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S U M M A R Y  
 
 
 Traditional research means, such as in vitro and in vivo models, have consistently been used by 
scientists to test hypotheses in biochemistry. Computational (in silico) methods have been increasingly 
devised and applied to testing and hypothesis development in biochemistry over the last decade. The aim 
of in silico methods is to analyze the quantitative aspects of scientific (big) data, whether these are stored 
in databases for large data or generated with the use of sophisticated modeling and simulation tools; to 
gain a fundamental understanding of numerous biochemical processes related, in particular, to large 
biological macromolecules by applying computational means to big biological data sets, and by computing 
biological system behavior. Computational methods used in biochemistry studies include proteomics-
based bioinformatics, genome-wide mapping of protein-DNA interaction, as well as high-throughput 
mapping of the protein-protein interaction networks. Some of the vastly used molecular modeling and 
simulation techniques are Monte Carlo and Langevin (stochastic, Brownian) dynamics, statistical 
thermodynamics, molecular dynamics, continuum electrostatics, protein-ligand docking, protein-ligand 
affinity calculations, protein modeling techniques, and the protein folding process and enzyme action 
computer simulation. This paper presents a short review of two important methods used in the studies of 
biochemistry – protein-ligand docking and the prediction of protein-protein interaction networks. 
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          ALGORITHMS AND OTHER RESOURCES  
          INVOLVED IN THE COMPUTATIONAL  
          PREDICTION OF THE NETWORKS FOR  
          PROTEIN–PROTEIN INTERACTION 
 

Protein-protein interactions (PPIs) regulate al-
most all the processes occurring within the cell, such 
as DNA transcription and replication, diverse sig-
naling cascades, or metabolic cycles, among others. It 
is crucial to understand the specificity of these PPIs 
as they perform other types of cellular functions 

with other proteins. There has been an exponential 
elevation of the genomic sequence information 
amount, particularly over the recent years. However, 
protein sequence annotation tends to lag in terms of 
its quality and quantity. The gap between the ap-
propriate biochemical and medical information and 
raw sequence information is overcome by utilizing 
high-throughput functional genomic approaches and 
multi-pronged approaches. Employing computa-
tional methods becomes essential in the event that 
high throughput methods are unable to yield rele- 

 
Table 1. Computational methods for the prediction of protein-protein interactions (general overview) 
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Gene fusion 

• Mostly employed for small scale proteomes. 
• In general, does not apply to all genes. 
• Fusion events are not plentiful, particularly when it comes to prokaryotes. 
• Highly reliable. 

Gene 
neighboring 

• Mostly utilized for small scale proteomes. 
• Relatively straightforward. 
• Prone to producing false negatives. 
• Results dependent on used genome number and distribution. 

Phylogenetic 
similarity 

• Requires a complete genome. 
• Results dependent on used genome number and distribution. 
• Does not apply to essential proteins. 
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Sequence 
and primary 

structure 

• Relatively straightforward. 
• May be used for large scale proteomes. 
• Needs the interpretation of importance features. 

Structure 
based 

• Tends to be rather limited when it comes to scale. 
• Enables a detailed PPI analysis. 

Decision 
tree and 
random 
forest 

• Confronts well with high-dimensional data. 
• Confronts well with missing values. 
• The data pattern can be easily explained. 

 

KNN 

• Straightforward. 
• Does not require any kind of training. 
• The memory requirement and cost of computation quickly increase with 

the increasing vector dimension feature. 

MLR 
• Solid possibilities for generalization. 
• Resembles a black box. 

Naïve Bays 
• Founded on the independence assumption for the explored features. 
• Straightforward and not difficult for interpretation. 
• Easily tackles the missing values. 
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Text mining 
methods 

• Results may be affected by network completeness and false positives. 
• Use of network topology for predicting the protein-protein interaction. 
• Results may not be as reliable as in the case of manually curated data. 

Neverthless, the rapid development of published biomedical literature 
can lead to these methods being better grounded. 

