IZVOD

Deficit vode i visoke temperature, posebno u periodu nalivanja zrna ozimog i jarog pivskog ječma, često se javljaju u regionu jugoistočne Evrope. Cilj ovoga rada bio je ispitivanje osobina zrna i slada 32 genotipa ozimog i 32 genotipa jarog dvoredog ječma u uslovima umerele i jake suše tokom perioda nalivanja zrna. U uslovima umerele suše jari ječam je imao niži prinos od ozimog za 28%, ali bolje mehaničke osobine zrna, 2% niži sadržaj proteina u zrnu i 3,22% veći sadržaj finog ekstrakra. U uslovima jake suše ozimi ječam je imao skoro 2,5 puta veći prinos od jarog, bolje mehaničke osobine zrna, niži sadržaj proteina u zrnu i veći sadržaj finog ekstrakra. U agroekološkim uslovima sa mogućim stresovima usled suše i visokih temperatura treba gajiti obre forme, ozimi i jari pivski ječam.

KLJUČNE REČI: pivski ječam, prinos, kvalitet, suša, temperatura

Uvod

1 Prof. dr Novo Pržulj, naučni savetnik, Vojislava Momčilović, dipl. biolog, dr Veselinka Đurić, naučni saradnik, Naučni institut za ratarstvo i povrtarstvo, Novi Sad
2 Dr Olgica Grujić, redovni profesor, mr Jelena Pejin, asistent, Tehnološki fakultet, Novi Sad
specifične tehnologije proizvodnje kao i odgovarajućeg procesa sladovanja i u agroekološkim uslovima jugoistočne Evrope moguće je proizvesti relativno dobar slad (Starčević i sar., 1992; Pržulj et al., 1997).

Cilj ovog istraživanja je određivanje efekta genotipa, godine i interakcije genotip x godina na neke osobine srna i slada ozimog i jarog pivskog ječma gajenog u agroekološkim uslovima Vojvodine.

Materijal i metod rada

Vrednosti ispitivanih osobina srna predstavljaju prosek četiri ponavljanja. Analiza slada je urađena četiri meseca nakon žetve na jednom prosečnom uzorku iz četiri ponavljanja, po EBC metodici. Testiranje razlika između ozimog i jarog ječma urađeno je analizom varijanse dvo faktorijskog ogleda, primenom MSTAT-C programa.

Rezultati i diskusija

U radovima u kojima je ispitivan uticaj visokih temperatura vazduha tokom nalivanja srna temperature su podeljene u dve grupe: (1) umereno visoke, gde su srednje dnevne temperature između 25-30°C, sa maksimalnim do 32°C i (2) veoma visoke, sa maksimalnim temperaturama preko 35°C tokom nekoliko dana, što se definiše kao toplotni stres.
Tab. 1. Padavine (l/m²) i srednje dnevne temperature vazduha (°C) tokom vegetacije oznog i jarog ječma u 2001/02. i 2002/03. godini

<table>
<thead>
<tr>
<th>Meseci/Months</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetaciona sezona 2001/02. Growing season 2001/02</td>
<td>0</td>
<td>70</td>
<td>26</td>
<td>8</td>
<td>25</td>
<td>11</td>
<td>26</td>
<td>87</td>
<td>27</td>
</tr>
<tr>
<td>Vegetaciona sezona 2002/03. Growing season 2002/03</td>
<td>90</td>
<td>24</td>
<td>33</td>
<td>48</td>
<td>23</td>
<td>9</td>
<td>7</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>Višegodišnji prosek Long term average</td>
<td>57</td>
<td>53</td>
<td>43</td>
<td>36</td>
<td>29</td>
<td>38</td>
<td>63</td>
<td>59</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meseci/Months</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetaciona sezona 2001/02. Growing season 2001/02</td>
<td>14,9</td>
<td>3,7</td>
<td>-3,2</td>
<td>0,3</td>
<td>7,3</td>
<td>9,0</td>
<td>11,7</td>
<td>19,1</td>
<td>21,8</td>
</tr>
<tr>
<td>Vegetaciona sezona 2002/03. Growing season 2002/03</td>
<td>11,6</td>
<td>10,1</td>
<td>0,5</td>
<td>-1,9</td>
<td>-5,3</td>
<td>4,7</td>
<td>9,5</td>
<td>19,1</td>
<td>22,5</td>
</tr>
<tr>
<td>Višegodišnji prosek Long term average</td>
<td>11,3</td>
<td>5,4</td>
<td>1,6</td>
<td>0,1</td>
<td>1,9</td>
<td>6,2</td>
<td>11,3</td>
<td>16,8</td>
<td>19,8</td>
</tr>
</tbody>
</table>

