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The large oscillations of a pendulum are studied. The pendulum is a material point that is suspended on an elastic 

cord with nonlinear characteristics. The mass of the cord is accepted. It is wrapped around a perfectly rigid and fixed 
cylinder. The system has two degrees of freedom. Nonlinearity is due to a geometric and physical nature. A system of two 
differential nonlinear equations is derived. A numerical solution was performed with the mathematical package MATLAB. 
The laws of motion, the generalized velocities and accelerations and the phase trajectories are obtained. In order to 
continue the task by preparing an actual model and conducting experimental research, the projections of the velocity and 
acceleration of the material point along the horizontal and vertical axes, as well as their magnitudes, are determined. The 
obtained results are presented graphically and analysed in detail.  
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1. INTRODUCTION 

The pendulum has been the subject of researches 
from ancient times. During the Renaissance, the 
phenomenal periodic movements of the pendulum were 
studied by Leonardo da Vinci and Galileo Galilei, [1]. 

In 1656, the Dutch scientist Christiaan Huygens 
constructed a pendulum clock. Such clocks remained the 
most accurate instruments for measuring time until the 
1930 year, [2]. 

In 1851, Jean-Bernard Leon Foucault constructed a 
mathematical pendulum to prove the rotation of the Earth 
around the North-South axis, [3]. 

Analytical solutions related to the study of small 
and large oscillations of the pendulum provide a field for 
the development of a number of branches of Mathematics. 
To this day, many scientists, when studying the large 
nonlinear oscillations of the pendulum, apply analytical 
solutions, [4]. 

In the work [5], a few terms of the Fourier series 
expansion of the elliptic function as a source of periodic 
solutions for the pendulum equation are studied. 

The nonlinear oscillation of a pendulum wrapping 
and unwrapping on two cylindrical bases is studied in the 
article [6]. An analytical solution is obtained using the 
multiple scales method. 

The nonlinear oscillations of a pendulum wrapping 
on two cylinders is studies by means of a new analytical 
technique, namely the optimal auxiliary function method 
are studied in the publication [7]. 

A detailed theoretical and computational analysis of 
the period, tension and centripetal forces are studied in the 
paper [8]. 

The dynamical behavior of rigid weightless rod and 
concentrated mass, sliding periodically along the axis of 
the rod is studied in the article [9]. 

The dynamical behavior of rigid weightless rod and 
concentrated mass, moving simultaneously along and 

across the axis of the rod, according to given periodical 
laws is studied in article [10]. 

Today, in the presence of powerful electronic 
computing equipment and modern mathematical packages, 
such as MATLAB, Mathcad, Mathematica, and others, 
these solutions are made mainly numerically, [11, 12, 13, 
14]. They are particularly suitable for optimizing some 
parameters, [15]. 

The present study complicates the classical 
dynamic model of the mathematical pendulum in two 
directions simultaneously. 

The cord is wrapped around a stationary cylinder. 
This leads to the lack of a fixed center of rotation and 
determines a variable length of the cord at any moment of 
time. Therefore, there is a specific geometric nonlinearity. 

The cord is considered to be elastic with a soft 
characteristic, unlike the classic models, where the cord is 
inextensible. This leads to the typical physical 
nonlinearity. 

The main goals of this study are the following: 
1. To obtain the differential equations that describe 

the big oscillations of the mathematical pendulum taking 
into account both the geometric and physical nonlinearity 
of the model. 

2. To compile a program for numerical integration 
of the derived nonlinear differential equations in the area 
of the mathematical package MatLab, and after then, to 
perform a computer simulation. 

3. The study should be a basis for continuing the 
task by preparing a real pendulum and conducting of 
experimental researches, [16, 17, 18, 19, 20]. 

2. MATHEMATICAL MODEL 
The mathematical pendulum studied in this work is 

a material point M  with concentrated mass m , which is 
connected by an elastic cord with distributed mass m . The 
cord is wrapped around a fixed rigid cylinder with a radius 
R . In a stable equilibrium position and at rest, when the 
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cord is vertical, its length is L . This is the distance 
between the points A  and 0M , (Figure 1). 