- KNN – K-nearest neighbors algorithm   
- MLR – Multiple linear regression 
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vant information with regard to the interactions 
studied. Over the past several decades, a number of 
computational approaches have been devised for the 
interaction discovery of protein-protein. Such meth-
ods differ in the type of information utilized for PPI 
prediction (1 - 4). Several databases have been 
developed for the purpose of holding and retaining 
large amounts of data concerning the PPIs of 
numerous organisms, most of which are available 
publicly (5). The mentioned databases have been 
grounded in the novel and rapid high-throughput 
technological advances. These may represent a major 
source of data for the evaluation of prediction meth-
ods. At present, over 100 repositories with regard to 
PPIs have been uploaded to the web and are readily 
available for reference purposes online. The most 
significant of these include BioGRID (the General 
Repository for Interaction Database, representing 
one of the most comprehensive databases for pro-
tein-protein interactions established through exper-
imentation), DIPTM (which stands for the Database 
of Interacting Proteins, devised at the University of 
California, Los Angeles, containing a multitude of 
varying source data, aimed at forming a unique and 
consistent PPI), MINT (the Molecular Interaction 
Database), BIND (the Biomolecular Interaction 
Network Database), HPRD (the Human Protein 
Reference Database), as well as IntAct. 

Overall, the computational methods available 
for the prediction of protein-protein interactions may 
be classified into four major categories: methods 
utilizing network topology for predicting protein-
protein interaction, structural information and ge-
nomic context methods, methods involving literature 
and text mining (or database searching facilities) for 
the detection of protein-protein interaction, as well 
as the methods which employ the use of machine 
learning algorithms working with heterogeneous 
genomic/proteomic characteristics. Table 1 presents 
an overview of the methods in question. 

 
Genomic context-based methods and structure 
information headings 
 

Gene neighboring. Considering the genomic 
context and the notion that the genome contains 
related genes in proximity to one another, one of the 
first and simplest methods, the co-localization of 
genes or gene neighboring for PPI prediction was 
developed. The elevation in the numbers of genomes 
has made this method more reliable, similar to other 

genome context approaches. Simplicity is the most 
important feature of this method. However, some 
false negative results could be obtained with the 
application of this method, since it lacks recognition 
of the manner in which distantly located genes 
interact with each other. A second flaw of the gene 
neighboring method is that its performance is in-
fluenced by the reference genome choice (6 - 9). 

Phylogenetic relationship. The main principle 
on which this method detects PPIs is the “phylogenic 
profile” similarity. The binary vector reflecting the 
existence or lack of a studied protein within a set of 
organisms represents the phylogenetic profile of a 
certain protein. According to the mentioned ap-
proach, the Phylogenetic Relationship (PR) method 
can be considered as a sort of gene neighboring 
method which is more flexible and more superior 
since it is able to uncover the kind of interaction 
which cannot be discovered with the gene neigh-
boring method. The chief notion on which the PR 
method develops conclusions is that the genes which 
are functionally related can be found together across 
a multitude of distant species, and that they play the 
same biological process role. Unfortunately, there 
are three crucial flaws to the PR method: 1) the used 
genome distribution and numbers have a dramatic 
influence on the obtained results; 2) the PR method 
does not apply to essential proteins, present in 
nearly every organism; 3) the PR method can be 
applied only to complete genomes (10). 

Gene fusion. The main principle used in the 
gene fusion (GF) method is the application of com-
parative genomics and evolutionary information. For 
this reason, the GF method can be regarded as sup-
plemental to the methods which involve the phylo-
genetic profile and gene neighboring (11, 12). Since 
the GF method is based on the occurrences of fusion 
in the existing genes, the obtained results provide 
relevant information of reliability and a functional 
relationship. The GF method's major drawback is the 
lack of fusion events, particularly in prokaryotes 
(13). 

