ГЛАСНИК ШУМАРСКОГ ФАКУЛТЕТА, БЕОГРАД. 2004, бр. 90, стр. 7-35
BIBLID: 0353-4537, (2004), 90, p 7-35

Драган Карачић
УДК: 630*443
Прегледни рад

РАСПРОСТРАЊЕЊЕ, ДОМАЋИНИ, ЕПИДЕМИОЛОГИЈА,
ЗНАЧАЈ И СУЗБИЈАЊЕ ГЉИВЕ MYCOSPHAERELLA PINI
E. ROSTRUP APUD MUNK У СРБИЈИ

Извод: M. pini је једна од најраспрострањенијих и најопаснијих патогених гљива у културама Pini врста у свету. Она гљива је поменутога лих пика које од 50 vrsta борових лих, такође, и на аришу, дуглазији, смрчи, оморци и сличним свој смрчи. У Србији највеће штете изазива у културама црног бора (P. niger Lm.) и ове су конститована овог стадијума у развоју гљива, тј. самоцензи и паритетници. Конидије имају много већи значај у инфекционом процесу. Критични период за инфекцију је маж-јун. Од самих тестираних фунгицида у заштити најбољи резултати су добијени корици њом бакарних фунгицида. У јако угровеном културама црног бора, старости од 5-20 (25) године, заштита треба да буде сваке две године.

Кључне речи: Mycosphaerella pini, Dothistroma pini, пропадање четина, епистемологија, распрострањење, домаћини, значај, сузбијање

THE DISTRIBUTION, HOSTS, EPIDEMIOLOGY, IMPACT AND CONTROL OF FUNGUS MYCOSPHAERELLA PINI E. ROSTRUP APUD MUNK. IN SERBIA

Abstract: M. pini is one of the most widespread and dangerous pathogenic fungi in the plantations of Pines species in the world. This fungus has been observed on more than fifty Pinus species, and on European Larch, Douglas Fir, Norway Spruce, Serbian Spruce and Sitka Spruce. In Serbia, M. pini caused greatest damage in plantations of Austrian pine (P. niger Lm.). In Serbia both states of the fungus have been observed, i.e. conidiomata and ascostromata. Conidia are far more significant in the infection process. The critical period for infections is may - jun. Of the all tested fungicides, the best results have been obtained by copper protectants. In heavily infected plantations of Austrian pine the protections should be carried out in the period when the plantations are 5-20 (25) years old.

Key words: Mycosphaerella pini, Dothistroma pini, needle blight, epidemiology, distribution, hosts, impact, control

драган карачић, професор, Шумарски факултет Универзитета у Београду, Београд
1. УВОД

2. ПРОУЧАВАЊА КОНИДИЈСКОГ И ПЕРИТЕЦИЈСКОГ СТАДИЈУ-МА ГЉИВЕ Mycosphaerella pini

Кондицијски стадијум ове гљиве први пут је забележен Dorogin (1912) на четинама Pinus montana и био је описан под називом Cytospora septospora Dorog. Нешто касније, Saccardo (1920) је ову гљиву, али на четинама Pinus ponderosa описао под називом Actinothyrium marginatum Sacc. Међутим, Saccardo је направио грешку јер кончацете безбојне споре ове гљиве није довео у везу са црним страмом која су се налазиле у оквиру црвених нега на четинама, већ са пишеношним гљивама Leptosphaeria decipiens и L. pinastri, које, такође, често колонизирају четине P. ponderosa. Другим речима, Saccardo је описао споре једне гљиве и пишеношним тела друге гљиве. Овaj назив је оспорио већ 1922. године Sydow и Petrak као "nomem confusum" (према Thyer, Shaw, 1964). Sydow и Petrak сматрају да црвену

3. ГЕОГРАФСКО РАСПРОСТРАЊЕЊЕ ГЉИВЕ M. pini

3.1. Распрострањење гљиве у свету

Гљива *M. pini* је широко распрострањена у свету и забележена је на свим континентима осим на Антарктику. Посебно велике штете причине на *Pinus* врстама, а у неким земљама зауставила је јављање комерцијално вредне врсте *P. radiata*. Овака гљива констатована је у Африци (Етиопија, Уганда, Кенија, Танзанија, Замбија, Зимбабве, Малави и Јужној Африци (Gibson, 1967, 1972, 1979); АУСТРАЛИЈИ: Нови Јужни Велс, Викторија (Edwards, Walker, 1978, Marks et al., 1982); АЗИЈИ: Брунеј, Груњија, Индија, Јапан, Кина и Нови Зеланд (Bakshi, Singh, 1968, Gibson, 1979, Gilmour, 1967, Ito et al., 1972, 1975, Шишкина, 1970),
3.2. Распрострањење гљиве у Србији и Црној Гори

4. БИЉКЕ ДОМАЋИНИ

Главног домаћина представљају P. pinus врсте. Од 94 врсте бора, које описују Critchfield и Little (1966), за 50 врста је познато да су осетљиве на нама оне
Распространење, домаћини, епидемиологија, значај и суштини... гљиве, 7 је импуто, а 37 нема попатака. Од 50 осетљивих врста 17 је само осетљива, 19 средње осетљива а 14 је мало осетљива. Међу 37 врста за које нема попатака, многе је у области где M. pini је констатована. То су углавном арпиче и неке мексичке врсте или врсте бора које се јављају у хладном, сувом и планинским крајевима у Северној Америци и Европи, тј. тамо где су неповољни еколошки услови за развој M. pini.

Прије Critchfield-у и Little-y (1966) тај Pitsus обухвата три подродове. У првом подроду Ducaponopinus (Subsect. Krempfi) налази се само једна врста за коју нема попатака о осетљивости према M. pini. У подроду Stroblos налази се 31 врста, од тога 9 врста су домаћини за M. pini (само 2 врсте су само осетљиве), 2 су импуто, а за 20 врста нема попатака. У подроду Pitsus налази се 62 врсте, од тога 41 врста је домаћин за M. pini, од чега је 15 јако осетљиво, а две су импуто, а за 16 нема попатака. Ово нам указује да су врсте подрода Pitsus осетљивије на заразе од ове гљиве од врста из подрода Stroblos. Нарочито су осетљиве врсте из подрода Sylvester која обухвата 19 врста, а 12 су домаћини за гљиву M. pini.

