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Summary 
Fractal and textural analyses represent a rapidly developing class of com-
putational and mathematical methods with potential wide applications 
in medicine and biology. In recent years, they have been successfully 
used for the evaluation of subtle alterations in cell and tissue morphol-
ogy associated with various physiological and pathological processes. 
It has been shown that cells in early stages of apoptosis exhibit chang-
es in chromatin fractal and textural features. Cellular senescence is also 
sometimes associated with changes in textural patterns in some cell 
populations. So far, artificial intelligence approaches based on co-occur-
rence matrix textural data were successfully implemented in predicting 
cell damage in in vitro conditions, with artificial neural networks achiev-
ing the best performance. In the future, several methodological issues 
and challenges related to the use of fractal and textural methods will 
have to be resolved before their introduction into contemporary clini-
cal practice. This concise review focuses on the recent research on the 
application of fractal and textural methods in experimental physiology 
and related fields.
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INTRODUCTION

Fractal and textural analyses represent a rapidly devel-
oping class of computational and mathematical methods 
with potential wide application in medicine and biology. 
Since their introduction in the second half of the 20th 
century, they have been implemented in both fundamen-
tal and clinical medical fields and they have contributed 
to the better understanding of various physiological and 
pathological processes. The examples include the utili-
zation of fractal computations to describe self-similarity 
nature of nuclear chromatin, as well as the use of textur-
al features to detect changes of tissue structural entropy 
during the process of physiological aging. These meth-
ods also have a potentially significant diagnostic value in 
medicine since they may be used to enhance objectivi-
ty and the level of automation of various protocols and 
techniques during pathohistological analysis of tissues 
and cells (1-5). 

Both fractal and textural methods can be used for an-
alyzing various signals in medicine (3-5). These mostly 
include two-dimensional data such as the ones associ-
ated with digital micrographs. One-dimensional signals 
such as the ones obtained during electroencephalogra-
phy and electromyography can also be evaluated. Some 
fractal features of three-dimensional computer models 
can also be successfully quantified in order to better 
understand different levels of structural organization 
related to complex biological systems. In essence, there 
are very few methodological constraints that limit the 
use of these techniques in both fundamental and applied 
medical sciences, and it is estimated that these methods 
will become important additions to many conventional 
research protocols in future (1-3). 

In recent years, there have been many attempts to in-
tegrate these methods with machine learning algorithms 
in order to develop artificial intelligence systems capable 
of classification and prediction of biological processes (6, 
7). Quantifications of cell textural features can be used to 
train various machine learning models such as the ones 
based on a binomial logistic regression, decision trees 
and random forests. Support vector machines as a super-
vised machine learning approach also use fractal input 
data during the model training and testing for classifica-
tion and prediction accuracy. Finally, numerous artificial 
neural networks can be created to use these types of data. 
The examples include relatively simple multilayer per-
ceptron networks, but also complex Bayesian and convo-
lutional neural networks for computer vision in patholo-
gy and other medical fields (7-10). 

This concise review focuses on recent research on 
the application of fractal and textural methods to experi-
mental physiology and related fields. We primarily focus 
on fractal box counting algorithm and textural gray level 
co-occurrence matrix (GLCM) algorithm since they are 
probably most frequently used in medical research. We 

also cover the use of discrete wavelet transform mathe-
matical analysis as a common addition to GLCM. Final-
ly, we discuss our recent results on the potential use of 
these methods in the development of artificial intelli-
gence models in fundamental and clinical medicine. 

FRACTAL AND TEXTURAL INDICATORS

The most important fractal indicators are fractal dimen-
sion and lacunarity (11-15). There are numerous ways to 
calculate fractal dimension from a signal, but today, stan-
dard box counting method is most widely implemented. 
When evaluating a two-dimensional signal, the structure, 
which is usually binarized, is covered by a series of box-
es on different scales, after which the partially or fully 
filled boxes are counted (15). Subsequently, the software 
forms a log-log regression line based on these numbers 
and respective scales, and the value of fractal dimension is 
computed from the slope of the line. This value for the bi-
narized 2D structure is usually between 1 and 2 and it rep-
resents an indirect quantification of complexity and the 
level of detail. Lacunarity, on the other hand, represents 
the degree of “gappiness” in the fractal architecture, and it 
is computed from a variation coefficient of the number of 
resolution units per box. The values of fractal dimension 
and lacunarity may be in a strong statistical association 
for some signals but this is not always the case (13-15).

