Pregled modela pretrage kratkoročne memorije

JELENA HAVELKA

Laboratorija za eksperimentalnu psihologiju
Filozofski fakultet, Univerzitet u Beogradu

Pitanje da li se pretraga kratkoročne memorije odvija paralelno ili serijalno, i da li je ona samoookončavajuća ili se vrši do iscrpljenja privuklo je, tokom šezdesetih i sedamdesetih, veliku pažnju psihologa koji su se zanimali za memorijске procese. Ovaj rad pokušava da pruži kratak prikaz najvažnijih modela koji su formulisani u pokušaju da se dođe do odgovora na postavljena pitanja, i da ukaže na probleme sa kojima se razmatrani modeli sreću.

Ključne reči: kratkoročna memorija, serijalno i paralelno procesiranje

Tokom šezdesetih i sedamdesetih godina proces pretraživanja kratkoročne memorije u cilju dolaženja do određene informacije postaje predmet posebne pažnje za psihologe koji su se bavili proučavanjem ovog memorijskog prostora. Postavljena su dva osnovna pitanja: (a) da li se pretraživanje kratkoročne memorije obavlja paralelno ili serijalno, i (b) da li se pretraživanje zaustavlja nakon što je element za kojim se tragalo pronađen (samoookončavajuća pretraga) ili se nastavlja dok se ne provere svi elementi sadržani u njoj (pretraga do iscrpljenja). U ovom radu prikazacemo različite modele kojim su naučnici tog vremena pokušavali da odgovore na ova pitanja.

Sternbergov model pretraživanja kratkoročne memorije

Krajem šezdesetih Saul Sternberg je izneo nalaze svojih istraživanja na osnovu kojih je razvio model pretrage kratkoročne memorije (Sternberg, 1966, 1967, 1969a,

Za razliku od većine dotadašnjih istraživanja koja su kao zavisnu varijablu uzimala procenat grešaka prilikom reprodukcije, Sternberg pokušava da rasvetli procese koji se javljaju u situacijama kada smo u stanju tačno da reprodukujemo određeni materijal. Dakle, sa pitanja zašto i kako gubimo pristup određenim informacijama, Sternberg usmerava pažnju na problem pristupa onim informacijama koje su nam dostupne.

Procedura koju je Sternberg koristio u svojim ogledima, a koju su potom preuzeli i drugi naučnici, sastojala se od relativno jednostavnog zadatka prepoznavanja. Ispitanicima je prikazivan mali broj stimulusa uzetih iz unapred definisanog stimulsnog skupa (npr. jednokifreni brojevi). Stimulusi koji su se pojavljivali u zadatku činili su "pozitivni skup" dok su preostali stimulusi iz datog skupa predstavljali "negativni skup". U svakom zadatku stimulusi su prikazivani jedan za drugim u serijama različite dužine (od jednog do šest stimulusa). Posle određenog signala pojavio bi se stimulus-meta, a zadatak ispitanika je bio da pritiskom na taster (da/ne) odgovori da li je stimulus-meta pripadao prikazanom skupu.

Osnovni Sternbergov postupak je imao dve varijante: proceduru "variabilnog skupa" i proceduru "fiksne skupe". U proceduri "variabilnog skupa" za svaki zadatak prikazan je novi pozitivni skup, dok je u proceduri fiksne skupe isti skup stimulusa korišćen u čitavom bloku zadataka. Pokazalo se da ove varijacije nemaju značajnijeg uticaja na rezultate eksperimenta, što je ukazivalo na mogućnost da isti procesi leže u osnovi oba postupka. Prema Sternbergu, ono što možemo opaziti u obračuća je proces brze pretrage koja se odvija u kratkoročnoj memoriji. Čak i u situaciji dobro naučene liste stimulusa koja je postala deo dugotrajne memorije, kao što je to slučaj u proceduri "fiksne skupe", njihove reprezentacije se pobuđuju i prenose u kratkoročnu memoriju da bi se tu izvršila pretraga.