На основу многобранија литературних извора урађена је табела 1, у којој је приказано осетљивост различитих Pitsus врста према гљици M. pini. Из ове табеле се може видети да је мора попатака о осетљивости, а што је мање осетљиво мање импуто, као и Pitsus attenuata radiata који је јако осетљив.

Табела 1. Осетљивост Pitsus врста на инфекцију од M. pini (=D. pini)

<table>
<thead>
<tr>
<th>Врло осетљиве</th>
<th>Умерено осетљиве</th>
<th>Мало осетљиве</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. bracta Ten.</td>
<td>P. clausa (Ch.) Vasey</td>
<td>P. coulteri D. Don</td>
</tr>
<tr>
<td>P. caribaea Morelet</td>
<td>P. eichorniae Mill.</td>
<td>P. hartwegii Lindl.</td>
</tr>
<tr>
<td>P. douglasii Sie. Zucc.</td>
<td>P. is LINK</td>
<td>P. monterrey Lamb.</td>
</tr>
<tr>
<td>P. flexits James</td>
<td>P. lutea Lamb.</td>
<td>P. oocarpa Schiede</td>
</tr>
<tr>
<td>P. halepensis Mill.</td>
<td>P. mugo Turra</td>
<td>P. petrie Schl. Deppe</td>
</tr>
<tr>
<td>P. nigra Arnold</td>
<td>P. occidentalis Sw.</td>
<td>P. serotina Michx.</td>
</tr>
<tr>
<td>P. pinaster Ait.</td>
<td>P. palustris Mill.</td>
<td>P. sirobus L.</td>
</tr>
<tr>
<td>P. ponderosa L.</td>
<td>P. pinus Mini</td>
<td>P. sylvestris L.</td>
</tr>
<tr>
<td>P. ponderosa L. subsp.</td>
<td>P. pumila L.</td>
<td>P. strobus Purry</td>
</tr>
<tr>
<td>P. radiata D. Don</td>
<td>P. resinosa Ait.</td>
<td>P. virgiana Mill</td>
</tr>
<tr>
<td></td>
<td>P. teda L.</td>
<td>P. leucophylla Sie. Deppe.</td>
</tr>
</tbody>
</table>

Имуне

<table>
<thead>
<tr>
<th>Immune</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. douglasiana Martin.</td>
</tr>
<tr>
<td>P. gerrardiana Wall.</td>
</tr>
<tr>
<td>P. koreiensis Sie. Zucc.</td>
</tr>
<tr>
<td>P. striata Sie. Deppe.</td>
</tr>
<tr>
<td>P. mariana Sie. Sie. Deppe.</td>
</tr>
<tr>
<td>P. teda L.</td>
</tr>
</tbody>
</table>
Табела 2. Врсте првача домашни за \textit{M. pini} у Србији и Црној Гори

<table>
<thead>
<tr>
<th>Домаћини</th>
<th>Осетљивост</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Pinus contorta} Dougsl.</td>
<td>+ +</td>
</tr>
<tr>
<td>\textit{P. Halepensis} Mill.</td>
<td>+ +</td>
</tr>
<tr>
<td>\textit{P. nigra} Arnold</td>
<td>+ + +</td>
</tr>
<tr>
<td>\textit{P. nigra var. maritima} (Ail.) Melville</td>
<td>+ + +</td>
</tr>
<tr>
<td>\textit{P. pinea} L.</td>
<td>+ +</td>
</tr>
<tr>
<td>\textit{P. ponderosa} Laws.</td>
<td>+ +</td>
</tr>
<tr>
<td>\textit{P. mugo} Turra</td>
<td>+ +</td>
</tr>
<tr>
<td>\textit{P. sylvestris} L.</td>
<td>+</td>
</tr>
<tr>
<td>\textit{Picea omorika} (Pančić) Purkyne</td>
<td>+ +</td>
</tr>
<tr>
<td>\textit{P. stichensis} (Bongrad) Carr.</td>
<td>+</td>
</tr>
<tr>
<td>\textit{Pseudotsuga menziesii} (Mirbel) Franco</td>
<td>+</td>
</tr>
</tbody>
</table>

Легенда: +++ - јаче осетљивост (high susceptibility), ++ - умерено осетљивост (moderate susceptibility), + - мало осетљивост (low susceptibility)

Из табеле 1 види се да су од борова који расти на подручју Србије и Црне Горе јако осетљиви црни бора, алеспски бор и њива. За разлику од црног бора, бели бор се показао као мало осетљив на напад гљива (La - ng, Karadžić, 1987).

У табели 2 дат је списак врста на којима је конститована гљива \textit{M. pini} у Србији и Црној Гори.

Од јако осетљивих врста две врсте су егзоте (\textit{P. jeffreyi} и \textit{P. ponderosa}) и уско су распро стрењено у Србији. Једна релативно тврдо старија култура се налази на Делиблатској пешчанци, а појединачна стабла се срећу у парковима). Ово нам указује да практични значај у Србији \textit{M. pini} има само за прив бор. \textit{M. pini} је конститована и на кривулу бора, али само у парковима. Међутим, у Србији и Црној Гори, на овој врсти бора гљива није никада конститована у природним стаништима, а свакако да је главни разлог за то што су експлицитно указују на значај оне гљиве као прву вадачку болести \textit{P. mugo} у Немачкој. Концидиски станијум гљиве (\textit{D. pini}) конститован је на четинама слива врста борова, а перитенијски станијум (teleomorph) само на четинама црног бора (\textit{P. nigra}).