 
3D structure-based 
 
This method is based on the information about 

the 3D structure of the studied proteins used for the 
purpose of predicting their interactions. Accurate 3D 
structures of studied proteins are necessary to obtain 
the valid results. In recent years, a genome-wide 
scale method was introduced. Its basis was the 
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structure information for predicting PPI with the use 
of homology models. When compared with other 
types of methods, this method yields results with a 
greater number of details, such as defining the bio-
physical traits of the mentioned interaction, as well 
as the interacting residue (14, 15). In addition, the 
obtained information about PPIs can be used to 
predict the interaction between the new proteins 
equiavalent to the interacting proteins previously 
predicted.  

 
Topology network-based methods 
 
PPIs in various organisms have common 

topological features like many real-world networks, 
rendering them dissimilar to random networks. Such 
topological features are made use of to detect true 
positives and false positives between PPIs. If one is 
to understand the network dynamics and underlying 
evolutionary mechanisms shaping the network in a 
better way, it is essential to consider the topological 
perspective during PPI network analysis. To de-
termine how significant topological properties are 
within a specific PPI network, a comparison needs to 
be made between the topological features and ran-
dom network features. Afterwards, the PPIs are to be 
assigned confidence scores (16 - 18). At the end of 
the process, certain interactions may be eliminated 
on the basis of the obtained scores, while there is a 
possibility of adding others to the network (19).  

 
Methods involving both literature and text 
mining  
 
The significance of biomedical literature min-

ing approaches is related to the fact that the PubMed 
database is being augmented at an incredible rate, 
with two papers published every minute. For PPI 
prediction, some computational methods employ al-
gorithms for literature and text mining to obtain data 
related to the co-occurrence of the proteins cited in 
PubMed abstracts. The literature mining approach is 
threefold: 1) Named Entity Recognition (NER) is a 
recognition step in which the name of the studied 
protein is defined, and this step is of extreme impor-
tance for conducting further analyses; 2) Zoning, a 
step involving splitting the text into basic constit-
uents and extracting sentences from the text; 3) PPI 
extraction, a step that requires the use of different 
algorithms for the determination of protein-protein 
interaction. There are three categories of mining ap-

proaches employed in biomedical literature re-
quired to detect protein-protein interactions in cur-
rent practice: 1) Computational natural language 
processing (NLP) and methods grounded in linguis-
tics, by which protein-protein interaction is detected 
through the use of parsers and grammar definitions; 
2) Methods which are rule-based, in which the 
deductions of protein-protein interaction are made 
by applying patterns or a set of context-specific 
rules; 3) Machine learning approaches involve the 
use of classifiers to learn the pattern that enables the 
identification of PPI from the training set (19 - 22). 
Although the results which automated data mining 
yields may be less reliable than manually curated 
data, these methods can be made more reliable by 
the rapid development of the published biomedical 
literature (23). 

 
Machine learning algorithm-based methods 
with the utilization of heterogeneous 
genomic/proteomic features 
 