Ječam je dobra sirovina za proizvodnju slada samo ako poseduje određene osobine karakteristične za pivski ječam, koje se ocenjuju utvrđivanjem spoljašnjih pokazatelja zrna, mehaničkom analizom zrna i hemijsko-tehnološkim ispitivanjima. U spoljašnje pokazatelje spadaju izgled, boja i miris zrna, strane primes, ispunjenost zrna, osobine plevica i ujednačenost zrna. Mehanička analiza obuhvata hektolitarsku masu, masu hiljadu zrna, homogenost, osobine endosperma, klijavost, energiju kljanja, hidrosenzibilnost i sposobnost hubrenja. U hemijsko-tehnološka ispitivanja spadaju sadržaj vlage, proteina, finog ekstrakta, kao i sastojci finog ekstrakta.

Masa hiljadu zrna je pouzdaniji parametar u oceni kvaliteta pivskog ječma i nalazi se u pozitivnoj korelaciji sa sortiranjem i sadržajem ekstrakta u zrnju. U prosoku za obe godine ispitivanja nije bilo razlike u masi hiljadu zrna između
ozimog i jarog ječma (Tab. 2). Ozimi ječam je imao nešto veću masu hiljadu zrna u godini sa deficitom vode tokom perioda nalivanja zrna, dok je u godini sa većom količinom vode veća masa hiljadu zrna bila kod jarog ječma. U godinama ispitivanja utvrđena je pozitivna korelacija između mase hiljadu zrna i sadržaja zrna prve klase. U odnosu na jari ječam, ozimi ječam je u proseku imao oko 4% više zrna prve klase. Prinos ozimog ječma bio je veći od jarog u obe godine. Optimalna temperatura vazduha za maksimalnu masu zrna i prinos strnih žita je 15-18°C (Chowdhury and Wardlaw, 1978). U većini proizvodnih područja ječma temperatura u periodu nalivanja zrna su znatno više od optimalnih i obično su praćene deficitom vode (Pržulj et al., 1997). U području Srbije prošeće temperature u periodu nalivanja zrna ozimog ječma se nalaze u utvrđenom optimumu, dok su u periodu nalivanja zrna jarog ječma veće za 2-4°C. Potencijalni kvalitet slada zavisit od biohemijskih osobina zrelog zrna, koje su određene interakcijom sorte i sredine (Eagles et al., 1995; Savin et al., 1997). Razlike u kvalitetu slada neke sorte zavise od interakcije genotipa sorte sa lokalitetom i godinom gajenja. Sorte ječma dobre adaptabilnosti imaju stabilan kvalitet slada, a mogu dati slad zadovoljavajućeg kvalитета i kada se gaje u manje povoljnim uslovima (Eagles et al., 1995; Pržulj i Momčilović, 1998).

Sadržaj proteina u zrnu je u negativnoj korelaciji sa sadržajem ekstrakta (Narziss, 1976). Dobar pivski ječam treba da ima između 9 i 11,5% proteina u odnosu na suvu masu zrna. Ako je sadržaj proteina veći dobije se slad sa manjim sadržajem ekstrakta, otežava se njegova prerada, a neophodna razgrađenost endosperma se može dobiti samo uz veće gubitke suve materije tokom sladovanja. Povećana količina rastvorljivog azota u sladovini dobijenoj iz ovakvog slada najčešće uzrokuje tamniju boju piva, ali i dobre osobine pene piva. Za svetla piva donjeg vrenja prihvatljiv je ječam sa 11-11,5 % proteina, za piva plzenskog tipa ječam sa manje od 11% proteina, a za tamna piva ječam sa 11,5-12,0 % proteina.