Бутин 	extit{et al.} (2000) су гљиву која се јавља на четинама дуглазије (\textit{Pseudotsuga menziesii}) описали као нову врсту под називом \textit{Doliobistroma rhabdocrinis}. Према овим ауторима гљива \textit{D. rhabdocrinis} се разликује од других гљива \textit{D. septospora} морфолошком (мали плодонасни тела и краће концидије) и по изгледу чисте културе. Култура \textit{D. rhabdocrin linis} спорушке већ после 2 дана и не мења боју агара, док културе гљива \textit{D. septospora} образују ендоцидне концидије на мишљенци тек после 3-4 недеље и код старих колонија поседује црвено-смеђ цвет који се наруша од боје флаве и по некада произвође увређеног кристала у култури. Према им људским истраживањима, тешко да би се ово могло прихватити као довољно за издавање нове врсте. Дужина концидије гљива \textit{D. septospora} већи варира у зависности од домаћине, а такође и њене велике разлике у изгледу чистих култура (Караџић, 1986/4). Да би се могло доказати и прихватити постојање нове врсте, чисту културу \textit{D. rhabdocrinlinis}
Во Србији се јављају оба стадијума у развоју гљиве, тј. „teleomorph“ (Mycosphaerella pini) и „anamorph“ (Dolichostoma septospora). Много чешће се формира ко- нидијски стадијум и овај стадијум припада паразитској фази, док перитекцијски стадијум припада сапрофитској фази у развоју гљиве. Аскостроме се углавном обра- зују тек када су четине потпуно непрогориле и то најчешће на двогодишњим и три- годишњим четинама.

Пионерска тела (у стромама) се формирају и на лицу и на налицу четина и то увек у оквиру јасно изражених зрвених пега. Конидијске строме су црне боје, у почетку испод спидермиса, а потом разарањем спидермиса износе на површину и обично на својој горњој страни у облику штића задржавају део разорног спидер- миса. Маке спидермис најчешће пуша са две паралелно пукотине које налази на вертикалној стома, дешава се да спидермис пуша и са једном пукотином (сл. 2-А). Строма је са- тављена од мрко-црних ескеротираних ћелија (текстура „angularis“) и на њеној гор- нjoj страни се формира једна или већ број ацервул, који су без јасно диференици- раног ескеротираног зида (сл. 2-B). На донем зиду ацервул са унутрашње стране (на без- бојним, неразграничен уносима спора) формирају се конидије. Конидије су безбо- јне, кончасте, ћелијијске (број преграда од 1-5, најчешће 3), праве или мало са- нијена, на карактеристиче зоблобљене (сл. 2-D). Конидије се ослобађају за време кипшних дина и могу се наић од црног до црвених цветова уколико су климатски услови по- волjni и касније. Поред конидија у стромама се обрађују и микроконидије, које су безбојне, сифато санијене, величине 1-2×0,5 μm. Улога ових микроконидија није утврђена (Карадич, 1986/6).

Аскостроме се обрађују, такође, у оквиру зрвених прстенастих пега, с тим што су ове пеге често бледе у односу на ене где се формира конидијски стадијум (сл. 2-B). Аскостроме су црне, а гами је псевдокапеломатички и израђени из цр- них висококеротираних ћелија. У свакој строми се формира 2-8 перитеки (сл. 2-Г). Периокније су нитнике и из њих се формирају кетипиним. Аксусе су нитнике или белички, са див зида, („biuniculate“ тип), зоблобљених дрвена, садрже 8 аскоспор- ра које су распоређене у два реда. Између аксуса налазе се псевдокапеломе, које су
<table>
<thead>
<tr>
<th>Дужина Length</th>
<th>Ширина Width</th>
<th>Висина Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аскостроме</td>
<td>370-1030</td>
<td>583</td>
</tr>
<tr>
<td>Перитеције</td>
<td>46-127</td>
<td>79</td>
</tr>
<tr>
<td>Аскалии</td>
<td>33-48</td>
<td>41</td>
</tr>
<tr>
<td>Аскоспоре</td>
<td>9-17</td>
<td>13.4</td>
</tr>
<tr>
<td>Конидијске строме</td>
<td>290-908</td>
<td>551</td>
</tr>
<tr>
<td>Конидије</td>
<td>15-44</td>
<td>31</td>
</tr>
</tbody>
</table>

Састављене од ланца полулопастих, безбојних ћелија. Аскоспоре су безбојне, 2-ћелијске, вретенасте, обично мало сужене у нивоу септирања и свака садржи по две уљане капљиште (сли. 2-б).

Thyrr и Shaw (1964) су на бази дужине конидија извршили два варијетета гливе: Dothistroma pini var. linearis и D. pini var. pinnatum. Просечна величина конидија према оригиналном опису за варијетет linearis је 31,9×2,4 µm, а за варијетет pini 27,4×3,2 µm. Наме наслику Јевту (1967) је описао и трећи варијетет koniosporis са величином конидија 28,7×2,6 µm. Дужина конидија се показала статистички значајна различита код свих варијетета, а такође је констатована и разлика у брзини крајања спора (најбрже је крајање код вар. linearis, а најпродирје код вар. pini). Sutton (1980) навodi ове варијетете под називом Dothistroma septospora var. septospora, D. septospora var. lineare и D. septospora var. koniospori.

На бази дужине конидија и навеч ултраком, глива која се јавља у Србији је највише варијетета Dothistroma septospora var. lineare. Он се јасно разликује од варијетета pini и по томе што се формира и састави стадијум у развоју гливе (аскостроме). Између варијетете pini и koniosporis разлике су веома мале и у суштини се ради о истом варијетету гливе, јер изазивање варијетете само на основу дужине конидија је од сукобне дијагностичке вредности. Слично ематра и Gadgil (1967).