Druga prepostavka Sternbergovog modela je da se pretraga obavlja do iscrpljenja, tj. da se pre davanja odgovora mora izvršiti obrada svih elemenata u kratkoročnoj memoriji. Ta hipoteza je počevala na opaženim paralelnim nagibima line-
arnih funkcija za pozitivni i negativni skup. Ukoliko bi se pretraga zaustavila neposredno pošto je među zapamćenim elementima pronađen stimulus-meta, pretraga bi se u pozitivnim skupovima u proseku završavala na polovini skupa, dok bi negativni skup sa istim brojem elemenata bio pretraživan do kraja. Pošto se pretraga vrši serijsalno, element po element, prilikom pretrage pozitivnih skupova subjekti bi u proseku trebali da obrade upola manji broj elemenata nego prilikom pretrage negativnog skupa iste veličine. To znači da bi, sa porastom broja elemenata, vreme prepoznavanja sporije raslo za pozitivni u odnosu na negativni skup, pa bi u linearnoj regresiji nagib linearne funkcije za pozitivni trebalo da bude upola manji od nagiba za negativni skup.

Kritika Sternbergovog modela

Efekat pozicije u nizu odnosi se na fenomen da vreme prepoznavanja stimulusa iz pozitivnog skupa zavisi od mesta u nizu na kome se oni nalaze. Što se dati element nalazi bliže kraju skupa utoliko će se brže prepoznavati. Prema Sternbergovom modelu odluka da li je stimulus-meta bio prisutan u skupu donosi se tek pošto je izvršena pretraga celog skupa. Ova pretpostavka implicira da vreme potrebno za donošenje odluke ne zavisi od pozicije koju dati stimulus zauzima u nizu, što nije u skladu sa empirijskim nalazima.

Nalaz da vreme utvrđivanja da li je stimulus-meta bio prisutan u prikazanom skupu opada sa povećanjem verovatnoće njegovog javljanja nazvan je "efekat verovatnoće stimulusa". Ponavljanje jednog od elemenata unutar pozitivnog seta povećava njegovu verovatnoću i dovodi do toga da se on identifikuje brže od neponavljanih elemenata (Baddeley & Ecob, 1973). U ovoj situaciji imamo dve vrste facilitacije: (a) niz koji u sebi sadrži ponovljene stimulusre obrađuje se brže od niza iste dužine bez ponovljjenih stimulusa, i (b) unutar istog skupa vreme reakcije na ponovljene stimulusu je kraće nego za neponovljene. Da bi mogao da obuhvati ove nalaze, Sternbergov model bi morao da sadrži dodatnu pretpostavku o redukciji veličine efektivnog skupa ako se u njemu nalaze ponovljeni stimulusi (npr. niz 1-5-8-5-4 bi postao niz 1-5-8-4-8). Međutim, čak i ako bi sadržao ovu pretpostavku mogao bi da predvidi samo prvi tip facilitacije, ali ne i drugi. Vidimo da čak ni u ovakvoj, modifikovanoj verziji Sternbergov model ne
može da objasni dobijenu razliku između ponovljenih i neponovljenih stimulusa u istom nizu.

Serijalna samookončavajuća pretraga

U istraživanju koje je izvršio Theios sa svojim saradnicima (1973) veličina memorisanog skupa i verovatnoća javljanja stimulusa su nezavisno varirani. Pored replikacije Sternbergovog nalaza o značajnom efektu veličine skupa, rezultati njihovih eksperimenata su ukazali i na značajan efekat verovatnoće stimulusa koji, kao što je rečeno, ne možemo objasniti pretpostavkama na kojima počiva Sternbergov model. Da bi obuhvatio oba nalaza, Theios je, sa svojim saradnicima, ponudio model koji počiva na pretpostavci o samoončavajućoj pretrazi. Model pretpostavlja da su reprezentacije stimulusa iz pozitivnog i negativnog skupa asocirane sa odgovarajućim odgovorom, tj. da stimulus i odgovor čine memorijsku celinu (npr. 1-da, 4-da, 8-ne, itd.). Pretraga memorijskog prostora vrši se serijalno do identifikovanja stimulusa koji odgovara stimulusu-meti, posle čega se daje odgovor koji je asociiran sa datim stimulusom. Deo ovih asocijativnih parova se nalazi u kratkoročnoj a deo u dugoročnoj memori, pri čemu su poredani prema verovatnoći javljanja. Njihov redosled se menja od zadatka do zadatka u zavisnosti od toga kada su prikazani i kolika je učestalost njihovog javljanja. Za stimuluse koji su prikazani kasnije, ili koji su se više puta javili tokom zadatka, veća je verovatnoća da se njihove reprezentacije nadu bliže ulazu u kratkoročnu memori. Nasuprot Sternbergu, Theios i saradnici smatraju da se u kratkoročnoj memori naalaze kako reprezentacije stimulusa iz pozitivnog tako i iz negativnog skupa. Pošto je kapacitet kratkoročne memori ograničen može se pretpostaviti da se reprezentacije nefrezventnih i davno prikazanih stimulusa više ne nalaze u njoj, već da su uskladištene u
dugoročnoj memoriji kojoj se sporije pristupa. Sadržaj i redosled elemenata u
kratkoročnoj memoriji menja se od zadatka do zadatka u skladu sa prikazanim nizom
stimulusa. Stimulus-meta se serijalno poredi sa memorisanim sadržajem sve dok se ne
identifikuje kao identičan sa jednim od elemenata. Tada se aktivira davanje odgovora
koji je asociran sa datim stimulustom.

