona ®abwnaHo

YHuBepautet y beorpagy, MHCTUTYT 3a HykneapHe Hayke "BuHya’-
MHCTUTYT oa HaumoHanHor 3Havaja 3a Peny6nuky Cp6uijy,
Beorpag, Peny6nuka Cpbuja

OBNACT: matemaTtuka
BPCTA YJIAHKA: npernegHu pag

Caxxemak:

Ye8o0d / yurs: lNonasehu 00 XamunmoHujaHa, dam je anmepHa-
MUBHU OMNuUC K8aHMHe MexaHuKe, 3acHoeaH Ha 36upy ceux Mo-
eyhux nymeea usmehy rioyemde u ¢huHasiHe madke.

Memode: Teopujcke Memode mamemamud4ke ¢uusuke. ViHme-
epasnHu Memod 3acHo8aH Ha UHmeaparsny nyma.

Pesynmamu: Memode u koHuenmu uHmeeparna nyma moay bu-
mu npuMer-eHU U Ha Opyae epaHe ¢husuke, HUCY 0epaHUYeHU Ha
K8aHMHy MexaHUKY.

Bakrpyuak: Npucmyn 3acHosaH Ha uHmeezpary nyma daje asno-
b6anHu onuc noswa, 3a pasnuky 00 yobudajeHoz npucmyna 3a-
CcHosaHoe Ha [laepaHxujaHy Koju npedcmassba fioKasaHu onuc
rnoswa.

K!'by'-lHe pedu: uHmeeparl riyma, KeaHmHa MexaHuKa, KeaHmHa

meopuja nosba.
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