If the cord is perfectly un-deformable, when the 
pendulum deviates at an angle ϕ , it increases its length, 
according to the formula: 
 ϕ+= .RLPM . (1) 

In the studied case, the cord is elastic, and when the 
pendulum deviates at an angle ϕ , it increases its length 
with the additional linear deformation u  and acquires the 
following length: 
 uRLPM +ϕ+= . . (2) 

The point P , where the cord separates from the 
cylinder, represents the center of rotation or center of 
velocities at any moment of time. 

Figure 1: Mathematical pendulum with elastic cord 
wrapped around a fixed cylinder 

It is assumed that the pendulum moves in a vertical 
plane under the action of the potential force of gravity 

gm. . This plane coincides with the plane of the fixed 
coordinate system yxO  and the mobile coordinate system 

nM τ . 
The system has two degrees of freedom. For 

independent generalized coordinates that define the 
position of a point M , the angle ϕ  and extension u  of 
the cord are assumed. The first coordinate is absolute and 
the second one is relative. 

3. DIFFERENTIAL EQUATIONS 
The mechanical system is conservative. Its study is 

carried out with the Lagrange equations of the second 
kind: 
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The first equation (3) is composed by the absolute 
coordinate ϕ , and the second equation (4) - by the relative 
coordinate u . 

The kinetic energy of the pendulum is as follows: 

 ( ) 222 ..
2
1....

2
1 umuRLmE k  +ϕ+ϕ+=   

 ( ) 23....
6
1

ϕ+ϕ++ uRLm   

 ( ) 2....
6
1 uuRLm +ϕ++ . (5) 

The connection between the internal elastic force 
elF  in the cord, due to its elongation u , is defined as 

follows: 
 3

1 .. ucucFel −= . (6) 
The potential energy of deformation is determined 

by the integral: 
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The full potential energy is obtained approximately 
by formula: 
 ( )ϕ+++≈ sin...0 RLgmUCE p   
 ( ) ϕ+ϕ+− cos.... uRLgm   

 ϕ++ sin.......
2
1 2 RLgmLgm   

 ( ) ϕ+ϕ+− cos.....
2
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where constC =0  is the potential energy of the system in 
a stable equilibrium position. 

The following constant is constructed: 
 mm /=µ . (9) 

Formulas (5) and (8) are put in equations (3) and 
(4), and the following differential equations are reached: 
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A homogeneous nonlinear system of two ordinary 

second-order differential equations is obtained. Its solution 
under appropriate initial conditions is performed 
numerically with a specially prepared program in the area 
of the mathematical package MATLAB. 

For future experimental measurements of the 
velocity and the acceleration of point M , some formulas 
for the algebraic projections of absolute velocity and 
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absolute acceleration relative to the axes of the fixed 
coordinate system yxO  are needed. 

These expressions are the following: 
 ( ) ϕ+ϕϕ+ϕ+= sin.cos... uuRLv x  , (12) 
 ( ) ϕ−ϕϕ+ϕ+= cos.sin... uuRLv y  , (13) 
 ( ) ϕϕ+ϕ+= cos... uRLa x   

 ( )( ) ϕ−ϕ+ϕ+− sin... 2 uuRL  , (14) 
 ( ) ϕϕ+ϕ+= sin... uRLa y   

 ( )( ) ϕ−ϕ+ϕ++ cos... 2 uuRL  . (15) 
The magnitudes of the velocity and acceleration of 

point M  are as follows: 

 ( ) 222 .. uuRLv  +ϕ+ϕ+= , (16) 

 ( )( 22 .. ϕ+ϕ+= uRLa   

 ( )( ) ) 5.022.. uuRL  −ϕ+ϕ++ . (17) 
It can be seen from the derived formulas that the 

main purpose of the study is to determine both laws 
)( tϕ=ϕ  and )( tuu = . 

The elastic cord is a one-way connection. This 
means that it can function only if it is tensioned at any 
time during the movement of the pendulum. The condition 
for the cord to be tensioned is as follows: 
 0).).(cos.(. 2 >ϕ+ϕ++−ϕ=  uRLugmS . (18) 

Therefore, the initial conditions must be set 
inappropriate values that they take into account the elastic 
characteristics of the cord. 