Запажено је да на величину конидијских строма утиче и биљка домаћин (нпр. конидијске строме и конидије на четинама Pimus ponderosa су мање у опису на оне формиране на четинама P. nigra) (Караун)."
Слика 1. Mycosphaerella pini E. Rostrum an Munk: A - стабла цивог бора (Pinus nigra Arn.) заражен са гљивом, B-B - типични изглед заражених четина (архови четина смеђи, а основа зелена), Г - типични симптоми гљиве у почетку тамно зелене флеце, а као последица превида омладого месец на 18°C

Figure 1. Mycosphaerella pini E. Rostrum an Munk: A - The trees: austrian pines (Pinus nigra Arn.) infected by fungus, B-B - typical appearance of infected needles (needle tips brown, needle bases green), Г - typical symptoms of fungus - in the beginning deep green bands, later reddish spots and bands, Д - colonia of the fungus on MFA (after two months at 18°C)
Слика 2. *Mycosphaerella pinus* E. Rostrup apud Munk: A - конидијске строме гљиве на четинама црног бора, B - перитексијске строме гљиве на четинама црног бора, В - попречни пресек кроз конидијску строму и аерволу, Г - попречни пресек кроз перитексијску строму и перитексије, Д - конидија (бар 11 μm), Ђ - аскаспоре (бар 10,3 μm)

Figure 2. Mycosphaerella pinus E. Rostrup apud Munk: A - conidiomata of the fungus on an australian pine needle, B - ascostromata of the fungus on an australian pine needle, В - vertical section of conidiomata with acervula, Г - vertical section of ascostromata with peritecia, Д - conidia (bar 11 μm), Ђ - ascospores (bar 10,3 μm)
распрострањење, домаћини, епидемиологија, значај и субизијање...

tекућој години, појављују се крајем септембра и у току октобра месеца, али су нео-
ма јасно изражени у току новембра и декембра месеца. Најчешће се заразе оствару-
ју на четинама из првога до четвртога, а ређе и на четинама из текуће вегетације.
Први симптоми обележе се испољавају променим боје врших делова четина.
Горња половина четина постаје прво светло зелена, затим жута и на крају светло
смеђа, док базални део четина остаје зелен (сл. 1-Б,В). Мала је ово најчешћи облик
појаве симптома, симптоми се могу понекад јавити и дуж целе четине. Обично на
месту где је дошло до инфекције у првој фази развоја болести јављају се затворене
зелене флеце, које су разбацине дуж целе четине, али често у првом делу. Убрзо
после појаве ових флекса у њиховој средини се појављују у почетку биљно црвенка-
сте, а касније црвено-смеђе или црвено-пепе теме (сл. 1-Г). Ове црвене пеће
су јасно изражене и две стране четине. У фебруару седеће године цела четина је
некротизирана и покривена бројним разбацинама црвенкаствим претенкастим пегама. У
ово време у средини пета почиње да се формирају плодоносна тела гливе која по-
степено разрађују епидермиса избијају на површину. Када су услови повољни, већ
крајем фебруара, могу се констатовати физиолошки зреље конидије, мала њихово
ослобађање почиње тек почетком априла месеца.

Већина истраживача, који су испитивали животног циклуса ове гливе слажу се
да се најчешћи број инфекција остварује у другој половини пролећа и почетком лета.

Више годишња истраживања животног циклуса гливе, која се спроведена у
културама црвног бора у Србији су показала следеће:

- глава Mycosphaerella pinii има једногодишњи циклус развића. Конидијске
стрме са асперулима и конидијама се јављају крајем марта месеца. Од моме-
tа инфекције до почетног ослобађања конидија способних за инфекци
ије протекне 12 месеци. Изузетно, плодоносна тела могу да се формирају
и у години када је остварена инфекција, али ове конидије су способне да
остваре инфекције тек следећег пролећа;

- конидије гливе се ослобађају од почетка априла до краја октобра, а изузет-
но могу и рангије. Ассоцијеро се ослобађају од друге половине јуна до краја
септембра;

- инфекциона период траје од средине априла до краја августа, али је кри-
tични период за инфекције (запажено више од 50% четина) од почетка маја
dо средине јула месеца, с тим што је апсулатни максимум првобљедне

Дужина инкубационог периода у природним условима је раз
личита (што зависи и од климатских услова), али просечно траје 4-6 месе-
cца, а први симптоми обележе на четинама зараженим у текућој години по-
јављују се крајем септембра и у току октобра месеца;

- у годинама епифитоције захтева је неопходна у критичном периоду за ин
фекције (Карашић, 1987/6, 1989/6).

Нематски приказ животног циклуса и механизама инфекције приказан је на
слици 3.
7. МЕХАНИЗИЗАМ ИНФЕКЦИЈЕ

Kardžić (1989 а) на четинама црног бора констатује да конидије гљиве (*Dolichospora* стадијум) почињу са кљуњањем већ после 8 часова. После 24 часа констатовано је да је више од 50% конидија на површини четина кљујало. Већ после 48 часова од инокулатије највећи број конидија је кљујао и обично се на свакој конидији формирају по три иницијалне хифе (две на крајевима и једна из средине, сл. 4-A, B, D). Иницијалне хифе расту у правцу стома, ако је конститовани раст хифа који није био усмерен у правцу стома. Забележене су такође и хифе које прераставају стомину дупљању. Анализа четина после 192 часа од инокулатије, показала је да је цела површина четина покривана хифама, а поједине хифе су се међусобно спајале. У овој фази се на хифама формирају и бројне секундарне конидије чији је облик и величина идентичан оним коришћеним за инокулатуја четина (сл. 4-J). У исто време, се може се приметити да је највећи број иницијалних хифа пенетрирао у стому (сл. 4-T). По прошору унутрашњости стома, арх иницијалне хифе се прераставају и формирају једно лопасто пропиреше које се назива апексиром (сл. 4-E), Patton и Spear (1977) наводе да су ови апексироми квадратног облика. Из средине апексирома похађа нова инфекциона хифа која кроз стому даље прорије и зезофили, одакле се даље шири интер и интра целуларно. После прораира у зезофили хифе гљиве почињу да луксаже један токсин (који је према свом називу "дотистримин", а који убија живе ћелије зезофила, а затим исте бивају конкистизирани хифама. Механизам дејства дотистримина (diphacinone) на живе ћелије зезофила приказан је у радовима Bassett-a и Brun-a (1968), Bassett-a et al. (1970), Barta et al. (1969) и Stain-a и Franich-a (1980). Божа "дотистримина" је црева, одакле и потиче боја цревних прстенастих пега на четинама. Особито је велика концентрација токсин на границама између цреве и зеленог дела четине. Општено усред набављања црева, расту и зелени делови четине, па да у једном моменту његова концентрација у границном делу доноше критичну тачку, када постиза точку и за саму гљиву. Међутим, у ово време у зезофили неће већ формираћи шлодносна тела (конидијеске строме и аерујуле) и споре се разносе на нове четине.

