KOROZIONO PONAŠANJE DVOSLOJNE POLIANILIN/EPOKSIDNE PREVLAKE NA MEKOM ČELIKU U 3% RASTVORU NaCl

Koroziono ponašanje i termička stabilnost epokсидnih kateforskih prevlaka na mekom čeliku i mekom čeliku sa elektrohemijskim talačenjem polianilinom (PANI) ispitivani su primenom metodo spektroskopije elektrohemijske impedancije i termogravimetrijske analize. PANI film na mekom čeliku je dobijen elektrohemijskim talačenjem iz vodenog rastvora 0,5 mol dm⁻³ Na-benzocata i 0,1 mol dm⁻³ anilina pod galvanskim uslovima, gustinom struje od j = 1,5 mA cm⁻². Epoksidne prevlave na mekom čeliku i mekom čeliku sa PANI dobijene su elektrohemijskim talačenjem u uslovima konstantnog napona uz mešanje. Poka- zano je da dvoslojna PANI/epoksidna prevlava na mekom čeliku ima značajno veću korozionu stabilnost u 3% rastvoru NaCl u odnosu na epoksidnu prevlaku.

Organiske prevlave dobijene kateforskim taloče- njem na metalnom supstratu dobro su poznate kao osnovni sloj u zaštitu od korozije i imaju veliku primenu u različitim industrijskim granama [1]. Zaštitna metala od korozije nekom organskom prevlakom objašnjava se ba- rijernim efektom koju ona predstavlja za transport jona, kiseonika i vođe, čime se smanjuje brzina korozije osnovnog supstrata [2-4].


EKSPERIMENITALNI DEO

Elektrohemijsko taločenje polianilina (PAN)

Tanki film PANI na mekom čeliku (pločice dimenzi- ja 20x20x0,25 mm) dobijen je elektropolimerizacijom iz vodenog rastvora 0,5 mol dm⁻³ Na-benzocata i 0,1 mol dm⁻³ anilina u uslovima kvarične gustine struje od j = 1,5 mA cm⁻² [7]. Pre upotrebe anilin (Aldrich) je destilovan u atmosferi argona, a za pripremanje elektrola korisćena je bdestilovana voda. Debljina PANI fil- ma je iznosila oko 1,5 μm.

Elektrohemijsko taločenje epoksidne prevlave

Epoksidne prevlave na mekom čeliku i mekom čeliku sa filmom PANI (pločice dimenzija 20x20x0,25 mm) dobijene su kateforskim taločenjem iz vodene emulzije epoksidne smole modificirane aminom i žucanjatom (PPG) u uslovima konstantnog napona uz mešanje. Koncentracija vodene emulzije epoksidne smole u kapa- tiku za taločenje iznosila je 10 mas.%, pH = 5,7, temperatu- rata je bila 25°C, a napon 250 V [8,9]. Nakon taločenja, uzorci su isprani destilovanoj vodom i usu- nji na temperaturi od 180°C tokom 30 min. Izmerena pro- sečna debljina epoksidne prevlave je iznosila 30 μm.

Spektroskopija elektrohemijske impedancije (SEI)

Spektroskopija elektrohemijske impedancije je ko- rišćena za određivanje elektrohemijskih karakteristika epoksidne prevlave i dvoslojne PANI/epoksidne prevlave na mekom čeliku. Uzorci su izlagani dejstvu 3 % NaCl u trajanju od 60dana. Da bi se izbegli efekti lica, rađena površina uzoraka je svedena na površinu od 1 cm² po- moću teflonskog nosača. Kao referentna elektroda korišćena je zasićena kalomelova elektroda (ZKE), dok je pomoćna elektroda bila Pt žica. Impedansi merenja su izvedena na potencijalu otvorenog kola u oblasti frekven- cije od 50 mHz do 100 kHz, dok je za frekvencije manje od 5 Hz korišćena Furiejeova transformacija (FFT). Za merenja je korišćen PAR 273 potencijostat povezan sa PAR 5301 lock-in pojačavačem, a dobijeni spekti su analizirani odgovarajućom nelinearnom numeričkom metodom [10].

Termogravimetrijska analiza (TGA)

Termička stabilnost i sadržaj vode u epoksidnoj i u dvoslojnoj PANI/epoksidnoj prevlaci određeni su temo-
gravimetrijskom analizom. Čelične pločice sa epoksidnom i PANI/epoksidnom prevlakom su 24 časa držane u 3% NaCl na sobnoj temperaturi, ispirane destilovanim vodom i sušene na vazduhu, a zatim je prevlaka mehan-

ničkom putem skidana sa pločice. Korišćen je Perkin-El-

mer TGS-2 instrument, a merenja su izvedena u struji

azota protok 30 cm³ min⁻¹ pri bazi zagasavanja od

10°C min⁻¹ u intervalu temperature od 23 do 60°C.