Textural indicators are computed based on higher 
mathematical operations and the second order statisti-
cal analysis is often required (16-19). Gray level co-oc-
currence matrix approach is often used for this although 
today there are many different alternatives. In two-di-
mensional signals, gray intensity values are allocated to 
the resolution units after which the value pairs are ana-
lyzed taking into account the distance between the units 
and the orientation (i.e. horizontal, vertical, diagonal). 
Probably most important textural features that are sub-
sequently calculated are angular second moment, inverse 
difference moment, entropy, and contrast (16, 17). Angu-
lar second moment is often a representation of textural 
uniformity, whereas inverse difference moment greatly 
depends on the local homogeneity of resolution units. 
Entropy depends on the level of chaos and disorder of 
texture, while the contrast is an indirect quantification of 
textural heterogeneity. Most textural features are math-
ematically interrelated although the strength of correla-
tion may vary due to many contributing factors (16-19).

Today, in medicine and biology, as an addition to the 
traditional GLCM analysis, mathematical wavelet analy-
sis is also sometimes performed. This analysis is based on 
the mathematical concept of wavelet signals and, among 
numerous different approaches, Harr discrete wavelet 
transform probably has the biggest potential in medical re-
search (20, 21). Wavelet coefficient energies computed us-
ing this technique are often indirect indicators of textural 
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heterogeneity and can be used to provide a more detailed 
insight and explanations on the nature of GLCM changes. 

FRACTAL DIMENSION AND TEXTURAL FEATURES 
OF NUCLEAR CHROMATIN

Nuclear chromatin is a complex macromolecule and 
many aspects of its structural organization and biophys-
ical principles that govern it are not entirely understood 
(22-26). The most fundamental level of chromatin or-
ganization is based on nucleosomes, a complex of DNA 
and histone proteins, where the DNA is wrapped around 
a protein octamer, and forms the so-called beads-on-a-
string structure. The nucleosomes with the help of other 
histones and nonhistone proteins then coil into a fila-
mentous helical system, 30 nm in diameter, designated as 
chromatin fiber. Chromatin fibers can form large swaths 
of transcriptionally inactive heterochromatin, but they 
can also uncoil to the basic beads-on-a-string form and 
become more active as euchromatin. Higher levels of 
coiling are also possible and may occur during cell divi-
sion or other processes (22-26). 

When looking at monomer attraction forces within 
a polymer such as chromatin and their interaction with 
repulsion forces, traditional models assumed the cre-
ation of an equilibrium state, or equilibrium globule as 
a transition from an initial coil-globule condition (27-
29). This equilibrium model of chromatin architecture 
has long been a dominant view in some scientific circles. 
At the beginning of the 21st century, an alternative mod-
el, based on the fractal globule, has been proposed, and 
some evidence point to it as being the correct interpre-
tation. Fractal globule possesses some characteristics of 
self-similarity, a hallmark trait of fractals. In the fractal 
globule, a distinct territorial organization is observed 
(unlike mixed structure in equilibrium), and many sim-
ilar globules can be observed on different scales. Fractal 
dimension of euchromatin and heterochromatin differ, 
with euchromatin usually having a higher level of frac-
tal complexity (29). Probably the most important works 
that in detail explain arguments for the equilibrium and 
fractal models of chromatin architecture are the ones by 
Mirny, Kwon and Sung (27, 28).

Textural features of chromatin can be successfully 
quantified using the above-mentioned gray level co-oc-
currence matrix method. This technique can be applied 
both in conventional light microscopy and transmission 
electron microcopy evaluation of chromatin architec-
ture. So far three most frequently quantified chromatin 
GLCM indicators have been angular second moment, 
inverse difference moment and entropy. They are poten-
tially capable of detecting subtle alterations in chromatin 
distribution during various physiological and pathologi-
cal processes even if these changes cannot be visualized 
by an experienced histologist or pathologist (30-32). 

Programmed cell death may be followed by pro-
nounced changes in chromatin fractal and textural indi-
cators. One of the first studies describing these changes 
was published by Losa and Castelli (2005) in human 
breast cancer cells, where apoptosis was induced by the 
chemical agent calcimycin (33). It was shown that during 
the early stages of cell death, a significant loss of chroma-
tin complexity occurs demonstrated by reduction in the 
fractal dimension. Furthermore, this is followed by a sig-
nificant increase of GLCM sum entropy and some other 
textural features. Both fractal and GLCM methods seem 
to be more sensitive than conventional cytof luorometric 
techniques in detection of early apoptosis (33). 