Figure 3. *Mycosphaerella pini* E. Rostrup apud Munk: Disease cycle of fungus on the needles of Austrian pine
Слика 4. *Dodiistra septospora* /Dorog./ Morelet: A - апертура са конидијама, B - конидија глатке на четима бора, B-Г - Д - кујана конидија, B - директни пролаз иницијалне сте́пне кроз стому. Е - образовање пресоријума у стоми. Ж - читава конидија образована на хифама на површини четина (после 7 дана)

Figure 4. *Dodiistra septospora* /Dorog./ Morelet: A - ascervus with conidia, B - conidium of the fungus on an pine needle, B-Г-Д - germinating conidia, E - direct penetration of the germ tube through a stoma, Е - appressorium-like structure formed in the antestomatal chambrе, Ж - secondary conidia developing on hyphae on the surface of the needle.
РАСПРОСТРАЊЕЊЕ, ДОМАЋИНИ, ЕПИДЕМИОЛОГИЈА, ЗНАЧАЈ И СУЗБИЈАЊЕ...

Први симптоми обољења (црвени цигласте пеге), који су идентични симптомама на четинама у природним условима, јављају се 6-8 недеља по инокулацији. У самој обољеној зони првих крајних пега иста констатована хифе, што указује да гљива формира токсике који се дифузију у ћелије испред хифа и који прво убија ћелије мезофила, што значи да M. pini снава у групи пертофита. Прве кондиције строме на четинама јављају се 3-4,5 месеци по контаминацији.

Према истраживањима Birts h a w-a i sa radnika (2002), биосинтетички гени D. pini (који утичу на биосинтезу логистромина) су хомологи афлатокси генома биосинтетичких генови. Коришћење једног афлатоксин гена као хибридизационе пробе, идентификовано је да генски D. pini клон садржи четири „дот“ гена сличних са генима у афлатоксин и стеригматоцистин ген групама.

8. УТИЦАЈ НЕКИХ ЕКОЛОШКИХ ФАКТОРА НА КЛИЈАЊЕ СПОРА И ПОРАСТ МИЦЕЛИЈЕ ГЉИВЕ

Кондиције гљива (D. pini стадијум) на вода-агар подложи клијају у температурном разпону од 5-30°C, са оптимумом на 22°C. Иницијалне хифе најбрже расти у 22°C и после 24 чака достиже просечну дужину 72 μm. Кондиција кондиција почиње после 8 часова, а највећи проценат клија у првих 24 часа. Кондиције клијају са две или три иницијалне хифе. Оптимална температура за клијање аскоспора (M. pseudocereella стадијум) је 22°C, минимална 5°C и максимална 30°C. Процент клејања аскоспора је мањи од процента клијања кондиције. Аскоспоре клијају и формирају две иницијалне хифе (по једну на сваком крају).

Оптимална релативна влажност ваздуха за клијање кондиција је 100%, а минимална 88% (на овој релативној влази ваздуха забележено је само појединачно клијање кондиција и то тек после 8 дана). При релативној влази ваздуха 98-100% иницијалне хифе расти у свим правцима преко површине четине, не показујући посебну пра вилос тасту у правцу најближе стоме. На релативној влази ваздуха од 96-98%, већина иницијалних хифа (све 80%) расти у правцу најближе стоме. При релативној влази ваздуха од 97-100%, после осам дана, констатовано је формирање секундарних кондиција на хирама.

Кондиције гљива најбоље клијају на благо киселој подлози (pH 6), а могу клијаји у разпону pH од 4-9. Промена киселости суспензата не утиче много на проценат клијања кондиције, осим код екстремно велике киселости, односно азидности.

Оптимална температура за пораст мицелије је 20°C, минимална 5°C, а максимална 29°C. Пораст мицелије је веома чуток и на оптималној температури не МЕА (мало екстракт агар подложи) изгледа, у зависности од изолата, од 0,9-1,1 mm на дан. На кондицији старој две недеље, у температурном разпону од 10(15) до 25°C, формирају се бројне кондиције. Од свих коришћених хранљивих подлога гљива M. pini најбрже расти на подлози МЕА.

9. ЗНАЧАЈ ГЉИВЕ Myrothecium pini

Податак да се гљива M. pini завлања на пине од 50 врста борова истовремено говори о значају ове гљиве. Може се слободно рећи да је ово једна од латрогених гљива која проузрокује најважније оболење на Pinus врстама, па је у складу с тим њој у светској литератури и посвећена велика пажња. M. pini проузрокује сушење стабала, умањује леблинских и висинских прираст или доводи стабала у предизложност за напад секундарних латрогених или неких нисеката (поткориња, сурдаца и сл.). Да би се сагледао значај ове гљиве навешћемо неке податке из светске литературы.

