Apsorpcijs, translokacija i metabolizam sulfonilurea herbicida u biljci
Ibrahim Elezović, Dragana Božić i Sava Vrbničanin

Poljoprivredni fakultet, Beograd-Zemun

REZIME

Apsorpcijs, translokacija i metabolizam su procesi od kojih zavisi efikasnost sulfonilurea herbicida, s tim što navedeni procesi imaju značajnu ulogu u ispoljavanju njihove selektivnosti. Isti procesi mogu da utiču na razvoj rezistentnosti biljaka na navedenu grupu herbicida. Sulfoniluree mogu da se apsorbiju podzemnim i nadzemnim biljnim delovima, a nivo apsorpcije zavisi od većeg broja faktora, kao što su: faza razvoja u kojoj se biljka nalazi, temperatura vazduha, vlažnost zemljišta, dodatak dubriva herbicidima, primena u kombinaciji sa drugim herbicidima, surfaktanti, biljna vrsta ili sorta, način primene herbicida, razni aditivi.

Ključne reči: Apsorpcijs; translokacija; metabolizam; sulfoniluree; selektivnost

UVOD

Efikasnost herbicida zavisi od apsorpcije, translokacije i/ili metabolizma, zato što ovi procesi utiču na njihovo dospevanje do mesta delovanja (Owen 1989, cit. Ackley i sar., 1999). Navedeni procesi imaju značajnu ulogu u selektivnosti herbicida, a u pojedinim slučajevima i u razvoju rezistentnosti korovskih biljaka na njih.

Apsorpcijs herbicida može da se shvati kao njihov prolazak kroz seriju barijera od kojih svaka može da ograniči ili spreči njihovo delovanje. U slučaju korova i gajenih biljaka, uspešna funkcija tih barijera često je osnov selektivnosti (Zimdahl, 1999). Biljke usvajaju herbicide preko korena, stabla i lista, što zavisi od načina njihove primene, kao i od anatomske grade, hemijskog sastava i opšte fiziološkog stanja ovih organa (Janjić, 2002). Sulfoniluree se apsorbiju podzemnim i nadzemnim biljnim organima.

Zahvaljujući translokaciji herbicidi stiču do mesta delovanja, pri čemu se translociraju na kratka i duga rastojanja. Iz ćelije u ćeliju prenose se preko
citoplazmatičnih niti, a na duga rastojanja posredstvom ksilema i floema. Sulfoniluree se translociraju akropetalno i bazipetalno, s tim što su eksperimentalni rezultati više istraživača (Hageman i Behrens, 1984; Lycan i Hart, 1999; Petersen i Swisher, 1985, cit. Askew i Wilcut, 2002) pokazali da je njihova translokacija bolja ksilemom nego floemom.

U ovom radu razmatraju se osnovna pitanja vezana za apsorpciju, translokaciju i metabolizam sulfoniluree u biljci, faktori koji utiču na ove procese, kao i uloga navedenih procesa u selektivnosti te grupe herbicida za korovske i gajene biljke.

APSORPCIJA SULFONILUREA I UTICAJ RAZLIČITIH FAKTORA NA OVAJ PROCES

Herbicidi mogu da prodiru u biljke preko korena i nadzemnih delova, s tim što je grada korena bolje prilagođena za razmenu rustvorenih supstanci nego grada lista, koja je bolje prilagođena za razmenu gasova. Herbicidi iz grupe sulfonilurea mogu da se primenjuju u različito vreme, neki se primenjuju pre, a neki posle nicanja koreova. Različito vreme primene ovih herbicida moguće je zahvaljujući tome što se oni apsorbiju i podzemnim i nadzemnim biljnim organima, tj. korenom i listom. Propustljivost za molekule herbicida nije podjednaka za čelije različitih tkiva, niti je nepromjenjena za istu čeliju u toku njenog života. Na apsorpciju sulfonilurea utiči različiti faktori, kao što su: faza razvoja u kojoj se biljka nalazi, temperatura vazduha, vlažnost zemljišta, dodatak dubriva herbicidima, primena u kombinaciji sa drugim herbicidima, surfaktanti, biljna vrsta ili sorta, način primene herbicida, razni aditivi.