Heterogeneous biological data, like gene 

expression, k-let count (length k subsequences) co-
don usage, and amino acids’ physicochemical 
properties are utilized in a number of methods for 
developing a PPI prediction model. For the purpose 
of learning about and predicting PPIs, the mentioned 
methods involve the integration of biological data 
sources provided by high-throughput technologies 
to feature vectors and apply machine learning 
techniques. For the most part, a classifier, i.e. ma-
chine learning algorithm used for the prediction of 
protein-protein interaction includes numerous de-
scriptors or features of the proteins or their pairs 
with known interactions and non-interactions, in the 
form of a learning set for establishing which proteins 
do or do not interact. After the model is established, 
new protein pairs can be classified by this algorithm 
to interacting classes or non-interacting classes (24 - 
26). Computational biology and bioinformatics rely 
on the wide use of support vector machines (SVM) 
or kernel machines for the classification of protein-
protein interaction, along with the classification of 
other sorts of biological data. The idea of margin 
maximization is the key concept for the development 
of the SVM classifier. The certainty of an object’s 
classification is in direct relation to the object margin. 
For this reason, objects which have a correctly 
assigned label and are highly certain will have large 
margins. Conversely, small margins are found in 
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objects with uncertain classification. The SVM meth-
od establishes a training model with the application 
of a dataset for labeled training. This entire set is 
designated so as to belong to one of the two classes, 
so the developed model is able to make predictions 
regarding class labels for new cases. The positive 
feature of SVM is its extremely powerful classifi-
cation algorithm that can be used with arbitrary 
complexity. Unfortunately, the SMV algorithm is 
quite complex and demands large computational 
memory, which leads to rather slow training and 
evaluation. What is more, the initial parameters can 
have a big impact on the results obtained with this 
classifier (27, 28). Artificial neural networks (ANNs 
or NNs) have been envisaged to mathematically 
model the intellectual abilities of humans by em-
ploying designs which are plausible in biological 
terms. The multilayer perception (MLP) is among 
the most popular NN models. It represents a tool for 
PPI modeling which has demonstrated admirable 
performance levels. Nevertheless, MLP has received 
a lot of criticism and has been considered a black-box 
classifier owing to the difficulty in establishing the 
actual model parameter meaning (29, 30). As a feed-
forward artificial neural network, MLR has multiple 
layers, each of which is fully linked to the following 
layer with the use of weighted edges. In general, 
three layers comprise the MLR method: the input 
layer, the hidden (intermediate) layer and the output 
layer. These layers’ main topology can be sum-
marized since every node at the output layer, which 
is hidden, is a neuron that has an activation function, 
and the processing units of an MLP are contained 
within the mentioned node. A probabilistic classifier 
based on Bayes' theorem, Naïve Bayes is quite 
simple, computationally efficient, and easy to in-
terpret, making it very popular. The main source of 
Naïve Bayes’ simplicity lies in the assumption that 
independent variables are statistically independent. 
Naïve Bayes can be used quite adequately when 
tackling problems concerning normal distributions, 
which tend to be increasingly common in real-world 
problems. For a small training dataset, Naive Bayes 
classifiers can be efficiently trained for achieving a 
learning approach under supervision. On the other 
hand, when it comes to more complex problems of 
classification, the above mentioned may prove to be 
inadequate. Despite the mentioned fact, the method 
has seen extensive use in the prediction problem of 
PPIs (31). One of the most straightforward machine 
learning classifiers is K-Nearest Neighbors (K-NN). 

In this method, the approach used for classifying 
objects is based on label assignation to each separate 
object on the basis of the K closest objects (the user is 
the one who sets the K parameter). No explicit 
training is required to use K-NN (K optimization can 
be considered as a type of learning owing to the 
relevance of the choice of K in this method). The 
memory requirements and computational costs 
increase quickly in the event that numerous features 
or large data sets are present. For this reason, the 
method has not been used extensively in PPI pre-
diction (32, 33). The random forest (RF) algorithm 
represents a method of classification involving va-
rious decision trees. Each of these is built on random 
feature vectors which have been independently 
sampled from a single data set during the training 
phase. Then, a small fraction of the variables is se-
lected randomly for every node in a tree, after which 
each classification tree is fully developed. Following 
this, the input vector is placed down in every tree of 
the forest for the purpose of classifying a new object. 
Finally, one class is assigned to the object according 
to majority voting. Once a considerable number of 
features or a big dataset are used, leaving no need 
for feature deletion or selection, RF becomes a prac-
tical classifier. Moreover, RF is able to rank features 
on the basis of classification relevance. RF can also be 
of use in the missing data recovery. Owing to the 
unique features of the random forest and decision 
trees, they are frequently utilized in computational 
biology and bioinformatics for the classification of 
biological data, especially those required for the 
prediction of PPIs (34, 35). 