4. NUMERICAL SULUTIONS 
The numerical integration of the system of 

differential equations (10) and (11) is performed with the 
solver ode45 of MATLAB, based on the explicit Runge-
Kuta method of 4th and 5th order. This is a one-step 
algorithm with a chosen fixed-step st 001.0=∆ . This 
method calculates the value of function )( ntf  using only 
one  
previous value of function )( 1−ntf . 

The solver ode45 is the most used in such studies 
and guarantees relative accuracy 610.1 −=ε r  and absolute 

accuracy 810.1 −=εa . 
The parameters with which the calculations were 

performed are: kgm 50.1= , mR 50.0= , mL 2= , 
mNc /250= , and 3

1 /20 mNc = , mkgm /10.0= . 
The following initial conditions are accepted: 

rad4/0 π=ϕ , 1
0 0 −=ϕ s , mu 05.00 =  and 

smu /00 = . 
In order to ignore the transient processes, a longer 

integration time was adopted, namely st 10= . 
The following kinematic characteristics were 

obtained: 
a.) Laws of the first generalized coordinate, )(tϕ , 

)(tϕ , )(tϕ , (Figures 2, 3 and 4); 
b.) Laws of the second generalized coordinate, 

)(tu , )(tu , )(tu , (Figures 5, 6 and 7); 

c.) Velocity of point M , )(tv x , )(tv y , )(tv , 
(Figures 8, 9 and 10); 

d.) Acceleration of point M , )(ta x , )(ta y , )(ta , 
(Figures 11, 12 and 13); 

e.) Phase trajectories of point, M , )(ϕϕ=ϕ   and 
)(uuu  = , (Figures 14 and 15); 
f.) Tensile force in the cord, )(tSS = , (Figure 16). 
The law )(tϕ  is a periodic function with period 

sT 025.3= , natural frequency Hzf 331.0= , and 

circular frequency 1077.2 −=ω s  

 
Figure 2: Law of angle function, radt)(ϕ=ϕ  

 
Figure 3: Law of angle velociy, 1)( −ϕ=ϕ st  

 
Figure 4: Law of angle acceleration, 2)( −ϕ=ϕ st  
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The maximum angular velocity is 
17227.1max −=ϕ s . The extreme values of the angular 

acceleration are 28207.4max −=ϕ s  and 
28569.2min −=ϕ s . 

The laws )(tu , )(tu  and )(tu  are periodic 
indeterminate functions of time. The extreme values are 

mtum 1115.0)(0340.0 ≤≤ , smu /2231.0max =  and 
2/6205.1max smu = . 

The laws of velocity )(tv x , )(tv y  and )(tv  are 
periodic functions with maximum values 

smv x /5610.3max = , smv y /6010.1max =  and 

smtvsm /6020.3)(/0320.0 ≤≤ . 
The laws of acceleration )(ta x , )(ta y  and )(ta  

are periodic functions with values, namely 
22 /0740.6/9034.6 smasm x ≤≤− , 
22 /5482.3/4295.5 smasm y ≤≤− , 

22 /6962.7/7046.4 smasm ≤≤ . 

The inner force )(tS  in the cord has always a 
positive value, or in other words, the cord is always loaded 
with tensile force. This force is in the range 

 
Figure 5: Law of motion mtuu )(=  

 
Figure 6: Law of velocity smtuu /)( =  

 
Figure 7: Law of acceleration 

2/)( smtuu  =  

 
Figure 8: Velocity xv  of point M : 

smtvv xx /)(=  

 
Figure 9: Velocity yv  of point M : 

smtvv yy /)(=  

 
Figure 9: Velocity v  of point M : 

smtvv /)(=  
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Figure 14: Phase trajectory of point M : 

)(ϕϕ=ϕ   

 
Figure 15: Phase trajectory of point M : 

)(uuu  =  

 
Figure 16: Tensile force in the cord: 

NtSS )(=  

NtSN 8625.16)(4519.7 ≤≤ . 
The phase trajectories of Figure 14 and Figure 15 

fully correspond to the obtained laws )(tϕ , )(tϕ , )(tu  
and )(tu . 

If an analysis of the phase trajectory )(ϕϕ=ϕ   of 
Figure 14 is made, it will be seen that the distributed mass 
m  causes a gradual attenuation of the oscillations. To 
demonstrate this, two calculations are made. 

