VIDEOLAB: (DE)CONSTRUCTION OF (UN)REAL SPACE
– The "Školigrica" experience –

Nada Korać
Teachers’ Faculty, University of Belgrade

Aleksandar Gubaš
Cultural Center "Stari Grad", Belgrade

Within "Školigrica" Studio for Creative Education, Video-la-(h) project has been developing a series of video workshops for preschoolers since 1991. Its specific approach to media education was based on the use of CCTV (Closed Circuit Television) technique, enabling children to watch their own and others' activities on the screen as they perform them. This "pseudo mirror" situation gives opportunity for organizing games of increasing complexity and opens interesting possibilities in two domains: media education and spatial cognition.

As far as media education is concerned, the experience of partaking in the process of creating "live pictures" counteracts the tendency of taking visual presentations for granted, contributing to the awareness of the mediatory and artificial nature of visual media. At the same time, it is possible that simultaneous presence in both actual and represented space, and the opportunity for their immediate comparison, might help the child to overcome the adherence to his/her own point of view and become capable of coordinating different perspectives. In Piagetian terms, as far as cognitive development is concerned, the described approach could turn out to have a stimulating effect on decenteration, at least in the spatial domain.

Keywords: Child development, cognitive development, spatial cognition, preschool education, visual media, video.

1) "Školigrica" Studio for Creative Education (founded in 1981) is a unique preschool program of the Cultural Center "Stari Grad" in Belgrade. Its specific approach is based on creative play and art workshops, as well as on the free choice of activities. One of "Školigrica" projects, dealing with video in preschool media education, was titled Video-la(h). (The title is actually a pun, dealing with the masculine and feminine genders of the verb "to see" in Serbo-Croatian). In 1995, the project was expanded to include the use of video in promoting media literacy and culture in school children and youth. In order to emphasize continuity and the common basic approach, the larger project was titled Videolab.
A hundred-year-old history of film, as well as the considerably shorter histories of television and video, are full of examples showing how visual media can create a convincing impression of reality. The fact that they can do so while exercising a high degree of manipulation of the visual material they present is a unique phenomenon, fascinating and dangerous at the same time.

On the fascinating side, a recent example can be cited from a 1995 Oscar nominee, Before the rain (Milčo Mančevski, 1994): the central events of the movie are taking place in an area distinguished by three landmarks: a small monastery church on a cliff by the lake, the monastery itself, and the nearby village. In reality, however, those three places are between 30 and 60 miles away from each other. In other words, the physical setting of the movie, while perceived as real, actually does not exist. The other side of this coin, then, reveals an imminent danger: in the case of visual media, believing one’s own eyes can easily foster an attitude of taking visually presented material for granted. Such an attitude is based on a vast misconception, implying that visual media simply reproduce, rather than mediate, the reality they portray. This misconception, which stands as an open door to all kinds of manipulation, can be, perhaps, most accurately can be, perhaps, labelled media illiteracy.

Media illiteracy, and the process of acquiring media literacy, are educational as well as developmental matters, as Salomon (1981) and Korać (1992) have shown. Both studies focus on the use of media-specific features (e.g. camera movements, zooms, animation and visual retroaction) as tools for acquiring media literacy. The studies indicate that the same tools actually have a stimulating effect on a wider range of cognitive skills, especially on those from the spatial domain. Educational and developmental implications of this finding constitute the basic philosophy underlying Videolab approach.

Videolab was basically an action study exploring the possibilities of video in early media education. As the project was carried out in an institution whose mission is rather cultural than scientific, its practical aspect prevailed over the research oriented one. However, since it applied and developed ideas founded in psychological theory and research, it seems to offer interesting material for further study in both educational and developmental psychology.

The differentia specifica of Videolab approach is the utilization of CCTV technique in workshop setting.

CCTV: the TV screen as pseudo mirror

CCTV (Closed Circuit Television) means direct connection between the camera and the TV set. The use of this technique enables
Videolab: (De)Construction of (Un)Real Space

one to watch on the screen that what is simultaneously happening in front of the camera, including one's own actions. This creates an impression of a video mirror, differing from a real mirror in several interesting ways. The most obvious difference concerns the technical possibilities for various special effects. Another difference has to do with the expectancies of the viewer: it is usually expected that there is something special and important about things shown on TV screen.

The difference most relevant to Videolab approach is that one's own immediate/actual activities and surroundings are simultaneously transposed to the mediated/represented plane. This is an opportunity for a unique experience, whose most significant aspect is the impression of otherness, created by the mere fact that TV screen does not function as a mirror. This simple fact is usually overseen by children and adults alike. This is why an immediate encounter with one's own image on the screen produces a confusing effect: what one perceives as the left side of one's body and the surrounding space, appears on the right side of the screen (and vice versa). In other words, the uniqueness of this experience is in that a person sees himself/herself through the eyes of others.