Vrsta *Elytrigia repens* (L.) Nevski folijarno apsorbuje više ¹⁴C-niskosulfuronu u fazi kada ima razvijen jedan list
negu u fazi kada ima pet razvijenih listova (Bruce i sar., 1996), uprkos tome što je apsorpciona površina veća kada je biljka starija. Isti istraživači su uočili da navedena vrsta apsorbuje više 14C-nikosulfuron, pri povećanoj vlažnosti zemljista u uslovima temperature 21/16°C (dan/noć), dok uticaj vlažnosti zemljista nije zapažen u temperaturnim uslovima 11/6°C i 31/26°C. Sa povećanjem temperature vazduha sa 11/6°C (dan/noć) na 31/26°C dva puta se povećala apsorbovanja količina radioaktivno obeleženog herbicida.

Ako se herbicidima, koji se primjenjuju posle nicanja korova, dodaju dubriva, kao što su urea amonijum-nitrat, amonijum polifosfat i amonijum sulfat, povećava se usvajanje herbicida, jer amonijumovi katjoni povećavaju propustljivost čelija. Međutim, kalcijum smanjuje propustljivost čelija i može da neutrališe efekat amonijumovih jona (Poovaiah i sar., 1976. cit. Beckett i Stoller, 1991). Dodatak 0.16 M NH$_4^+$ (u obliku urea amonijum-nitrata) je povećao ukupno usvajanje 14C-tifensulfuronu od strane korovske vrste Abutilon theophrasti Medik. sa 16 na 40%, dok je dodatak 0.16 M metilamin-hidrohlorida usvajanje navedenog herbicida povećao sa 16 na 66% (Beckett i Stoller, 1991).

Neki istraživači su zapazili razlike u apsorpciji herbicida usled sinergističkih interakcija sa insekticidima. Hamill i Penner (1973, cit. Frazier i sar., 1993) su utvrdili da ječam (Hordeum vulgare L.) bolje apsorbuje alahlor koji je primjenjen u kombinaciji sa insekticidom kar-

Folijsarna apsorpcija sulfonilurea

Većina herbicida koji se primenjuju folijarno u biljku prodiru kroz kutikulu (Zimdahl, 1999), s tim što je ona najznačajnija barijera za folijarnu apsorpciju herbicida.

Kutikula predstavlja voštani sloj na površini lista, koji ima ulogu da štiti fotosintetski aktivni mezofil od mehaničkih oštećenja, obilnog vlaženja ili isušivanja i napada parazitnih mikroorganizama, dok omogućava razmenu ugljen-dioksida i kiseonika (Hartley i Graham-Bryce, 1980). Ona se razlikuje zavisno od starosti biljke, biljne vrste, a postoje i razlike između različitih delova iste biljke. Na formiranje kutikule lista značajno utiču i uslovi sredine u kojima biljka raste. Apsorpcija kroz kutikulu ostvaruje se bez obzira na prisustvo i veličinu stoma, a kada se herbicidi pravilno formulišu i primene ovaj vid apsorpcije se olakšava (Zimdahl, 1999). Prodiranje kroz kutikulu je moguće i kada su stome zatvorene.

Apsorpcija sulfonilurea korenom

Generalno se smatra da herbicidi prodiru u koren preko korenovih dlaka i simplasta (svih živih čelija koje su u biljnom organizmu povezane u jedinstvenu celinu) istim putem kao i neorganski joni biljnih hraniva. Usvajanje herbicida korenom može da bude aktivno i pasivno, ali veći deo usvajanja je pasivan (sa apsorbovanom vodom) i kreće se zajedno sa njom u apoplastu (kontinuiranoj celini koju čine neživi čelijski zidovi). Za aktivno usvajanje herbicida biljka koristi energiju, nastalu disanjem, i kiseonik, pri čemu herbicid ulazi u protoplast i kreće se u simplastu. Sulfoniluree koje se apsorbiju korenom (npr. azimsulfuron), kreću se apoplas-tom naviše (Zimdahl, 1999).