Већина култура Pinus врсти изнаш се данас у циљу израде арета, га како да се неку биохемичку реакцију у губитку прирасту или изгина сушењу стабала. Према Gibson-y (1972), Pinus radiata се показао као одлична врста за планкранање. Мида у својој постојаности расте на усном локалитету од око 4000 ha (Калифорнија, Монтана) и P. radiata данас заузима површину од око 250000 ha у Новом Зеланду, према 100000 ha у Аустралији и око 50000 ha у Индии и Жужој Африци. Међутим, његово даље планкранање је изузетно угрожен појава гљива M. pini. У прилику сезоне можемо по појави, гљива је посвећена латрогеном сушењу младих стабала. Да она је вероватно динамичко и због тога што су монокултуре биле распространиле на великој површини, а климатски услови (плекса клаца и температура) су биле идеалне за брзо ширење латрогена. Касније у земљама Индии, гљива је услед некрозе и осипања четина проузроковала губитке у прирасту (Gibson, 1974). Према Petersen-y (1967), гљива је проузроковала сушење у културама P. nigra и P. ponderosa на западу и северозападу САД. Штету у природним саставима P. ponderosa и P. contorta у државама Вашингтон, Орегон, Монтања и Ајдахо варирују од биоза до јаких. Према овом истраживању, штета у Небраско се посебно изразила (на P. nigra и P. ponderosa) у заситним вегетационим
појасевима, парковима, расадницима и плантажама „божићних јелки“*. На овим местима гљива често доводи до сушња стабала. У рекреационим зонама гљива, такође, јачно умањује и сличну предност поменутих врста бора.

Према Gilgot-y (1967), P. radiata, P. ponderosa и P. nigra у Новом Зеланду су јако осетљиви. Такође, показао се као јако осетљив и хибрид P. attenuatauda, који је у току четвртогодишње епифитоније скоро потпуно уништен.

Ова гљива је изазвала велике штете у културама P. radiata у Чилеу, као и другим државама у Јужној Америци (Dubin, Stalley, 1966).

Отбилије штете су забележене и у неким европским земљама (Шпанија, Француска, Италија, Србија и Црна Гора).

Велики економски значај ове гљиве је у томе што услед зараже стабала физиолошки слабе и постају предиспонирана за напад секундарних паразита. Тако је Elliott (1976) запазил да у Новом Зеланду, пошто је степен дефолиације смањен са 80% на подношћиним 30%, највећи број стабала (особљо P. ponderosa) био је нападнут гљивом Armillaria mellea која је довела до сушње стабала.

У Србији M. pini причинава економске штете у културама црног бора (P. nigra) и све мере заштите су усмерене у правцу заштите ове врсте бора. Посебно су угрожене културе старе између 5 и 25 години. M. pini напада четине из претходне вегетације, а ређе и четине из текуће вегетације. Заштитено је да дефолиација мора да достигне ниво изнад 40% да би дошло до губитака у прирасту. Губици се прво испољавају у смањењу висинског прираста. Стабла код којих су захваћене и четине из текуће вегетације знатно застају у порасту. Физиолошки слабе и обично се после 4-5 година ухапсто са сушне.

Ова појава је посебно била изразена у културама црног бора на Делиблатској пенцири и Пештеру. Један од разлога за јаке зараже у културама црног бора на овим подручјима лежи и у чиненици што у време масовног ослањања кондиције режим падавина и температуре је веома повољан за остаравање инфекције. Штете су на овим локалитетима увећане и због тога што је заједно са M. pini јавља и гљива Sphaeropsis sapinea. S. sapinea супрто изузете из текуће вегетације, а четине из претходне вегетације су заражене са M. pini, тако да поједина стабла остају потпуно без асимилиационих органа. Као последица тога долази до сушње стабала у културама, а које обично почива од врха („die back“). Ово је посебно изразено на стаблима старости између 20 и 30 година и све више добија епидемијски карактер. Забележено је, такође, да на појединим локалитетима M. pini напада и природни подмладак и ономогућује природно обновљивање црног бора.
10. СУЗБИЈАЊЕ ЊИВЕ M. pini И ЗАШТИТА КУЛЬТУРА Pinus ВРСТА

Сталне испитивачи ове једини на појединачним подручјима у свесте изазвале су међу фитопатолозима велику забринутост, а поставило се и питање даљег подизања култура посебно интересантне врсте бора P. radiata. У циљу сукобања патогена, великим истраживачима су спроведена у Новом Зеланду, Кенији и САД. У Новом Зеланду је био финансиран посебан пројекат ("Dothistroma pini - project") и истраживања су били прекинута трајали од 1964-1980. године. Сви методи борбе су биле усмерене у правцу директног сукобања патогена (применом фунгицида), а ређе и другим методама укључујући селекцију и узгојни третман.

третирање је било крајем суве сезоне, а друго 2-3 месеца касније. Према Gibson-y et al. (1966), посебно добру заштиту показују средства на бази бакра и "Ducer"-трифосфатин хидроксид 200, док је слаба заштита добијена коришћењем "Thurazik" и дитиокарбамата.

Hocking (1966) је тестирао 38 различитих фунгицида и дошао до закључка да само бакарни фунгициди и "Трифелин" дaju добру заштиту и предлажу два третмана у току године, особито у периоду јачих киш.

Према истраживцима у Новом Зеланду, када је у пливању P. radiata, ако се примени мере заштите, то поскупља цену дрвета у моменту продаже свега 0,4 - 3% (у зависности од најмање, а губику у природу у годинама елиминацији) и преко 50%, а врло често долази и до сушања стабала, што је јасно говорити о неопходности и потреби заштите (Sutton, 1968).

Гљипа M. pini колонизира свега четине из претходне вегетације (старе 12 месеца), а у годинама елиминације и четине из текуће вегетације (старе свега 1 до 3 месеца) (сл. 1-8,В). Према истраживањима Freeland-a (1952), prema Krämer, K. o- zlowski i, 1979) утврђено је да се са старошћу четина смањује интензитет фотосинтезе. Највећи интензитет фотосинтезе имају једногодишње четине, а затим са старошћу четина долази до знатног смањења, што је посебно изражено код црног и новдероза бора, што по предање код белих и најмуговог бора, а најмање код емре и једне.
Интензитет фотосинтезе двогодишњих четина црног бора је скоро 50% мањи од једногодишњих, да би код трогодишњих скоро достигао нулту вредност. Према Clark-y (1961, прева Crameri, Kozlowski, 1979), мање четина из текуће вегетације у почетку одаје више угљеника у респирацији него што аборсују у фотосинтези, али већ крајем августа фотосинтеза ових четина је једнака фотосинтези четина старих 1 године. Како се интензитет фотосинтезе четина црног бора знатно смањује код двогодишњих и старих четина, то све ове гливе које населећа ове четине не могу знатно утицати на смањење пораста стабала, а такође жеље довести и до сушепа стабала. Међутим, другачија је ситуација код паразита који вложију једногодишње четине или четине из текуће вегетације, као што је случај са глацем M. pini. Код ових глива, у годинама епифитоција, долази до некрозе и осипања најактивнијих четина, тако да стабла физиологијски слабе, звостају у порасту и постају подложна нападу факультативних паразита и инеката. (поткорњака, сурлашта и сл.). Због тога је против ових паразита заштита неопходна, поготово у првим годинама раста стабала.