Figure 17 shows the phase trajectory )(ϕϕ=ϕ   at 
mkgm /0=  and 3

1 /0 mNc = . Moreover, the integration 
time is increased to st 25= . 

Figure 18 shows the phase trajectory )(ϕϕ=ϕ   at 
mkgm /50.0= , 3

1 /0 mNc =  and integration time is   
st 25= . 

The analysis of the phase trajectory )(uuu  =  for 
two states is made. 

At the first state, it is accepted mkgm /0=  and 
3

1 /0 mNc = . The integration time is increased to 
st 60= . The obtained phase trajectory is shown in Figure 

19. 
At the second state, it is accepted mkgm /50.0= , 

and 3
1 /0 mNc = . The integration is also st 60= . The 

obtained phase trajectory is shown in Figure 20. 
The analysis shows that if the distributed mass m  

of the cord is increased, the longitudinal oscillations )(tu  
also decrease. They are moved to another zone and are 
established in some constant limits. 

The case for the influence of the stiffness of the 
cord is also interesting. To establish this effect, two 
calculations for mkgm /10.0= , 3

1 /50 mNc =  and 
integration time st 60=  were performed. 

 
Figure 17: Phase trajectory of point M : 

)(ϕϕ=ϕ  , mkgm /0= , 3
1 /0 mNc =  

 
Figure 18: Phase trajectory of point M : 

)(ϕϕ=ϕ  , mkgm /50.0= , 3
1 /0 mNc =  
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The first calculation is made with the coefficient of 
elasticity mNc /300= , and the second calculation is 
made with the coefficient of elasticity mNc /900= s. 

The phase trajectories )(uuu  =  for the two states 
are shown in Figures 21 and 22. 

 
From the phase trajectories, shown in Figures 21 

and 22, it can be seen that as the coefficient of elasticity of 
the cord increases, the amplitudes of the longitudinal 
oscillations decrease, but the velocity increases. The 
phenomenon “beating” is observed on both phase 
trajectories, which is more pronounced in Figure 21 in 
comparison with Figure 22. 

5. CONCLUSION 
A mathematical model of a pendulum is created. It 

consists of a concentrated mass and an elastic mass cord, 
which is wrapped around a fixed cylinder. 

Nonlinear differential equations are derived, which 
describe the oscillations of the pendulum and the 
oscillations of the material point in the longitudinal 
direction of the cord. 

A program was compiled in the area of the 
MATLAB mathematical package, with the help of which 
all kinematical characteristics were obtained, namely: laws 
of motion, velocities and accelerations for the two 
generalized coordinates, linear velocities and accelerations 
of the concentrated mass, as well as the inner force of the 
elastic cord. 

The phase characteristics for the two generalized 
coordinates are obtained. They conducted a study with 
variation of some parameters, such as distributed mass of 
the thread, coefficients of elasticity and integration time. 

This study has a theoretical and methodological 
nature and contributes to the enrichment of knowledge in 
the field of nonlinear mechanics, as well as computational 
mathematics. 
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Nelinearne oscilacije 
klatnanamotanog  oko cilindra 

Anastas Ivanov Ivanov1* 
1Odsek za mehaniku, Univerzitet za saobraćaj Todor 

Kableškov, Sofija (Bugarska) 
Proučavaju se velike oscilacije klatna. Klatno je 

materijalna tačka koja je okačena na elastični kabl sa 
nelinearnim karakteristikama. Masa kabla je prihvaćena. 
Umotan je oko savršeno krutog i fiksiranog cilindra. 
Sistem ima dva stepena slobode. Nelinearnost je posledica 
geometrijske i fizičke prirode. Izveden je sistem dve 
diferencijalne nelinearne jednačine. Numeričko rešenje je 
izvedeno pomoću matematičkog paketa MatLab. Dobijaju 
se zakoni kretanja, generalizovane brzine i ubrzanja i 
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fazne putanje. Da bi se zadatak nastavio izradom stvarnog 
modela i sprovođenjem eksperimentalnog istraživanja, 
određuju se projekcije brzine i ubrzanja materijalne tačke 
duž horizontalne i vertikalne ose, kao i njihove veličine. 
Dobijeni rezultati su grafički prikazani i detaljno 
analizirani. 

Ključne reči: Klatno, Geometrijska i fizička 
nelinearnost, Nelinearne oscilacije 
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