TRANSLOKACIJA SULFONILUREA I UTICAJ RAZLIČITIH FAKTORA NA OVAJ PROCES

METABOLIZAM SULFONILUREA U BILJCI I FAKTORI KOJI UTIČU NA OVAJ PROCES

Nakon dospevanja u biljku herbicid može da ostane u nepromjenjnom obliku ili da se transformiše, pri čemu njegova aktivnost može da se poveća, smanji ili potpuno izgubi. Metabolizam herbicida u biljkama odvija se preko serije hemijskih reakcija, koje su u najvećem broju slučajeva katalizovane specifičnim enzimima. Kako su metabolički procesi katalizovani enzimima, faktori koji utiču na rad enzimskih sistema (temperatura, redoks-potentijal koji vlada u unutrašnjosti čelije, koncentracija herbicida i produkata njegovog metabolizma), utiču istovremeno i na puteve i brzinu metabolizma. Hemijski procesi u biljnom organizmu, kojima se metabolizu herbicidi su mnogobrojni i raznovrsni, ali međusobno isprepletani na različite načine (Janjić, 1996).

vog učešća u metabolizmu nekih drugih pesticida, kao što su bentazon, imidazolinoni, hlortoluron i organofosfatni insektici. Hidroksilaciju fenilovog prstena herbicida iz grupe sulfonilurea pomoću citohroma P-450 utvrdilo je više istraživača (Frear i Swanson, 1996; Frear i sar., 1991; Neighbors i Privalle; 1990, cit. Olson i sar., 2000).

211
<table>
<thead>
<tr>
<th>Tip reakcije</th>
<th>Herbicid</th>
<th>Produkti primarne transformacije</th>
</tr>
</thead>
</table>
| Alifatična hidroksilacija | Hlor sulfuron | 1-(2-hlorofenilsulfonil)-3-(4-metoksi-6-
| Aliphatic hydroxilation | Chlorsulfuron | hidroksimetil-1,3,5-triazin-2-il) urea |
| | Prosluron | 1-(4-hidroksimetil-6-metoksi-1,3,5-tri-
| | Prosluron | azin-2-il)-3-[2-(3,3,3-trifluoropropil)fe-
| | Sulfometuron metil | nil sulfonilurea) |
| | Sulfometuron-methyl | [metil 2-(4-hidroksimetil-6-metil-
| | | pirimidin-2-ilcarbamoilsulfamoil) |
| | Cinosulfuron | 2-(2-metoksietoksibenzensulfonamid |
| Cepanje sulfonilureinog mosta | Cinosulfuron | 4,6-dimetoksi-2-amino-1,3,5 triazin |
| Splitting of the sulfonyleurea | Hlorimuron etil | etil 2-(aminsulfonil)benzoate |
| bridge | Chlorimuron-ethyl | 4-hlor-6-metoksi-2-aminopirimidin |
| | Nikosulfuron | piridin sulfonamid |
| | Nicosulfuron | 4,6-dimetoksi-2-aminopirimidin |
| Hidroksilacija fenilovog prstena | Hlorimuron etil | etil |
| Phenyl ring hydroxilation | Chlorimuron-ethyl | 2-(4-hlor-6-metoksiirimiprimidin-2-ilkar-
| | | bamoilsulfamoil)-4-hidroksibenzoat |
| | Hlor sulfuron | 1-(2-hlor-5-hidroksifenilsulfonil)-3-(4-
| | Chlorsulfuron | metoksi-6-metil-1,3,5-triazin-2-il) urea |
| | Primisulfuron metil | metil |
| | Primisulfuron-methyl | 2-[4,6-bis(difluormetoksi)-pirimidin-2-i-
| | | lcarbamoilsulfamoil]-4-hidroksi-benzoat |
| Hidroksilacija heterocikličnog | Amidosulfuron | (3-(4,6-dimetoksi-5-hidroksipirimidin-
| (pirimidinovog) prstena | Amidosulfuron | 2-il)-1-(N-metil-N-metilsulfonilaminos-
| Heterocyclic (pyrimidine) ring | Hlorimuron etil | etil 2-(4-hlor-5-hidroksi-6-metoksi-
| | | sipirimidin-2-ilcarbamoilsulfamoil) |
| hydroxilation | Chlorimuron-ethyl | benzat |
| | Nikosulfuron | 2-(4,6-dimetoksi-5-hidroksipirimidin-2-
| | Nicosulfuron | -ilcarbamoilsulfamoil)-N,N-dimetilnko-
| | | tinamid |
| Hidroliza estara | Halosulfuron metil | 3-hlor-3-(4,6-dimetoksiirimiprimidin-2-ilka-
| Estar hydrolysis | Halosulfuron-methyl | rbamoilsulfamoil)-1-metil-pirazol-4-kar-
| | | boksilna kiselina |
| | Hlorimuron etil | 2-(4-hlor-6-metoksiirimiprimidin-2-ilkar-
| | Chlorimuron-ethyl | bamoilsulfamoil)-benzoeka kiselina |
| | Tifensulfuron metil | 3-(4-hidroksi-6-metil-1,3,5-triazin-2-il-
| | Tifensulfuron-methyl | arboamiolsulfamoil)tiofen-2-karboksilna |
| | | kiselina |