REZULTATI I DISKUSIJA

Elektrohemijske karakteristike

Elektrohemijske karakteristike epoksidne prevlake i
dvoslojne PANI/epoksidne prevlake na mekom čeliku is-

pituju su primenom spektroskopske elektrohemijske

impedancije. Na slikama 1 i 2 dati su Najkvištovi (Nyquist) dijagrami u kompleksnoj ravi za meki čelik sa
epoksidnom prevlakom i meki čelik sa PANI/epoksi-
dnom prevlakom sekvencijno, za različita vremena izla-

ganja 3% rastvoru NaCl.

Slika 1. Najkvištov dijagrami za epoksidnu prevlaku na mekom čeliku posle (i) 1 h; (ii) 2 dana; (iii) 7 dana i (iv) 14 dana izlaganja 3% rastvoru NaCl.

Figure 1. Nyquist plots of the epoxy coating on mild steel after (i) 1 h; (ii) 2 days; (iii) 7 days and (iv) 14 days of immersion in 3% NaCl.

Slika 2. Najkvištov dijagrami za dvoslojnu PANI/epoksidnu prevlaku na mekom čeliku posle (i) 1 h; (ii) 2 dana; (iii) 7 dana i (iv) 14 dana izlaganja 3% rastvoru NaCl. Insert: posle (ii) 28 dana i (o) 56 dana izlaganja 3% rastvoru NaCl.

Figure 2. Nyquist plots of the duplex PANI/epoxy coating on mild steel after (i) 1 h; (ii) 2 days; (iii) 7 days and (iv) 14 days of immersion in 3% NaCl. Insert: (ii) 28 days and (o) 56 days of immersion.

Ako se uporedi ukinute impedancije meleg čelika sa epoksidnom prevlakom i meleg čelika sa PANI/epoksidnom prevlakom na početku izlaganja 3% rastvoru NaCl, može se uočiti da su one istog reda veličine. Međutim, nakon 14 dana epoksidna prevlaka na mekom čeliku je izgubila svoju zaštitna svojstva (slika 1), a dvoslojna PANI/epoksidna prevlaka je zadržala za-

štitna svojstva i nakon 56 dana izlaganja 3% rastvoru NaCl (insert na slici 2). Ekspertmentalni podaci dobiveni

primenom metode SEI analizirani su pomoću elektri-

čnog ekvivalentnog kola prikazanog na slici 3.

Slika 3. Električno ekvivalentno kolo

Figure 3. Electrical equivalent circuit

Značenje parametara datog kola su: R₀, otpornost elektrilite, CPEᵦ, element sa konstantnim faznim uglom, povezan sa kapacitivnošću prevlake, Rₑ, otpornost elektro-

trolita u porama prevlake, CPEₑ, element sa konstantnim

faznim uglom, povezan sa svim frekvencijama zavisnim

elektriliskim veličinama, tj. sa kapacitivnošću elek-

tričnog dvojnor sloja i difuzionih procesa, a Rₔ, otpornost prenosa naselektrisanja kroz graničnu površinu metal-elektrilite, povezana sa korozionim procesima na

dnu pora.

Na slici 4 je prikazana vremenska zavisnost otpor-

nosti elektrilite u porama prevlake, Rₑ, za meki čelik sa

epoksidnom prevlakom i meki čelik sa PANI/epoksi-
dnom prevlakom. Može se vidjeti da PANI/epoksidna

prevlaka ima značajno duži plato na log Rₑ — t krivoj u

poređenju sa epoksidnom prevlakom, isto su vrednosti

Rₑ manje. S obzirom na to da plato na log Rₑ — t krivoj

Slika 4. Vremenska zavisnost otpornosti elektrilite u porama, Rₑ za epoksidnu prevlak i dvoslojnu PANI/epoksidnu prevlak na mekom čeliku u 3% rastvoru NaCl

Figure 4. Time dependences of the pore resistance, Rₑ, for the epoxy coating and duplex PANI/epoxy coating on mild steel in 3% NaCl
označava period zadruživanja dobrih zaštitnih svojstava organske prevlake [9,11,12], to znači da dvošlojna PANI/epoksidska prevlaka značajno povećava korozionu stabilnost meleg čelika u rastoru 3% NaCl u poređenju sa epoksidnom prevlakom, zahvaljujući dodatnom barijernom efektu PANI filma.

Sorpccione karakteristike

Da bi se odredile sorpcione karakteristike epoksidne i PANI/epoksidske prevlake korišćene su TG krive (slika 5) u intervalu temperature od 23 do 200°C, iz kojih je određena količina vezane vode u epoksidnoj i u PANI/epoksidskoj prevlaci, kao mera njihove korozione stabiliteta.

![Slika 5. TG krive za epoksidnu prevlak i dvošlojnu PANI/epoksidsku prevlak na melem čeliku posle 1 dana izlaganja 3% rastoru NaCl (brzine grejanja 10°C min⁻¹).](image1)

Figure 5. TG curves of the epoxy coating and duplex PANI/epoxy coating on mild steel after 1 day of exposure to 3% NaCl (heating rate 10°C min⁻¹).