Sternberg ističe nekoliko slabosti ovog modela. Model Theiosa i saradnika ne
može da objasni nalaze dobijene na pozitivnim i negativnim skupovima nejednake
veličine, kao ni nalaze dobijene procedurom varijabilnog skupa. Da bi obuhvatio ove
nalaze model bi morao da uveđe ad hoc pretpostavke da članovi pozitivnog skupa imaju
neku prednost prilikom formiranja memorijske reprezentacije koja im omogućuje da se
lakše "kreću" prema gornjem delu memorijskog prostora.

Ekvivalentnost rezultata dobijenih procedurama fiksnog i varijabilnog skupa
takođe je problem za model Theiosa i saradnika. Prilikom primene procedure fiksnog
skupa ispitanici su unapred obavešteni o mogućim članovima pozitivnog i negativnog
skupa. U proceduri varijabilnog skupa negativni skup se iznova formira prilikom svakog
zadatka tako što se eliminisu stimulusi koji su prikazani. Malo je verovatno da je trajanje
interstimulsnog intervala (2 sec.) dovoljno da bi elementi negativnog skupa formirali
odgovarajuće asocijacije između stimulusa i odgovora i uspostavili svoju poziciju u
memorijskom prostoru.

Jedan broj studija koje su se bavile ovim problemom pokazale su da verovat-
noca javljanja stimulusa utiče na intercept linearne funkcije a ne na njen nagib (npr.
Klatzky & Smith, 1972; Biederman & Stacy, 1974; Miller & Pachella, 1973). Sternberg
smatra da ovaj nalaz ukazuje na mogućnost da verovatnoća stimulusa utiče na fazu
kodiranja stimulusa a ne na fazu poređenja stimulusa i mete. Pošto se, prema Sternber-
govoj hipotezi, pretraga odigrava samo u fazi poređenja, ovakav selektivan uticaj ne
protivureći njegovom modelu pošto se on odnosi samo na procese vezane za memori-
jsku pretragu.

Paralelna pretraga kratkoročne memorije

U situaciji serijalne pretrage svaki memorisani element zahteva približno isto
vreme za obradu, i obrada svakog od elemenata počinje tek pošto je obrada prethodnog
u potpunosti završena. Nasuprot tome, prilikom paralelnih pretraga moguće je istovreme
mena obrada nekoliko stimulusa. Krajem Šezdesetih i početkom sedamdesetih vladalo je
uverenje da paralelna obrada podrazumeva neograničen kapacitet procesora. Pošto se svi
elementi obrađuju simultano, paralelna obrada predviđa da bi vreme prepoznavanja i
tačnost odgovora trebalo da budu konstantni, bez obzira na veličinu skupa. Empirijski
nalazi pokazali su da vreme reakcije linearno raste sa povećanjem veličine skupa, pa je
ideja o paralelnoj obradi odbačena.
Pošto je Sternberg objavio rezultate svojih istraživanja (Sternberg, 1966)
nekoliko autora je predložilo modele paralelnih pretrage ograničenog kapaciteta koji

Matematičko modeliranje pretrage kratkoročne memorije

rešiti bez promene eksperimentalnog postupka i uvođenja novih varijabli kao što je, na primer, broj grešaka prilikom prepoznavanja. Kombinacija podataka o vremenu i tačnosti prepoznavanja dala bi pouzdaniji odgovor na postavljeno pitanje, iako ne bi mogla da pruži opšti model koji ne bi bio vezan uz određene, unapred definisane uslove i konkretnu eksperimentalnu proceduru.