213
<table>
<thead>
<tr>
<th>Tip reakcije</th>
<th>Herbicid</th>
<th>Produkti primarne transformacije</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of reaction</td>
<td>Herbicide</td>
<td>Products of primary transformation</td>
</tr>
<tr>
<td>Hidroliza sulfonilureinog mosta</td>
<td>Tribenuron metil</td>
<td>metil benzensulfonamid 1,1-dioksid</td>
</tr>
<tr>
<td>Sulfonylurea bridge hydrolisis</td>
<td>Tribenuron-methyl</td>
<td>benzen sulfonamidna kiselina</td>
</tr>
<tr>
<td></td>
<td></td>
<td>benzensulfonamid urea hidroksilovani</td>
</tr>
<tr>
<td></td>
<td></td>
<td>benzensulfonamid hidroksilovani</td>
</tr>
<tr>
<td></td>
<td></td>
<td>saharin</td>
</tr>
<tr>
<td>Intramolekularno kidanje estra</td>
<td>Triflusulfuron-metyl</td>
<td>3-metil,1,2-benzizotriazol-3(2H)-on</td>
</tr>
<tr>
<td>Intramolecular ester splitting</td>
<td>Triflusulfuron-methyl</td>
<td>1,1 dioksid</td>
</tr>
</tbody>
</table>
| N-demetilacija | Etametsulfuron metil | metil 2-[(4-hidroksi-6-ami-
| N-methylation | Etametsulfuron-methyl | no-1,3,5-triazin-2-il)karbamoilsulfamail]-benzoat |
| | Tribenuron metil | metil 2-[4-metoksi-6-metil-1,3,5-triazin-2-il |
| | Tribenuron-methyl | karbamoilsulfamoil]-benzoat |
| | Triflusulfuron metil | 4-metilamino-6-(2,2,2-trifuloretoksi)-
| | Triflusulfuron-methyl | 2-amino-1,3,5 triazin |
| | | 2,4-diamino-6-(2,2,2, trifluoretoksi)- |
| | | -1,3,5 triazin |
| O-demetilacija | Bensulfuron metil | metil a-(4-hidroksi-6-metoksimpirimidin-2-il |
| O-methylation | Bensulfuron-methyl | karbamoilsulfamoil)-o-toluat |
| | Halosulfuron metil | metil 3-hlor-5-(4-hidroksi-6-metoksi-pirimini-
| | Halosulfuron-methyl | din-2-ilkarbamoilsulfamoil)-1-metilpi |
| | | razol-4-karboksilat |
| | Prosulfuron | 1-(4-hidroksi-6-metil-1,3,5-triazin-2-i-
| | Prosulfuron | l)-3-[2-(3,3,3-trifluorpropil)fenil] |
| | | sulfonilurea |
| Skraćivanje sulfonilureinog mosta | Flazasulfuron | (3-trifuluormetil-2-piridil-4,6-dimetoks |
| Shortening of the sulfonilurea bridge | Flazasulfuron | ipirimidin-2-il) urea |
| | | (3-trifuluormetil-2-piridil-4,6-dimetoks |
| | | ipirimidin-2-il)amin |
| | Flupirsulfuron metil | 2-[(aminokarbolil)(4,6-dimetoksipir-
| | Flupyrusulfuron-methyl | midin-2-il)amino]-6-(trifuluormetil)-3-
| | | piridinkarboksilat |
| | | 1-(4,6-dimetoksipirimidin-2-il)-7-(trifluorometil)-pirido[2,3-alpirimidin-2,4 |
| | | (1H,3H)-dion |
| | Rimsulfuron | 3-(etilsulfonil-2-piridil)-4,6-dimetoksipirimidinilurea |
| | Rimsulfuron | 3-(etilsulfonil-2-piridil)-4,6-dimetoksipirimidinilamin |