Na osnovu gubitka mase na temperaturi od oko 50°C (temperatura maksimuma na DTG krive) (12–14) izračunato je da je sadržaj vezane vode 0,40 mas% za epoksidnu prevlaku i 0,68 mas% za PANI/epoksidsku prevlaku. Veća količina vezane vode u dvošlojnoj PANI/epoksidskoj prevlaki je značajna sa njenim manjim vrednostima otpornosti u porama u početnom vremenu izlaganja 3% rastoru NaCl, dobijenih iz impedančnih merjenja.

Termička stabilnost

Termička stabilnost epoksidske prevlake i dvošlojne PANI/epoksidske prevlake je određena na osnovu TG krih v u intervalu temperature od 23 do 60°C (slika 5) i temperatura koja odgovara gubitku 40% mase uzorka, T₄₀%, koja predstavlja indikaciju brzine termičke degradacije polimera [15]. Izračunato je da je T₄₀% = 369°C za epoksidnu prevlaku i T₄₀% = 363°C za PANI/epoksidsku prevlaku. Našto manja termička stabilnost PANI/epoksidske prevlake je posledica njene veće poroznosti u poređenju sa epoksidnom prevlakom. Ovi podaci su u saglasnosti sa većom količinom vezane vode unutar dvošlojne PANI/epoksidske prevlake (dobijeno iz TGA) i manjom otpornošću elektrolita u porama u početnom vremenu izlaganja korozionoj sredini (dobjeno iz SEI).

Velika vrednost masenog ostataka na 600°C od oko 40 mas% ukazuje na umreženu strukturu epoksidske i PANI/epoksidske prevlakte. Osnovne reakcije pri neoksidativnoj termičkoj degradaciji umrežene epoksidne polimer su karbonizacija posle poprečnog povezivanja, kidanje lanaca i destrukcija prstenova, ali može ići i do fuzije prstenova koji formiraju ugljenični produkt [15]. Ukoliko je karbonizacija favorizovana u odnosu na raskidanje lanaca, gubitak mase je manji [16].

ZAKLJUČAK

Prevlaka PANI na melem čeliku dobijena je elektrochemijskom sintezom iz vodenog rastora natrijumbenzoata i anilina pod galvanostatskim uslovima. Na melem čeliku sa prevlakom PANI zatim je elektroforetski tlačenica epoksidska prevlaka. Na osnovu eksperimentalnih podataka dobijenih spektroskopijom elektrochemijske impedancije i termogravimetrijskom analizom, ispitano je koroziono ponašanje i termičke stabilnosti epoksidske prevlake i dvošlojne PANI/epoksidske prevlake na melem čeliku u dnu određivanju uticaja PANI filma na zaštitu meleg čelika od korozije.

Tokom početnog perioda izlaganja rastoru 3% NaCl uđene su manje vrednosti otpornosti u porama prevlake, veća količina vezane vode i manja termička stabilnost dvošlojne PANI/epoksidske prevlake u poređenju sa epoksidnom prevlakom, što ukazuje na njenu poroznju strukturu i manju korozionu stabilnost. Međutim, tokom dužeg izlaganja dejstvu 3% NaCl, skoro nepromenjene vrednosti otpornosti u porama PANI/epoksidske prevlake ukazuju na značajno povećanje njenе korozione stabilnosti kao rezultat dodatnog barijernog efekta PANI filma.

LITERATURA

SUMMARY

CORROSION BEHAVIOR OF DUPLEX POLYANILINE/EPOXY COATING ON MILD STEEL IN 3% NaCl

(Scientific paper)

Milica M. Gvozdenović1, Branimir N. Grgur1, Zorica M. Kačarević-Popović2, Vesna B. Mišković-Stanković3

1Faculty of Technology and Metallurgy, Belgrade, 2Institute of Nuclear Sciences "Vinča", Belgrade

The corrosion behavior and thermal stability of epoxy coatings electrodeposited on mild steel and on mild steel with electrochemically deposited polyaniline (PANI) film were investigated by electrochemical impedance spectroscopy (EIS) and thermogravimetric analysis (TGA). The aim of the paper was to present new findings on the corrosion protection of mild steel by a duplex PANI-epoxy coating in 3% NaCl solution and to determine the effect of thin PANI film on the protective properties of the coating.

PANI film was deposited electrochemically on mild steel from an aqueous solution of 0.5 mol dm⁻³ sodium benzolate and 0.1 mol dm⁻³ aniline, at a constant current density of 1.5 mA cm⁻². Non-pigmented epoxy coatings on mild steel and on mild steel with PANI film were obtained by cathodic electrodeposition at constant voltage and stirring conditions. The resin concentration in the electrodeposition bath was 10 wt.% solid dispersion in water at pH 5.7. The applied voltage was 250 V, the temperature 25°C and the deposition time 3 min.

It was shown that thin PANI film could be used to modify the surface of mild steel prior to epoxy coating deposition, due to the increased corrosion protection of a duplex PANI/epoxy coating compared to an epoxy coating on mild steel in 3% NaCl solution.

Key words: Polyaniline • Electrodeposition • Epoxy coatings • Corrosion • Thermal stability

Ključne reči: Polijanilin • Elektrohemijsko taloženje • Epoksidne prevlake • Korozija • Termička stabilnost