U 2002. godini, u kojoj je vodni i temperaturni režim bio povoljniji, ozimi ječam je imao oko 2% više proteina od jarog (Tab. 2). U izrazito sušnoj 2003. godini ozimi ječam je imao manji sadržaj proteina u odnosu na jari. U povoljnijim uslovima ozimi ječam usvaja vodu i hranljive materije, među kojima i azot, i tokom perioda nalivanja zrna, što dovodi po povećanja sadržaja proteina i pogoršanja kvaliteta zrna (Malešević i Starčević, 1992). U uslovima stresa zbog visokih temperatura i nedostatka vode tokom perioda nalivanja zrna dolazi do ranijeg gubitka hlorofil, slabije asimilacije i manje usvajanja azota, te u godinama sa nepovoljnijim uslovima tokom generativnog perioda razvoja ozimi ječam ima manji sadržaj proteina. Kao posledica toga zrno je nešto sitnije i ima niži prinos (Tab. 2). U odnosu na povoljnije uslove, slad ozimog ječma u sušnoj godini ima nešto slabiju citolitičku i bolju proteolitičku razgrađenost. Deficit vode u proleće i tokom nalivanja zrna ima posebno negativan efekat na mehaničke i hemijske osobine zrna i kvalitet slada jarog ječma. U takvim uslovima jari ječam je imao manju masu zrna, sitnije zrno, manju hektolitarsku masu i za 50% niži prinos u odnosu na povoljnije uslove (Tab. 2). Sadržaj proteina u zrnu u uslovima stresa tokom perioda nalivanja zrna je za oko 2% veći nego u normalnoj godini.
Tab. 2. Prosečne osobine zrna i slada 32 sorte ozimog i 32 sorte jarog pivskog ječma (Rimski Šančevi, 2002. i 2003. godine)
Tab. 2. Average characteristics of grain and malt of 32 winter and 32 spring malting barley varieties (Rimski Šančevi, 2002 and 2003)

<table>
<thead>
<tr>
<th>Osobine zrna i slada</th>
<th>Characteristics of grain and malt</th>
<th>2002</th>
<th>2003</th>
<th>Prosek Average</th>
<th>LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>I klasa ukupno (%)</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I class total (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hektolitarska masa (kg/l)</td>
<td>Hectolitar mass (kg/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masa 1000 zrna (g, SM)</td>
<td>1000 grain weight (g, DM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prinos (kg/ha)</td>
<td>Yield (kg/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteini (% SM)</td>
<td>Protein (% DM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekstrakt fini (% SM)</td>
<td>Fine extract (%DM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastvorljivi N (mg/100ml)</td>
<td>Soluble N (mg/100ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viskozitet (mPas, 8.6%c)</td>
<td>Viscosity (mPas, 8.6%c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Razlika ekstrakta (% SM)</td>
<td>Extract difference (% DM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolbach-ov broj (%)</td>
<td>Kolbach index (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hartong 45C (%)</td>
<td>Hartong 45C (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

		A	B				
Ozimi/Winter	91,75	91,09	91,42		A	1,91	2,57
Jari/Spring	94,96	79,78	87,37		B	2,10	2,79
Prosek/Average	93,36	85,44	89,40		AB	2,97	3,95
Ozimi/Winter	73,75	74,41	74,08		A	0,65	0,88
Jari/Spring	76,20	70,64	73,42		B	0,46	0,61
Prosek/Average	74,98	72,52	73,75		AB	0,65	0,86
Ozimi/Winter	47,59	46,33	46,96		A	0,89	1,20
Jari/Spring	48,20	44,79	46,49		B	0,94	1,24
Prosek/Average	47,89	45,56	46,73		AB	1,32	1,76
Ozimi/Winter	9508	8861	9184		A	1,59	214
Jari/Spring	6855	3690	5273		B	185	245
Prosek/Average	8182	6275	7229		AB	261	347
Ozimi/Winter	12,70	12,02	12,36		A	0,24	0,32
Jari/Spring	10,79	12,70	11,75		B	0,21	0,27
Prosek/Average	11,75	12,36	12,05		AB	0,29	0,39
Ozimi/Winter	77,60	77,92	77,76		A	0,47	0,64
Jari/Spring	80,82	77,46	79,14		B	0,57	0,49
Prosek/Average	79,21	77,69	78,45		AB	0,52	0,69
Ozimi/Winter	64,62	64,87	64,74		A	2,78	3,74
Jari/Spring	68,15	78,81	73,48		B	4,11	5,47
Prosek/Average	66,38	71,84	69,11		AB	5,82	7,73
Ozimi/Winter	1,669	1,700	1,685		A	0,03	0,04
Jari/Spring	1,434	1,648	1,541		B	0,03	0,04
Prosek/Average	1,551	1,674	1,613		AB	0,04	0,06
Ozimi/Winter	2,502	3,403	2,952		A	0,33	0,44
Jari/Spring	1,479	3,144	2,312		B	0,33	0,44
Prosek/Average	1,990	3,274	2,632		AB	0,46	0,62
Ozimi/Winter	28,13	30,00	29,06		A	1,36	1,83
Jari/Spring	35,23	34,52	34,88		B	1,94	2,58
Prosek/Average	31,68	32,26	31,97		AB	2,75	3,65
Ozimi/Winter	32,84	34,28	33,56		A	1,93	2,60
Jari/Spring	35,93	40,68	38,30		B	1,69	2,25
Prosek/Average	34,39	37,48	35,93		AB	2,40	3,19