Some other proapoptotic substances can also change 
chromatin distribution inside the nucleus which then re-
f lects on GLCM features. The example is oxidopamine, a 
potent neurotoxin that in certain conditions induces cell 
death in many different cell populations. In some previ-
ous works, it was demonstrated that this compound even 
in small, sublethal concentrations leads to the reduction 
of nuclear angular second moment and inverse difference 
moment (30, 31). These changes are probably related to 
DNA and chromatin damage that takes place due to the 
effects of reactive oxygen species and oxidative stress as 
it has been hypothesized recently (34). 

There are three potential explanations for the chang-
es of GLCM and fractal parameters of chromatin in dif-
ferent experimental settings. First, condensation of chro-
matin that usually occurs during the early stages of cell 
death may inf luence both chromatin complexity and tex-
ture (33, 34). Condensed, inactive chromatin can proba-
bly have lower values of fractal dimension and high val-
ues of uniformity and local homogeneity quantified by 
angular second moment and inverse difference moment, 
respectively. Second, chromatin marginalization, that is 
also sometimes present during cell damage and death, 
may also change chromatin fractality and entropy (35). 
Finally, subtle changes in euchromatin/heterochroma-
tin ratio that are independent of chromatin condensation 
and marginalization may also affect fractal dimension of 
the nucleus particularly knowing that these two forms of 
chromatin, when considered separately, have different 
values of complexity (36, 37). Previously, it was demon-
strated that within a single cell population such as the 
hepatocytes, the cells that have very discrete differences 
in gene expression (periportal versus perivenous hepato-
cytes) have significantly different values of GLCM chro-
matin indicators, even though these differences are not 
visible during conventional microscopy (32). In future, 
it remains to be seen if fractal and GLCM methods will 
have a practical application in terms of being used as a 
part of sensing systems to detect cell damage and death.
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FRACTAL AND TEXTURAL ANALYSIS IN AGING 
RESEARCH

One of the first works to introduce the chaos theory and 
fractality in aging and senescence research was by Lipsitz 
and Goldberger (1992), which suggested that the reduc-
tion of fractal complexity during aging contributes to the 
decreased ability of the organism to adapt to physiolog-
ical stress (38). Since then, there have been numerous 
studies confirming such loss of complexity in various tis-
sues and cell populations. In many tissues, the reduction 
of fractal dimension is sometimes followed by an increase 
in structural degradation and deterioration, which can be 
indirectly quantified with some textural features such as 
GLCM entropy. Nowadays fractal and textural methods 
are frequently used to demonstrate age-related changes 
in tissue cytoarchitecture, intercellular communication 
and even individual cells and their organelles (39, 40). 

One of the examples where fractal analysis method 
was used to describe complexity loss of cytoarchitecture 
during aging is our study on spleen hematopoietic tissue 
in mice (41). Here we obtained spleen tissue from 64 
male Swiss albino mice and divided them into 8 separate 
age groups. The hematopoietic tissue was stained with 
nucleic acid specific toluidine blue dye and the results 
indicated that during aging the fractal dimension of the 
tissue decreased while the lacunarity increased. Another 
study which used toluidine blue technique was done with 
liver tissue, however, here instead of quantifying tissue 
fractal parameters, we opted for calculation of fractal de-
scriptors of chromatin organization (42). As expected, 
we showed that there was an age-dependent reduction of 
the fractal dimension. Age-related changes in tissue and 
cell fractal parameters are not necessarily present solely 
in old animals. Postnatal development is also sometimes 
characterized by a similar reduction of complexity as it 
was shown in the previous work on Giemsa-stained chro-
matin in mice spleen follicular cells (43).

Regarding the textural indicators, to the best of our 
knowledge, the first study in the field of aging research 
to use the GLCM approach was done by Shamir et al. 
(2009) on the animal model of Caenorhabditis elegans 
(44). Here the authors analyzed age-associated changes 
in muscle tissue and demonstrated changes in entropy 
and directionality, probably due to structural degrada-
tion. The particularly interesting observation of this 
study was the agreement of the detected changes with 
gene expression findings, demonstrating the ability of 
GLCM method to indirectly predict epigenetic processes 
in cells. This work also discussed two different theories 
of aging, one focused on stochastic accumulation of dam-
age and the other focused on changes in developmental 
pathways, as well as the ability of textural analysis to pro-
vide indirect evidence supporting the latter (44).