Townsend ne isključuje mogućnost da subjekt koristi obe diskutovane strategije pretrage, a od zahteva zadatka će zavisiti koja će da bude upotrebljena. Ukoliko je u zadatku redosled elemenata nebitan, subjekt će primeniti pretragu do iscrpljenja, a ukoliko je redosled važan pretraga će da bude samoooknčavajuća. Iako Townsend to ne diskutuje, ovakvo objašnjenje je u skladu sa Sternbergovim postavkama. Sternberg (1969a) jasno razlikuje sledeće dve situacije: (a) u slučaju kada subjekt obavlja pretragu samo da bi ustanovio prisustvo neke reprezentacije, redosled elemenata nije važan i pretraga se obavlja do iscrpljenja, i (b) kada subjekt pretražuje memoriјu da bi locirao određenu reprezentaciju, redosled postaje važan i pretraga se okončava pošto je odgovarajuća reprezentacija pronađena.

Stiće se utisak da su pokušaji matematičkog modeliranja procesa pretrage kratkoročne memoriјe više zakomplikovali postavljena pitanja nego što su ponudili jasne odgovore. Ipak, njihov nesumnjiv doprinos je u tome što su ukazali na ograničenu validnost dobijenih podataka i obeshrabrilili preširoko uopštenje nalaza.

Modeli jačine trage

Umesto pretrage kratkoročne memoriјe, modeli jačine trage pretpostavljaju da je pristup reprezentacijama direktni, a da se prepoznavanje pojedinih stimulusa obavlja na osnovu diskriminacije stepena pobuđenja memorijskih tragova (Baddeley & Ecob, 1973; Corballis et al. 1973). Jačina reprezentacije članova pozitivnog skupa rezultat je kumulativanog efekta učestalosti javljanja, vremena procesa od trenutka pojavljivanja u pozitivnom skupu i prikazivanja stimulusa-mete, i preslušavanja. Pojam jačine trage nije eksplicitno definisan niti razrađen, ali bi mogao da se odredi kao indikator nivoa pobuđenosti date reprezentacije. Moglo bi se reći da postoji bliskost između pomenutih modela i teorije detekcije signala, ali nju autori modela ne diskutuju.

Prikazivanje stimulusa-mete usmerava subjekta na njegovu lokaciju u memorijskom prostoru i subjekt treba da ustanovi da li je nivo jačine traga date reprezentacije dovoljan da bi ukazao na pripadnost datog stimulusa pozitivnom skupu. Da bi mogao da napravi distinkciju između članova pozitivnog i negativnog skupa subjekt treba da ustanovi određeni kriterijum, tj. neutralna tačka. Baddeley i Ecob predpostavljaju da je za svaku veličinu skupa neutralna tačka na sredini između jačine traga prikazanih i neprikazanih elemenata. Težina donošenja odluke da li stimulus-meta pripada prikazanom skupu zavisice od veličine razlike između jačine traga na memorijskoj lokaciji koja pripada stimulusu-meti i neutralne tačke za skup date dužine. Što je ova razlika manja odluka je teža a vreme prepoznavanja će biti duže što dovodi do linearnog porasta vremena prepoznavanja u funkciji veličine pozitivnog skupa.

Ako se neutralna tačka nalazi na polovini između nivoa jačine traga koji imaju pripadnici pozitivnog i negativnog skupa, donošenje odluke kome od ta dva skupa pripada stimulus-meta biće podjenako teško za oba skupa, pa će i nagibi funkcija vremena prepoznavanja biti paralelni.

Efekat serijalne pozicije tumači se jačim tragom kod kasnije prikazanih stimulusa, tako da će stimuli bliže kraju pozitivnog skupa imati kraće vreme prepoznavanja. Memorijski trag stimulusa sa početka skupa biće oslabljen usled proteklog vremena i broja interpoliranih elemenata do stimulusa-mete. Ponavljanje stimulusa u nizu dovešće do kumulacije jačine traga na njegovoj memorijskoj lokaciji i do olakšanog prepoznavanja, što objašnjava efekat verovatnoće stimulusa.

Modeli jačine traga nude mogućnost teorijske razrade fenomena crpljenja informacija iz kratkoročne memorije koja neće biti ograničena na modele usko vezane za datu eksperimentalnu proceduru. Pojam jačine traga omogućuje razvoj modela koji bi uključili više aspekata funkcionisanja memorije kao što su prepoznavanje, reprodukcija, funkcionisanje dugoročne memorije itd. Ovaj pristup nam nudi i mogućnost izvođenja pretpostavki o neuralnoj osnovi opaženih fenomena i njihove evaluacije u odnosu na poznate fiziološke podatke. Ukratko, pojam jačine traga nam omogućuje polaznu osnovu iz koje možemo da ispitujemo različite fenomene, pružajući nam opšti okvir u proučavanju memorijskih sistema.
Završna razmatranja