Postoji mogućnost da se izvestan procenat herbicida u istoj biljci metaboliše na jedan, a ostatak na drugi način, kao što je slučaj sa amidosulfuronom (slika 2). Primarna metabolička reakcija amidosulfurona (1) u pšenici je O-demetilacija, pri čemu je glavni metabolit 3-(4-metoksi-6-hidroksipirimidin-2-il)-1-(N-metil-N-metilsulfonilaminosulfon il)-urea (4). Manje zastupljena reakcija je hidroksilacija, pri čemu nastaje 3-(4-metoksi-5,6-dihidroksi-pirimidin-2
-il)-1-(N-metil-N-metilsulfon-aminosulfonil)urea(3) i 3-(4,6-dimetoksi-5-hidroksipirimidin-2-il)-1-(N-metil-N-etilsulf onilaminosulfonil)urea (2), kao i kidanje sulfonilureinog mosta, pri čemu se stvara 4-metoksi-6-hidroksi-2-aminopirimidin (5) (Roberts, 1998).

![Diagram of metabolism](image)

Sl. 2. Metabolizam amidosulfurona u pšenici
Fig. 2. Metabolism of amidosulfuron in wheat

ULOGA APSORPCIJE, TRANSLOKACIJE I METABOLIZMA SULFONILUREA U ISPOLJAVANJU NJIHOVE SELEKTIVNOSTI

Utvrđeno je da su mnoge gajene i korovske biljke tolerantne na ALS inhibitore, pa, prema tome, i na sulfoniluree (Sarri i sar., 1994, cit. Anderson i sar., 1998). Otpornost pojedinih biljnih vrsta prema ovoj grupi herbicida zavisi od mesta metabolisanja molekula, brzine metabolizma i brzine formiranja konjugata sa umanjjenom herbicidnom aktivnošću (Janjić i Jevtić, 1992). Prirodna tolerantnost korova na navedene herbicide objašnjava se njihovom brzom detoksikacijom, tako što ih tolerantne

Postoje podaci i razlike u translokaciji mogu da budu osnov selektivnosti nekih sulfonilurea za različite biljne vrste. Carey i saradnici (1997) su utvrdili da tolerantnosti vrste S. ptycanthum na nikosulfuron ograničena translokacija ovog herbicida daje značajni doprinos. Oni su, takođe, utvrdili da je translokacija 14C-nikosulfurona bila veća u oseťljivim biljkama, kao što su S. halepense, E. crus-galli i S. faberi, nego u tolerantnim, kao što su Z. mays i S. ptycanthum.

Osim toga što se procesima usvajanja, translokacije i metabolizma pripisuje uloga u selektivnosti herbicida, navedeni procesi mogu da učestvuju i u razvoju rezistentnosti pojedinih korovskih vrsta na odgovarajuće herbicide. Naime, ušteda smanjene apsorpcije i translokacije, kao i ubrzanog metabolizma, do primarnog mesta delovanja može da dospe manja količina herbicida, od one koja je neophodna za ispoljavanje efikasnosti. Takođe, biljka može da preživi herbicidni efekat ukoliko raspolaze takvim metabolizmom koji će joj omogućiti da se zaštići od toksičnih komponenta nastalih u procesu aktivacije herbicida (Powles i Schaner, 2001). Hart i saradnici (1992b) su ispitivali fiziološke osnove rezistentnosti šećerne repe (Beta vulgaris L.) na hlorsulfuron i utvrdili da u navedenom slučaju razlike u folijarnoj apsorpciji ne mogu da se očene kao mehanizam rezistentnosti.

ZAKLJUČNE KONSTATACIJE

Od uvođenja sulfonilurea u komercijalnu proizvodnju i primenu (1982. godine) do danas, ovi herbicidi su imali značajnu ulogu u suzbijanju korova, zahvaljujući svojim pozitivnim osobinama. S obzirom na njihovu širku primenu, veoma je važno poznavati procese usvajanja, translokacije i metabolizma ovih herbicida u biljci, jer navedeni procesi imaju značajnu ulogu u ispoljavanju njihove efikasnosti.