Similarly to the work of Shamir and associates, in 
2012, textural entropy increase due to aging was quan-

tified in mice spleen hematopoietic tissue (45). However, 
in this case, the focus of the study was on cell nuclei rath-
er than on tissue cytoarchitecture. Apart from changes 
in textural entropy, it was shown that local textural ho-
mogeneity of the nuclei (quantified as inverse difference) 
significantly decreased. Two potential explanations of 
the changes were provided: one focused on DNA damage 
accumulation, and the other on epigenetic dysregulation.

Regarding more recent works on the use of GLCM 
analysis in aging research, one must mention the work 
of Imakubo et al. (2021) done on Caenorhabditis ele-
gans oocytes. Age related changes of oocyte appearance 
were evaluated by quantifying various textural features 
and GLCM correlation feature proved to be a sensitive 
indicator. This study showed the potential of GLCM al-
gorithm to be used as a part of future biosensors capable 
of objectively assessing oocyte quality and potentially re-
ducing errors in fertilization (46).

Future applications of fractal and textural analyses 
in experimental gerontology will mainly be focused on 
testing the ability of these methods to detect and quan-
tify age-associated accumulation of DNA damage and 
changes in gene expression. Also, we will need to evalu-
ate the effects of numerous chemical mediators related to 
aging on fractal and textural characteristics of cells and 
tissues. Finally, future work will need to include the stan-
dardization, validity testing and other aspects of quality 
assurance of these methods. Both fractal and GLCM al-
gorithms will have to be implemented in different exper-
imental settings, and inter-observer and intra-observer 
reliability will have to be assessed. Only then will we be 
able to draw definite conclusions on the scientific value 
of these methods in aging research. 

ARTIFICIAL INTELLIGENCE BASED ON FRACTAL 
AND TEXTURAL DATA

Artificial intelligence (AI) in essence represents a large 
group of computation methods, models and algorithms 
where a machine learns or acquires the ability to perform 
cognitive functions that at least partially resemble those 
of a human. There are various types of machine learning 
(ML) some of which are supervised while others are un-
supervised (48, 49). Machine learning in medicine and 
biology offers new and exciting possibilities of automa-
tion and autonomy of numerous diagnostic and research 
protocols and methods. Even today, various ML-based 
computer automated diagnostic systems are implement-
ed in both fundamental and clinical medicine, and it is 
estimated that in future, artificial intelligence will be-
come an important part of decision making in almost ev-
ery medical discipline (48, 49).

Fractal and textural analyses offer an abundance of 
data and most of them can be used to train and test AI 
models. These models can be developed with the aim of 
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classifying biological systems (i.e. cells) based on their 
physiological properties. They can be also created with 
the ability of prediction of physiological or pathological 
phenomena. The common approach would be to use 
fractal indicators such as fractal dimension and GLCM 
indicators such as angular second and inverse moments 
as input data during training. The output data can be a 
class of cells or tissues formed based on a hallmark trait, 
or a biochemical parameter as a variable (6-8). 

Probably the most feasible AI application of fractal 
and textural data is their use in training supervised ma-

chine learning algorithms. During this type of training, 
the machine is exposed to the series of input data (i.e. 
fractal dimension, inverse difference moment etc.) and 
the resulting output data which is usually binary (6, 7). 
After many repetitions, the machine learns to associate 
certain values from the input with the result. In artifi-
cial neural networks this learning is done by weight ad-
justment in hidden layers of neurons (figure 1). Neural 
networks to this date probably remain the most efficient 
supervised learning approach to GLCM data. These in-
clude simple multilayer perceptrons which, are relatively 

Figure 1. Example of an artificial neural network architecture with 2 hidden layers of neurons that uses GLCM (ASM as angular second mo-
ment, CON as contrast, COR as correlation, IDM as inverse difference moment, ENT as entropy) and wavelet coefficient energies (WavEnLH, 
WavEnHL, WavEnHH) as input data. The network is used to classify damaged (damage=0 as output) and intact cells (damage=1 as output). 
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easy to develop in contemporary programming languag-
es (figure 2), and also convolutional neural networks 
frequently used form computer vision. Other possible su-
pervised learning algorithms include the ones based on 
decision trees (figure 3), random forest, support vector 
machines, principal component analysis or binomial lo-
gistic regression (6, 7).