Генетички приступ у контроли ће у будућности постати веома значајан. Један дуготрајан програм требало би да има за циљ да се ограничи на линије које ће имати брз пораст, а истовремено велику отпорност према гливи M. pini. Свакако да је ово дуготрајан процес, поготово када је у питању црни бор, јер би требало извршити селекцију тако да се осим отпорности на болест добију и друге пожељне карактеристике које су значајне за примену. Такође, уз селекцију се може водити разуначну да се производе такве отпорне линије црног бора према гливи M. pini не смањују отпорност према неком другом патогену или инеката. Међутим, у сваком случају, рад на селекцији је неизбежан. Прометено је и да различите проекције црног бора покazuju различити осетљивост према нападу гливе.

Figure 5. Mycosphaerella pini E. Rostup apud Munk: A - on the left side trees were protected by copper fungicide, on the right side no protected trees, B - protected tree by fungicide ('Rakrocid'), B - control tree (no protected)
Према Bradshaw et al. (2004), откривено да су афлатоксин биосинтетички гени идентификоване у читечима нападнутим Dendroctonus pini указују на нове путеве борбе против ове болести. Ови гени утичу на биосинтезу токсинта дотистромина, којим глава претходно убијаће домаћина, а потом их колонизира.

На крају, може се закључити да у годинама епифитоција захтева против главе M. pinus, у културама црног бора (старости од 5-20 година) је неопходна због тога што су стабла заражена главом M. pinus зло често напалнута и главом S. sapiens, услед чега физиолошки слабе, заостају у порасту и почињу да се суше. Затим, напалнута стабла услед осипања једногодишњих четина, заостају у порасту (сматрају се висински и лебљиви прираст) и после напада главе M. pinus постаје предмет напада факултативних паразита (паразити слабости) и сукцупрарних инсеката (нпр. потокорака).

Прогноза о развоју болести и потреби захтева биће доношена сваке године у новембру, тј. у време када су симптоми обележаја јасно израђени. Да би се спречила појава епифитоције M. pinus, неопходна је добро организована дијагностично-прогнозно-извештајна служба.

За сада су у Србији посебно угрожене културе црног бора на подручју Делиблатске планине, Суботичког Хорогонског планинског подручја, Пештера, Маљена и Окоцане Краљеве. У овим културама црног бора захтев је неопходна.

ЛИТЕРАТУРА

Gibson I.A.S. (1965): *Recent research into Dothistroma blight of pines in Kenya*, Agricultural and Veterinary Chemical 6 (39-42)

Караулин Д.

Караулин Д. (1986а): *Изучение вида Doidstroma pini - брусковидная осина в степах Уваров, Шумарсыйе факультетт Универитета в Београду, Београд (1-328)*

Караулин Д. (1986б): *Изучение вида Doidstroma pini - брусковидная осина в степах Уваров, Шумарсыйе факультетт Универитета в Београду, Београд (59-79)*

Караулин Д. (1987а): *Едислоспосност нехов функционира в селбдано Doidstroma pini Hulβay в културата цвек сега, Зашита биба 179, Vol. 3(1) (15-31)*

Караулин Д. (1987б): *Живовен цикуте ниве Doidstroma pini Hulβay в културата цвек сега на Демократском биба, Шумарство 1, СИПИПИДС, Београд (25-35)*

Караулин Д. (1987г): *Убедливо биологично изследва на бруквично в селбдано в културата Doidstroma pini Hulβay, Шумарство 3, СИПИПИДС, Београд (89-106)*

Караулин Д. (1989а): *Механична вектори Wекове в ниве Doidstroma pini Hulβay, Београд (52-46)*

Караулин Д. (1989б): *Механична вектори Wекове в ниве Doidstroma pini Hulβay, Београд (227-232)*

Karadžić Д. (1989а): *Scirrhia pini Funk and Parker*; European Journal of Forest Pathology 19 (223-236)

РАСПРОСТРАЊЕЊЕ, ДОМАЋИНЕ, ЕПИДЕМИОЛОГИЈА, ЗНАЧАЈ И СУЗБИЈАЊЕ...

Крстић М. (1958): Независнички функционални процеси у распуштању и шумама Србије, Заштита биља 45, Београд (75-79).

Kapantäf D.

Peterson G.W., Read R.A. (1971): Resistance to Daldysirobra pini within geographic sources of Pinus nigra, Phytopathology 61 (149-150)

Siggers P.V. (1944): The brown spot needle blight of pine seedlings, USDA Technical Bulletin 870 (1-36)

Thyr D.B., Shaw C.G. (1964): Identity of the fungus causing red band disease on pines, Mycologia 56 (103-109)

Funk A., Parker A.K. (1966): Scirrha pini n.sp. the perfect state of Daldysirobra pini Hubrly, Canadian Journal of Botany 44 (1171-1176)

Hedgecock G.C. (1929): Septoria asiatica and the brown spot disease of pine needles, Phytopathology 19 (993-999)

Cobb F.W., Libby W.J. (1968): Susceptibility of Monterey, Guadalape Island, Cedros Island and Bishop pines to Scirrha (Daldysirobra) pini, the cause of red band needle blight, Phytopathology 58 (88-90)

32
THE DISTRIBUTION, HOSTS, EPIDEMIOLOGY, IMPACT AND CONTROL OF FUNGUS MYCOSPHAERELLA PINI E, ROSTRUP APUD MUNK, IN SERBIA

Summary

Recently, the study of the most important diseases in the plantations of Pinus species (especially Austrian pine and Scots pine) has become particularly active in Serbia, having in mind the significance of these species, which have been increased by the establishment of new plantations, in accordance with the long-term programme of the afforestation of bare lands and deforested areas. However, as pure plantations have most often been established over large areas, they are exposed to the effect of several unfavourable factors which endanger their normal development. Among these factors, diseases and pests are the most important ones.