 
DOCKING AND SCORING – METHODS AND 
APPLICATIONS 
 

In situations when the chemical compositions 
of both the target enzyme (receptor) and the studied 
small molecule (ligand) are known as molecular 
docking (MD), the frequnetly utilized in silico meth-
od may be of use when defining the most likely 
geometry of the ligand within the active site of the 
receptor. Furthermore, MD studies can be used to 
calculate binding energies between amino acids and 
ligands, and from the active site of the receptor. 
Thus, these values can be correlated to “scoring 
functions”. Since the studied compounds’ inhibitory 
effect may be correlated to such interactions, these 
methods have high applicability in biochemistry-
related research, especially in pharmacology and 
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drug design (36-38). In brief, in the hit identification 
and lead optimization of drug candidates, small 
molecules are ‘docked’ into macromolecular target 
structures, and they are potential complementarily 
to the active sites ‘scored’ with the application of 
“scoring functions” which are based on energy 
calculations. Most MD studies are aimed at perform-
ing two tasks: precise structural modeling and 
accurate activity prediction. Identifying the molecu-
lar features which account for certain biological ac-
tivities or the future modification predictions re-
garding the studied ligands, which will enhance 
their inhibitory potential, is often a highly complex 
issue and, therefore, challenging to simulate with the 
use of a computer. To overcome this problem, MD is 
derived from several multistep processes, where 
every single step presents one or more additional 
degrees of complexity (39, 40). 

The first step in the MD studies is applying 
docking algorithms to “pose” as small molecules in 
the active site of the receptor. Since a significant 
number of conformational degrees of freedom may 
be contained even in relatively simple organic mol-
ecules, this step is challenging in itself. “Scoring” 
functions have been developed for the purpose of 
predicting the biological activity by evaluating the 
interactions between amino acids and ligands inside 
a receptor’s active site. During the early stages of 
MD studies, relatively simple scoring functions are 
applied, and after the most preferable conformers 
are determined, more complex scoring schemes are 
used for further evaluation. These “scoring” func-
tions can include electrostatic interactions, van der 
Waals interactions, as well as the inclusion of at least 
a certain degree of salvation or entropic effects, since 
a mixture of enthalpic and entropic effects drives 
ligand-binding events, and either enthalpy or en-
tropy can be dominant in certain interactions. The 
representation of both receptors and ligands must be 
considered for the evaluation of various docking 
methods. In the current practice, the basic repre-
sentations of the receptor are threefold: grid, surface, 
and atomic representations. Only during final rank-
ing procedures is atomic representation used in the 
combination involving a potential energy function. 
In protein-protein docking studies, surface-based  

 

docking programs are the ones predominantly em-
ployed in the in silico approach. The main attempt of 
this method is the alignment of points on surfaces 
through the minimization of the angle between 
opposing molecule surfaces, and for this reason, the 
standard for a great number of techniques for pro-
tein-protein docking is still a rigid body approxi-
mation. The fundamental idea of grid representation 
is the storage of information regarding the energetic 
contributions of the receptor on the grid points, due 
to which it is only to be read during ligand scoring, 
where electrostatic and van der Waals are the two 
main energetic potentials stored by grid points.  

The next step in MD studies is related to 
search methods and molecular flexibility. Ligand 
flexibility is treated within one of the three funda-
mental categories: random methods (genetic algo-
rithms, Monte Carlo); simulation methods (energy 
minimization, molecular dynamics), as well as sys-
tematic methods (databases, conformational search, 
incremental construction). Protein flexibility treat-
ment is considerably less sophisticated in compar-
ison to that of ligand flexibility, though a number of 
approaches have been flexibly applied to at least one 
part of the target model, including Monte Carlo 
calculations, protein ensemble grids, molecular dy-
namics and rotamer libraries. The final step in MD 
studies is evaluating and ranking the predicted 
ligand conformations. This step is essential in the 
virtual screening based on structure. For this reason, 
the design of reliable schemes and scoring functions 
is of utmost importance. Free-energy simulation 
techniques have been developed as some of the most 
sophisticated methods for the quantitative modeling 
of protein-ligand interactions, as well as the binding 
affinity prediction. Nonetheless, these expensive cal-
culations are sometimes inaccurate and impractical 
for evaluating greater numbers of protein-ligand 
complexes. Three kinds or scoring function classes 
are presently utilized to overcome this issue: knowl-
edge-based, empirical and force-field-based scoring 
functions. These “scoring” functions take into 
account numerous simplifications and assumptions 
during the assessment of modeled complexes, and 
do not present a full account of many physical 
phenomena dictating molecular recognition.  
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Figure 1. The chemical structures of the examined compounds 
 