Our recent publication on the application of artifi-
cial intelligence methods focused on the ability of GL-
CM-trained machine learning models to identify cell 
damage caused by sublethal doses of ethanol (7). As in-
put data, we used GLCM contrast, GLCM correlation, 
angular second moment, inverse difference moment and 
GLCM variance. Three AI approaches were evaluated: 
multilayer perceptron neural network, binomial logistic 
regression, and random trees. The results indicated that 
the multilayer perceptron had the highest classification 
accuracy and the area under the receiver operating char-
acteristic curve suggesting that this approach had the 
highest discriminatory power when separating damaged 
from intact cells (7). 

In future, before using AI algorithms based on frac-
tal and GLCM data in practice, one will have to resolve 
several limitations related to training, testing and validi-
ty of these methods. Many AI algorithms are essentially 
“black box” models meaning that it is difficult, if not im-
possible to interpret the inner mechanisms that govern 
the model (apart from input and output data). This may 
especially be true of artificial neural networks, but it may 
also be applied to support vector machines and random 
forests. Second, rigorous quality assurance of both frac-
tal and GLCM method, as well as the future biosensors 
based on AI must be performed. Finally, issues regarding 
data validity and sample size must be resolved particular-
ly knowing that in some medical scientific areas it may 
be difficult to obtain data large enough form training a 
machine learning model. Only after these challenges are 
adequately resolved, we will be able to include GLCM 
and fractal-based AI algorithms in clinical practice.

Figure 2. Example of the programming code for the multilayer perceptron AI model that uses GLCM angular second moment, inverse dif-
ference moment, correlation and contrast features as input data. The model has the classification accuracy of 83% in separating damaged from 
intact cells and area under the ROC curve of 0.89. The code was written in Python programming language and Scikit-learn library.
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CONCLUSION

Fractal and textural analyses are contemporary and inno-
vative computational approaches with potentially wide 
application in signal analysis. Previously, they have been 
successfully applied in detecting subtle changes in cell 
morphology and intercellular communication associated 
with aging and apoptosis. Data obtained from fractal and 
textural analyses can be used for training and evaluation 
of various machine learning models. So far, artificial in-
telligence approaches based on co-occurrence matrix 
data were successfully implemented in predicting cell 
damage in in vitro conditions, with artificial neural net-
works achieving the best performance. In future, several 
methodological issues and challenges related to the use of 
fractal and textural methods will have to be resolved be-
fore their introduction to contemporary clinical practice.
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PRIMENA FRAKTALNE I TEKSTURALNE ANALIZE U MEDICINSKOJ 
FIZIOLOGIJI, PATOFIZIOLOGIJI I PATOLOGIJI
Igor V. Pantić1,2,3,4, Jovana D. Paunović Pantić5, Sanja M. Radojević-Škodrić6

Sažetak

Fraktalna i teksturalna analiza predstavljaju klasu raču-
narskih i matematičkih metoda koje se brzo razvijaju, i 
koje se odlikuju potencijalno širokom primenom u me-
dicini i biologiji. Poslednjih godina se uspešno koriste za 
procenu diskretnih promena u morfologiji ćelija i tkiva 
povezanih sa različitim fiziološkim i patološkim procesi-
ma. Prethodno je pokazano da se pojedine ćelije u ra-
nim fazama apoptoze odlikuju promenama u fraktalnim 
i teksturalnim karakteristikama jedarnog hromatina. 
Ćelijsko starenje je takođe ponekad povezano sa pro-
menama teksturalnih obrazaca u nekim ćelijskim po-
pulacijama. Do sada su algoritmi veštačke inteligencije 
zasnovani na teksturalnim podacima dobijenim iz ma-

triksa simultanog pojavljivanja sivih intenziteta rezoluci-
onih jedinica, uspešno primenjeni za predviđanje ošte-
ćenja ćelija u in vitro uslovima, pri čemu su neuronske 
mreže postigle najbolje performanse. U budućnosti će 
morati da se reši nekoliko metodoloških pitanja i izazova 
u vezi sa upotrebom fraktalnih i teksturalnih metoda pre 
njihovog uvođenja u savremenu kliničku praksu. Ovaj 
kratki pregledni rad se fokusira na nedavna istraživanja o 
primeni fraktalnih i teksturalnih metoda u eksperimen-
talnoj fiziologiji i srodnim oblastima.

Zaključak: Studenti medicine su bili sigurniji u svoju 
EZP u poređenju sa studentima sporta. Moguće je da 
faktori koji utiču na bolju EZP zavise od vrste studija.

Ključne reči: fraktal, tekstura, signal, veštačka inteligencija.
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