By detailed examination of Pinus nigra and P. sylvestris plantations, some diseases have been observed which had not been detected previously or to which attention had not been paid.

In P. nigra plantations in Serbia, the greatest damages are caused by Mycosphaerella pineti, Sphaeropsis sapinea, Gymnosphaeria abietina, Ceratostomella ferruginae, Cylindrocladium niveum, C. acuminatum, Sclerotinia pithyophila and occasionally Armillaria spp.

In P. sylvestris plantations, the greatest damage is caused by Heterobasidion annosum and Armillaria spp. (especially in plantations on sandy soils), but the fungi causing needle cast (Lophodermium sediti, L. pinastri and Cylindrocladium minus) and Sphaeropsis sapinea also occur very frequently. Damage caused by rust fungi (Coleosporium senecioniae, Melampsora pinitorquata and Cronartium flaccidum) occur less frequently. In mountainous regions, greater damage caused by Phaeidium infestans, Lophodermella succinea and Gymnosphaeria abietina.

No doubt, the fungus Mycosphaerella pineti (more widely known by its conidial stage Dothistroma septospora [=D. pini]) is one of the most widespread and dangerous pathogenic fungi in pine nurseries and plantations in the world. M. pineti has been observed on more than fifty Pinus species, and on Larix decidua. Pseudotaxa verneuxii, Picea abies, P. omorika and P. stichensis. The fungus causing needle blight ("red band needle blight") Pines affected by Mycosphaerella blight lose needles prematurely, thereby reducing growth. Repeated attacks sometimes kill trees.

This paper presents the results of the investigation on the distribution of M. pineti in Serbia and its host plants, some morphologic and physiologic characteristics, infection mechanism, life
cycle, and the results of some experiments on chemical control in fungicide treatments of *P. nigra* plantations.

Mycosphaerella pini is widespread in Serbia and Montenegro. It occurs especially frequently in Serbia and the most endangered areas are the Deliblato Sands, The Subotica-Horogos Sands and Pelete. In these localities both the anamorph and teleomorph states have been detected. In Table 2 lists the species on which the fungus has been detected in Serbia and Montenegro. Of the highly susceptible species, four species (*Pinus contorta*, *P. jeffreyi*, *P. ponderosa*, *P. nigra var. marinina*) are exotic plants, and their distribution is relatively limited in Serbia. In Serbia great economic loss is caused by *M. pini* only in *Pinus nigra* plantations. Plantings between 5 and 25 years of age are especially endangered. Damage has also been detected on *P. mugo*, but only on park trees. This species is never attacked by *M. pini* in natural habitats. The main reason for the above is that the ecotonic factors prevailing in natural habitats of *P. mugo* are very unfavourable for the development of the fungus. *M. pini* has never been recorded in Serbia at the elevation higher than 900 m. In Serbia *P. sylvestris* has been very resistant, however in 1986 this species was also mildly infected at Deliblato sands.

The results of the long-term research can be summarised as follows: *Mycosphaerella pini* has a one-year life cycle. Conidiomata mature at the end of March. Twelve months are required to pass between the moment of infection and the new dispersal of conidia capable of infection. Exceptionally, conidiomata may be formed within the year in which infection occurred, but conidia from these are capable for infection only in the following spring. Conidia are dispersed from the beginning of April till the end of October, and exceptionally they can be discharged earlier. Ascospores are dispersed from the second half of June till the end of September. The infection period lasts from the middle of April till the end of August. The critical period for infection is from the beginning of May till the end of July. Most infection occurs during May and June, and the maximum is in the first half of June. Protection is necessary in the critical period for infection, i.e. from the beginning of May till end of July. The length of incubation period in natural conditions varies depending on the climatic factors, but is normally from 4-6 months. The first symptoms of the disease on the needles infected during the current year, appear at the end of September and during October, by then are quite distinguishable during November and December. The infection occurs most often on the previous years needles, and more rarely on current year needles. The first symptoms of the disease are the discoloration of needle tips. The upper half of the needle becomes light green, then turns yellow and finally becomes light brown, while the base of the needle stays green. Most commonly only the portion of the needle above the place of infection changes color. Though this is the most common from of symptom, symptoms may also occur on other parts of the needle. Usually, at places where the fungus penetrates in the first stage, there are dark green bands throughout the needle, but most often in its upper part. Soon after these bands appear, pale reddish and then reddish-brown and brick-red spots develop. Reddish spots and bands are visible at both sides of the needle. The following February, the whole needle becomes necrotic and covered with numerous individual or scattered reddish bands and spots. At this time, erumpent fruiting bodies of this fungus develop, which destroy the epidermis and erupt to the surface. When conditions are favourable, usually by the end of February, physiologically mature conidia can be observed, though their mass release starts about the end of March.

In Serbia, both the teleomorph (*M. pini*) and anamorph (*D. septospora*) states of the fungus have been detected. Conidiomate are produced more often than ascocormata. It seems that the anamorph is the parasite stage of the fungus, whereas the teleomorph is the saprophytic stage. Ascocormata usually are formed only when the needles are completely necrotic, most often on 2- and 3-year old needles.

Considering the great losses caused by *M. pini* in *P. nigra* plantations, experiments with various protective fungicides were begun. Previous preliminary investigations showed that the greatest percentage of infection occurred during May and June, so to be economical, two treatments
were used. The first treatment was aimed to protect second-year needles (the most susceptible needles), and the second was to protect newly-formed first-year needles. Out of all the fungicides applied in the protections, the best results have been obtained using copper protectants. Protection should be applied at the beginning of May and June, for economic reasons, every third year in 5-20 years old plantations.