317
Sadržaj finog ekstrakta kod jarog ječma u nepovoljnoj 2003. godini bio je za 3,32 % manji nego u 2002. godini, dok su viskozitet i proteolička razgradenost bili povećani, a ukupna razgradenost slada smanjena. Sumarno, u uslovima stresa usled visokih temperaturi i deficit vode jari ječam ima neprihvatljive mehaničke i hemijske osobine zrna, loš kvalitet slada i nizak prinos.

Toplotni stres i stres usled deficit vode tokom perioda nalivanja zrna, kada se broj zrna već formirao, uglavnom nema uticaja na broj zrna po biljci, ali dovodi do smanjenja prinosa preko smanjenja krušnoće i mase zrna (Wardlaw and Monocur, 1995; Savin et al., 1997; Savin and Nicolas, 1999). Međutim, ako se stres desi u prvoj nedelji nakon cvetanja može doći do deformacije i smanjenja broja zrna (Langer and Oluhemi, 1970). Glavni efekat temperaturnog stresa i deficit vode je smanjenje dužine perioda nalivanja zrna, dok je manji uticaj na intenzitet nalivanja zrna (Pržulj, 2001). Umereno visoke temperature 20 dana posle cvetanja skraćuju period nalivanja zrna za oko 5 dana i smanjuju prinos do 8%. Visoke temperature dovode do bržeg gubitka vode, ubrzavaju sazrevanje zrna i uzrokuju raniju fiziološku zrelost. Uticaj temperaturnog šoka i deficit vode na prinos i kvalitet zavisi od momenta nastanka stresa. Temperaturni šok najjače redukuje prinos pšenice i ječma ako se desi na početku perioda nalivanja zrna, tj. 10-14 dana nakon cvetanja (Stone and Nicolas, 1995, Savin and Nicolas, 1999). Toplotni stres u trajanju od pet dana sredinom nalivanja zrna smanjuje prinos ječma za oko 35%.

Negativan uticaj visokih temperature ne ogleda se samo u smanjenju mase zrna i prinosa nego i u smanjenju sadržaja ugljenih hidrata i njihovog kvaliteta. Dinamika akumulacije skroba je u korelaciji sa dinamikom nakupljanja suve materije, pošto skrob predstavlja najveći procent mase zrna. Mada je utvrđen uglavnom linearni odnos u smanjenju ukupne mase zrna i sadržaja skroba usled visoke temperaturi i suše, ipak dolazi do većeg relativnog smanjenja sadržaja skroba. Smanjenje sadržaja skroba je intenzivnije pod uticajem toplotnog stresa nego stresa usled deficit vode. Pod uticajem stresa, pogotovo u prvoj polovini nalivanja zrna, povećava se udeo amiloze u zrnu na račun amilopectina, te je veći odnos amiloza:amilopectina (Savin and Nicolas, 1999). Sa praktične tačke to znači da treba prilagoditi shemu sladovanja i izabrati odgovarajuću temperaturu tokom proizvodnje piva.

Posle temperaturnog stresa od pet dana dolazi do prekida porasta zrna i akumulacije skroba. Osnovni efekat visokih temperatura tokom nalivanja zrna je smanjenje kapaciteta pretvaranja prostih šećera u skrob (Wallwork et al., 1998). Smanjenje aktivnosti enzima je ireverzibilan proces, odnosno umere temperature i dostupna voda nakon stresa ne omogućavaju ponovno nakupljanje skroba (Wallwork et al., 1998).