 
Table 2. Score values (kcal/mol) of all compounds designed with the aid of a computer 

 

Molecule 
MolDock 

Score 
Rerank 
Score 

Steric VdW HBond NoHBond Energy 

A -106.561 -88.0738 -108.013 -28.8384 -3.48477 -3.82655 -108.344 
A1 -111.365 -93.2288 -114.508 -31.6348 -2.5 -2.5 -113.699 
A2 -121.833 -97.8433 -120.089 -35.2613 -0.27274 -1.79198 -119.881 
A3 -128.117 -101.857 -127.337 -32.6603 -0.54586 -1.43879 -128.642 

 
 

At present, many types of software can be used 
successfully for MD studies, both free and license 
based. Molegro Virtual Docker software (hereinafter: 
MVD) is one of them, and it has unique features in 
comparison to others. As all MD softwares, MVD 
can be used for attaining relevant geometrical 
orientation of the ligand inside the active site of the 
enzyme being studied. What is more, MVD can be 
used for the determination of hydrogen bonds, in 
addition to the hydrophobic interactions existing 
between the rigid amino acids from the active site of 
the enzyme and flexible ligands. Finally, MVD can 
be used to calculate the so-called “scoring” func-
tions, i.e. adequate binding energies (41). The most 
important “scoring” functions that can be calculated 
with MVD include Rerank Score, VdW, Hbond, 
NoHbond, Pose energy, MolDock and Steric. 
NoHbond and HBond are used for the calculation of 
no hydrogen and hydrogen bond interactions, re-
spectively; energies from Steric and Van der Walls 
interactions are, in turn, calculated with the use of 
Steric and VdW "scoring" functions. The total energy 
of the best-calculated pose is determined with Pose 
energy. Finally, the Rerank Score and MolDock Score 
are final estimators of amino acids and ligands from 
the interaction energy of the enzyme’s active site. 

Once calculated, the “scoring” functions may be 
employed to assess the inhibitory effect of the 
examined compounds by making a comparison of 
their interaction energies (42 - 46). 

In the presented paper, as an example of the 
MD method, MVD was applied to a small set of mol-
ecules acting as peroxisome proliferator-activated re-
ceptor (PPARγ) agonists. The Marvin sketch (Marvin 
6.1.0, 2013, ChemAxon) was made use of for draw-
ing the examined molecules, while the MMFF94 
force field was the tool required for securing the 
optimal 3D geometry of the mentioned. The protein 
data base (PDB: 5TWO) was the source for the 
Peroxisome proliferator-activated receptor (PPARγ). 
In addition, the following “scoring” functions were 
calculated and taken into account while assessing 
the inhibitory activity of the molecules designed 
with the aid of a computer, since different interac-
tions between amino acids from the active site and 
ligands relate to different scoring functions. Still, all 
these need to be considered: Rerank Score, MolDock 
Score, NoHBond Score, Hbond Score, Energy, VdW 
and Steric. Structures of the studied compounds are 
shown in Figure 1. The calculated values for the 
selected “scoring” functions are cited in Table 2. 
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Figure 2. The best calculated poses for all the compounds studied within the active site of PPARγ 
 

 
 

Figure 3. A two-dimensional representation of the interaction between the evaluated molecules  
and amino acids within the PPARγ binding pocket 
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Based on the results yielded by the Rerank and 
MolDock “scoring” function values, molecule A3 
displays the greatest binding potential. According to 
Steric score function values, the A3 molecule exhibits 
the highest energy levels from steric interactions. 
Molecule A2 shows the highest energies from the 
Van der Walls interactions defined by the appro-
priate value obtained from VdW. The obtained re-
sults indicate that molecule A has the highest 
interactions concerning hydrogen bonds formed be-
tween receptor and ligand. The “scoring” function 
that summarizes all relevant ligand energies is 
Energy, and according to the obtained values, mol-
ecule A2 has the most preferable interaction in 
comparison to other studied molecules. Figure 2 
presents the foremost calculated poses of all the 
compounds studied within the active site of PPARγ. 
A two-dimensional representation of the interactions 
between the studied compounds and PPARγ are 
presented in Figure 3. 