Sulfoniluree se apsorbuju podzemnim i nadzemnim biljnim delovima i
zahvaljujući tome neki herbicidi iz ove grupe se primenjuju pre, a neki posle nicanja korova. Mogućnost njihove primene tokom dužeg vremenskog perioda čini sulfoniluree veoma podesnim za efikasno suszbianje korova. Na apsorpciju herbicida navedene grupe utiče više faktora, kao što su: faza razvoja u kojoj se biljka nalazi, temperatura vazduha, vlažnost zemljišta, dodatak dubriva herbicidima, primena u kombinaciji sa drugim herbicidima, surfaktanti, biljna vrsta ili sorta, način primene herbicida, razni aditivi. Mnogobrojna istraživanja njihovog uticaja na apsorpciju su pokazala da neki od navedenih faktora utiču na povećanje, a neki na smanjenje apsorpcije. Osim toga, apsorpcija zavisni i od površinskog napona tečnosti, površine lista, veličine kapi, zapremine tečnosti i karakteristika lista (npr. debljine kutikule).

Translokacija herbicida iz grupe sulfonilurea zavisi od toga da li se apsorbuju preko korenova ili preko lista, pri čemu postoji korelacija između folijarnog usvajanja i transporta floemom, kao i usvajanja korenom i transporta ksilemom. Dakle, ovi herbicidi se translociraju i akropetalno i bazipetalno, ali je uočeno da se većina bolje translocira ksilemom nego floemom. Na njihovu translokaciju utiče više faktora, kao što su: vlažnost zemljišta, antagonističko dejstvo drugih herbicida, aditivi i drugo, pri čemu je neki od njih povećavaju, a neki smanjuju.

Osim toga što navedeni procesi imaju odlučujući ulogu u efikasnosti sulfonilurea, oni daju značajan doprinos selektivnosti pojedinih herbicida iz ove grupe za različite gajene i korovske vrste. U nekim slučajevima razlike u osetljivosti biljnih vrsta na sulfoniluree povezane su sa svim navedenim procesima, dok u mnogim slučajevima na selektivnost utiču samo pojedini od ovih procesa, a to je najčešće metabolizam. Pored toga što usvajanje, translokacija i metabolizam predstavljaju osnov tolerantnosti korova i gajenih biljaka na sulfoniluree, isti procesi mogu da imaju ulogu u razvoju rezistentnosti biljaka na navedene herbicide.

LITERATURA

Janjić V. i Jevtić S.: Osnovne hemijske, fizioloske, toksikološke i druge osobine herbicida sulfonylurea, imidazolinona i

Absorption, Translocation and Metabolism of the Sulfonylurea Herbicides in Plants

SUMMARY

Absorption, translocation and metabolism are processes affecting the efficacy of sulfonylurea herbicides. These processes contribute significantly to selectivity but are also known to affect the development of plant resistance to this group of herbicides. Sulfonylureas may be absorbed by both ground and above ground plant parts. The level of absorption depends on numerous factors such as: development stage of the plant, ambient temperature, soil humidity, fertilizers added to herbicides, application in combination with other herbicides, surfactants, plant cultivars, mode of herbicide application, various additives. Having been absorbed, the herbicide moves to the place of action whereby the direction of translocation depends on the mode of absorption. Foliar absorbed sulfonylureas are primarily basipetally translocated. Acropetal translocation is correlated to root absorption. In addition, some herbicides belonging to this group are translocated in both directions. The level and rate of translocation depend on: soil humidity, antagonistic effect of other herbicides (in case of application of herbicide combinations), additives, fertilizers etc. Sulfonylureas in plants are subjected to different metabolic changes which mostly contribute to the inactivation. These transformations are considered to be catalyzed by the cytochrom P-450 monooxigenase enzymic system. Eventually, this process is also known to be affected by numerous factors such as: temperature, soil humidity, plant cultivar, mixtures with other pesticides etc.

Key words: Absorption; Translocation; Metabolism; Sulfonylurea; Selectivity