Dobro ispunjeno zrno sa niskim sadržajem proteina je važna osobina pivskog ječma, koja zavisi od akumulacije i remobilizacije suve materije i azota iz listova i stabljike u zrno (Fathi et al., 1997; Pržulj and Momčilović, 2001). U uslovima stresa do povećanja koncentracije azota u zrnu dolazi iz dva razloga; usled usvajanja azota iz zemljišta tokom perioda nalivanja zrna i smanjenja sinteze neazotnih komponenti. U principu pod uticajem toplotnog stresa i stresa usled deficit vode dolazi i do smanjenja količine azota u zrnu, paralelno sa smanjenjem
skroba, ali u manjoj meri jer je akumulacija azota manje osetljiva na visoke temperaturu nego akumulacija skroba (Savin and Nicolas, 1999; Wallwork et al., 1998). To praktično znači da u uslovima deficita vode tokom nalijanja zrna dolazi do akumulacije azota u zrnu i pri smanjenoj akumulaciji skroba, zbog čega se povećava relativni udeo azota i proteina u zrnu. Poželjno je da sorte pivskog ječma imaju sposobnost održavanja nižeg sadržaja proteina u različitim proizvodnim uslovima. To znači da sorta ima mogućnost održavanja porasta zrna u uslovima stresa i mogućnost remobilizacije manje količine azota u zrno iz vegetativnih delova. Iako je prihvaćeno da postoji negativna korelacija između prinosa i sadržaja proteina u zrnu, akumulacija skroba i proteina su nezavisni procesi, te je moguće raditi istovremeno selekciju na prihvatljiv sadržaj proteina i visok prinos (Wallwork et al., 1998). Ako je sadržaj azota u zrnu veliki, odnosno nije došlo do smanjenja sadržaja azota proporcionalno smanjenju skroba, može se zaključiti da je biljka imala dovoljno azota na raspolaganju u periodu posle cvetanja.

Umereno visoke temperature nemaju negativan uticaj na kvalitet zrna i slada pivskog ječma (Savin et al., 1997) dok značajnije povećanje temperatura dovodi do smanjenja ekstrakta (Glennie-Holmes and Jacobsen, 1994). Takođe umereno visoke temperature ne utiču ni na proces nakupljanja β-glukana (Wallwork et al., 1998). Temperaturni šok u trajanju od pet dana nakon dve nedelje posle cvetanja ima veći negativan efekat na kvalitet zrna i slada nego umereno visoke temperature u istom periodu koje duže traju. Iako biljke usvode više toplotnih jedinica kod dužeg trajanja umereno visokih temperature manji je njihov negativan efekat nego kod temperaturnog šoka. Temperaturni šok smanjuje sadržaj β-glukana u zrnu za 27% a u sladu za 56% (Savin et al., 1997). Degradacija β-glukana je značajno veća kod zrna koje potiče od biljaka koje su bile izložene toplotnom stresu. Osnovni negativni efekat temperaturnog šoka je smanjenje prinosa, kvaliteta zrna i kvaliteta slada (Wallwork et al., 1998).

ZAKIJUČAK

Visoke temperature vazduha i deficit vode tokom perioda nalijanja zrna imaju posebno negativan uticaj na prinos i kvalitet zrna i slada jarog pivskog
ječma. U agroekološkim uslovima sa mogućim stresovima usled suše i visokih temperaturi treba gajiti obe forme, ozimi i jari pivski ječam. Proizvodnja jajog pivskog ječma treba da bude zasnovana na sortama dobre adaptabilnosti i primeni specifične agrotehnike. U cilju obezbeđenja adekvatne sirovine za industriju slada cena pivskog ječma mora biti formirana na osnovu kvaliteta zrna.

LITERATURA

MALTING BARLEY IN CONDITIONS OF HIGH AIR TEMPERATURES AND DROUGHT

Pržulj, N.¹, Grujić, Olgica², Momčilović, Vojislava¹,
Durić, Veselinka¹, Pejin, Jelena²

¹Institute of Field and Vegetable Crops, Novi Sad
²Faculty of Technology, Novi Sad

SUMMARY

Water deficits and high air temperatures occur frequently in southeastern Europe, especially at the grain filling period of winter and spring malting barley. The objective of this paper was to study the grain and malt properties of 32 two-rowed winter and 32 two-rowed spring barley genotypes under moderate and severe drought conditions during grain filling. In moderate drought conditions, spring barley produced 28% lower yields than winter barley and had better mechanical grain characteristics, 2% less grain protein and 3.22% more fine extract. In severe drought conditions, winter barley had yields that were almost two and a half times higher than those of spring barley as well as better mechanical grain characteristics, a lower grain protein content and a higher fine extract content. In agroecological conditions in which stresses caused by drought and high temperatures are possible, both forms of malting barley, winter and spring, should be grown.

KEY WORDS: malting barley, yield, quality, drought, temperatures