U vreme kada je Sternberg objavio prvi iz niza članaka u kojima prikazuje model serijalne pretrage kratkoročne memorije do iscrpljenja (Sternberg, 1966) dominirajuća zavisna varijabla u istraživanjima memorije bila je procenat grešaka prilikom reprodukcije. To je vodilo stavljanju naglaska na probleme zaboravljanja i ograničenja koja memorijskim procesima nameće kognitivni sistem, dok je daleko manja pažnja posvećena procesima koji leže u osnovi uspješne reprodukcije. Elegantan model i jednostavna eksperimentalna procedura koje je Sternberg ponudio, uz uvođenje vremena reakcije kao zavisne varijable, obeckali su sticanje novih saznanja o procesu crpljenja informacija iz kratkoročne memorije. Iako Sternberg nije bio prvi koji je pri proučavanju memorije upotrebo proceduru prepoznavanja kao tehniku i vreme reakcije kao zavisnu varijablu, tek je njegov rad probudio veće interesovanje drugih istraživača. S obzirom na često citiranost i prisustvo u gotovo svakom udžbeniku kognitivne psihologije stiče se utisak da je Sternbergov rad ostvario važan i širok uticaj na razvoj kognitivne psihologije. Pitanje je, međutim, koliki je stvarni doprinos, kako Sternbergovog modela, tako i njime inspirisanih radova, produbljivanu saznanja o funkcionisanju memorije.

Sternbergov rad je pružio metodološki podsticaj istraživačima, i doveo do registriranja više fenomena karakterističnih za funkcionisanje kratkoročne memorije. Tri fenomena koja bi morao da obuhvati svaki model koji pretenduje da objasni proces crpljenja informacija iz kratkoročne memorije su: (1) linearini porast vremena prepoznavanja elemenata u funkciji porasta veličine skupa, (2) efekat pozicije u nizu, i (3) efekat verovatnoće stimulusa. Paralelan odnos između nagiba linearne funkcije za pozitivni i negativni skup se pokazao manje stabilnim nalazom u odnosu na do sada pomenute, tako da se može postaviti pitanje da li je reč o artefaktu zavisnom od parametara eksperimentalne procedure i prirode upotrebljenih stimulusa, ili o nalazu koji nam ukazuje na mehanizam funkcionisanja kratkoročne memorije.

Problem sa ponuđenim modelima leži u tome što nijedan od njih nije u stanju da objasni sve navedene fenomene. Jedan od izlaza iz te situacije je uvodjenje ad hoc pretpostavki. Time se, doduše, pruža mogućnost inkorporiranja kontradiktornih nalaza, ali se ujedno gubi na parsimoničnosti, a time i na teorijskoj prihvatljivosti modela. Drugi pristup, kome pribegava Sternberg (1975), je ograničavanje modela na samo jedan od stupnjeva u procesu prepoznavanja, pri čemu se svi fenomeni neslagasni sa njegovim predikcijama pripisuju nekom od ostalih koraka u obradi. Ovaj pravac u argumentaciji, iako predstavlja jednostavno rešenje, vodi ka usložnjavanju modela.

Jedna od posledica Sternbergovih istraživanja je dugogodišnje vezivanje teorijskog pristupa pri izučavanju kratkoročne memorije za diskusiju koja se na kraju pokazala kao neproduktivna. Bez obzira na uložene napore do danas nije formuliran model, niti je izveden ekperiment, koji bi do kraja razrešio dilemu oko prirode pretrage u kratkoročnoj memoriji. Svi ponuđeni modeli pretraživanja kratkoročne memorije,
uključujući i Sternbergov, su bili lokalnog karaktera, čvrsto ukotvleni u određenu eksperimentalnu proceduru.

Najzad, teorijski modeli pretraživanja memorije čvrsto su ukotvleni u postupak pretraživanja malog, fiksiranog skupa informacija u cilju davanja "da/nee" odgovora i nisu, čini se, u stanju da pruže značajniji uvid u dati problem. Oni pre mogu da nam ukazu na posledice do kojih dovodi kada istraživači posvete više pažnje proučavanju eksperimentalnog zadataka nego samog fenomena.

Literatura

Models of short-term memory search: an overview

JELENA HAVELKA

Laboratory of Experimental Psychology
University of Belgrade, Serbia, Yugoslavia

The nature of STM search aroused much interest among psychologists during sixties and seventies. Main controversies were whether STM search is serial or parallel, and whether it is self-terminating or exhaustive. The present study gives an overview of the STM models proposed as an attempt to answer the above issues.

Key words: short-term memory models, serial vs. parallel processing