With CCTV as a starting point, an original approach to media education was gradually developed and explored in Videolab during the last four years (1991 - 1994). This approach was applied in a series of workshops, dealing with understanding of spatial relations through various games in which CCTV played the central part. The 45-minute workshops were held once a week throughout the schoolyear. Since free choice of activities is one of the basic principles of "Skoligrica", the group of children varied in size (10 - 18), as well as in members.

The workshops: (de)constructing the (un)real space

The series of workshops was designed in such a way that the complexity of games, and the cognitive tasks involved, were gradually increased.

The initial workshops consisted of simple games aimed at familiarizing children with CCTV, for example, recognizing oneself and others on the screen, at first on the basis of integral images, and later on the partial ones (parts of one's body or clothing). In this way, children become acquainted with some of the basic features of visual language - different frame sizes and camera angles. More complex tasks dealing with the same features include guessing what the whole camera "see" from a certain position, or locating a hidden camera on the basis of the picture shown on the screen. Tasks like these, in Salomon's (1981) terms, have a skill-activating function, i.e. they require (and thus activate) coordination of perspectives. In Piagetian
(1956) theory, the cognitive skill that is required (and activated) here is known as *decentration*. The next level includes exploring the *frame and its limits*. This means identifying the space segment shown on the screen by entering and exiting it, moving within it, and/or trying to define its limits – *nonexistent in actual space* – by "touching" them with parts of one's body. In cognitive-developmental terms, then, this kind of task also involves coordination of perspectives/decentration. As far as media literacy is concerned, this is an opportunity for a child to explore the similarities and differences between the actual and the represented space. An interesting possibility at this level is the game of touching and overlapping objects at different depths, i.e. distances from the camera: for example, one's finger right in front of the camera seems to touch somebody on the opposite side of the room.

A more complex version of exploring frame limits involves a rotating and/or moving camera. In this case, the children are expected to follow its movements, in order to identify the segments of actual space that camera is "seeing". Exploring frame limits can be diversified with the use of zoom – changing dimensions of the space segment shown on the TV screen, and making "big and small" effect.

At the next level, another camera and TV set are introduced, involving an even more complex coordination of perspectives task. The fields of vision of the two cameras can be overlapping (totally or partially), adjoining, or completely discrepant. The most complex task at this level is the so-called "screen-in-screen" combination: the camera of the first CCTV faces the screen of the other CCTV, whose camera is pointed in some other direction. Looking at, and partaking in this "image of the image", the child literally enters the video wonderland. This is the kind of experience hopefully impressive enough to counteract the common belief that TV pictures are "for real". At this point, the "unreal space" should be finally deconstructed, and the true nature of the media discovered: instead of *reproducing* reality as it is, visual media *mediate* between reality and the viewer.

The preceding text should have given enough material to conclude that this process of deconstruction of "unreal space" has an equally important counterpart: the construction of real space. In other words, the tasks described above require (or, in Salomon's terms, activate) coordination of perspectives, i.e. the basic prerequisite for mature spatial cognition. In Piagetian terms, the phenomena discussed here are well known as *decentration* and *construction of space*. 

212
Conclusion

It is commonplace that visual media play an important role in shaping our conceptions about reality. However, what they shape in the first place are our conceptions about them. The most common of these conceptions is that visual media simply reproduce reality, i.e. show us things as they are. This basic misconception, then, is the source of all the subsequent misconceptions about the way things are in reality. The idea of Video-la(b) was to intervene in this process, keeping its direction (from the conceptions of media towards the conceptions of reality), but changing its contents.

The approach described above needs to be systematically tested in an experimental study in order to determine its real potential. However, the experience of "Školigrica" suggests that CCTV, used in the Video-la(b) manner, could stimulate two complementary and simultaneous processes: acquiring the basic knowledge about the nature of visual media, and the development of spatial cognition. The implications seem to be relevant for both educational and developmental psychology.

As far as media education is concerned, the experience of part-taking in the process of creating "live pictures" counteracts the tendency of taking visual presentations for granted, contributing to the awareness of the mediatory and artificial nature of visual media. At the same time, it is possible that simultaneous presence in both actual and represented space, and the opportunity for their immediate comparison, might help the child to overcome the adherence to his/her own point of view and become capable of coordinating different perspectives. In Piagetian terms, as far as cognitive development is concerned, the described approach could turn out to have a stimulating effect on decenteration, at least in the spatial domain.

References