 
CONCLUDING REMARKS 
 
Protein-protein interaction network studies 

can be categorized in two manners: methods based 
on the mathematical and statistical modeling, as well 
as the models established in comparative network 
analysis. Statistical and mathematical modeling ap-
plied in protein-protein interaction network studies 
initially analyzes the network, with the focus on 
topological features. This step is followed by the 
production of the statistical models for evolving 
networks. Finally, the tuning of initial parameters is 
performed for the purpose of reproducing the prop-
erties noted in the experimentally developed net-
works. An analysis of the species with different 
complexity levels related to the protein-protein 
interaction networks is performed in approaches 
which have been based on the comparative network,  

 

followed by the network which is comparative for 
the future evolution of generated networks. Three 
main evolutionary events are considered in both 
approaches. These events are included in the crucial 
protein-protein interaction network shaping pro-
cesses. Pharmaceutical research has applied molec-
ular docking calculations over nearly two decades. 
Virtual screening and molecular docking provide an 
opportunity for a de novo identification of active 
compounds, not leaning towards the established 
leads or hits. There is great diversity among the 
developed algorithms for scoring methodologies and 
contemporary posing. The correlation between mo-
lecular docking and the obtained “scoring” functions 
seems to be rather complex, though the produced 
models with bound ligands have proven to be very 
reliable. Furthermore, the developments of novel 
scoring functions will not necessarily lead to the 
further development of schemes that deal with com-
+pound ranking and scoring. The combination of 
molecular docking and compound filter functions, 
pharmacophore models, as well as of the two-di-
mensional similarity-based methods, or three-di-
mensional ones, has been successfully applied in 
biochemistry related research. One of the main fea-
tures of this combination is the reduction in the 
figure of candidate compounds required for particu-
larly complex calculations for scoring. Even though 
scoring and docking rely on a lot of approximations, 
during application, the mentioned techniques im-
proved molecular optimization, frequently com-
bining other computational methods to extend the 
already applied traditional approaches for a struc-
ture-based design. 
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S A Ž E T A K  
 

 
Tradiconalna istraživanja bazirana na in vivo i in vitro modelima dosledno se koriste za testiranje 

biohemijskih hipoteza. U poslednjoj deceniji sve se više razvijaju i računarske (in silico) metode za razvoj i 
testiranje hipoteza o biohemijiskim istraživanjima. In silico modeli imaju za cilj da analiziraju kvantitativne 
aspekte naučnih (velikih) podataka, koji se ili čuvaju u velikim bazama podataka ili generišu sofisticiranim 
alatima za modeliranje i simulaciju; da steknu osnovno razumevanje različitih biohemijskih procesa, koji se 
naročito odnose na velike biološke makromolekule, primenom računarskih metoda na velikim skupovima 
podataka i računanjem ponašanja bioloških sistema. Računarske metode, koje se koriste u biohemijskim 
istraživanjima, uključuju mapiranje interakcije proteina i DNK na čitavom genomu, bioinformatiku zas-
novanu na proteomici i mapiranje mreža interakcija protein–protein sa visokim propusnim opsegom. Neke 
od široko korišćenih tehnika molekularnog modeliranja i simulacija su molekularna dinamika, Monte Carlo 
i Langevinova (stohastička, Brovnijeva) dinamika, kontinuirana elektrostatika, statistička termodinamika, 
tehnike modeliranja proteina, vezivanje proteina i liganda, izračunavanje afiniteta proteina i liganda i 
računarska simulacija procesa sakupljanja proteina i delovanje enzima. Ovaj rad predstavlja kratak pregled 
dve važne metode koje se koriste u studijama biohemije–predviđanje mreža interakcija protein–protein i 
vezivanje proteina–liganda. 
 
Ključne reči: in silico, protein–protein interakcije, protein-ligand doking, molekularno modelovanje   
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