ACCURACY OF BODY MASS INDEX BASED ON SELF-REPORT DATA AMONG LAW ENFORCEMENT CADETS

1Quincy R. Johnson, 2Jillian M. Joyce, 3Filip Kukić, 4Robert G. Lockie 5Charles L. Kornhauser, 6Robin M. Orr, 7J. Jay Dawes

1Oklahoma State University, School of Kinesiology, Applied Health and Recreation Stillwater, OK, USA
2Oklahoma State University, Department of Nutritional Sciences Stillwater, OK, USA
3Abu Dhabi Police, Police Sports Education Center, United Arab Emirates
4California State University, Department of Kinesiology Fullerton, CA, USA
5Colorado State Patrol Department Headquarters, Golden, CO, USA
6Bond University, Tactical Research Unit, Robina, Qld, Australia

Abstract: BACKGROUND – Height and body mass are often self-reported by study participants. However, the accuracy of this data compared to measured values is limited in tactical trainee populations. This study's purpose was to compare the accuracy of self-reported height and body mass to measured values within a US law enforcement cadet population, and determine how these estimations affected BMI classifications. METHODS – Self-reported and measured body height and body mass for twenty-six (n = 26) male and female cadets (males – age: 31.32 ± 10.04 years; measured height: 178.07 ± 9.87 cm; measured body mass: 92.44 ± 19.37 kg; females – age: 25.67 ± 1.53 years; measured body height: 168.17 ± 4.01 cm; measured body mass: 78.94 ± 11.30 kg) were analyzed. RESULTS – Significant differences between estimated and measured height (p < 0.001), body mass (p < 0.05), but not BMI (p = 0.281) were revealed. CONCLUSION – Self-reported body height and body mass were not accurately reported when compared to measured values. However, reported resulted in accurate BMI classifications.

Keywords: anthropometrics, health assessment, police, obesity.
INTRODUCTION

The physical demands of law enforcement officers (LEOs) range from sedentary (i.e. administrative work) to strenuous (i.e., those such as pursuit, body drag, stair climbing or arresting uncooperative suspects) (Dawes et al., 2018). In that regard, occupational health and physical performance of LEOs are very important components for safe, effective, and efficient job performance (Dawes et al., 2018; Dawes et al., 2016; Kukić et al., 2018; Steinhardt et al., 1991). For this reason, physical fitness of LEOs is typically a mandatory part of police training and in some law enforcement agencies it is used as a tool for selection of candidates (Koropanovski et al., 2020; Lag-estad & Van Den Tillaar, 2014; Lockie et al., 2019; Dawes et al., 2019b). Physical fitness could be defined as health-related and performance-related, whereby anthropometrics and body composition play an important role (Dawes et al., 2018; Kukić et al., 2018; Kukić et al., 2020; Kukić & Čvorović, 2019; Riebe et al., 2018). However, the assessment of anthropometrics and body composition is not always feasible due to limited equipment, trained personnel, and/or time. Considering the extent to which increased body mass (BM) relative to body height (BH) can negatively affect the health (Garbarino & Magnavita, 2015; Violanti et al., 2017) and physical performance (Dawes et al., 2018; Dawes et al., 2016) of LEOs, accurate yet feasible methods for evaluation of anthropometric status should be identified for the LEO population.

Body mass index (BMI) has been extensively utilized in public and occupational health (Bhaskaran et al., 2018; Ćopić et al., 2020; Ernsberger, 2012; Kukić et al., 2020) as it only requires a person's BM and BH for the calculation (Eknoyan & Adolphe, 2008; Čvorović et al., 2018). This is of importance given that people of different sizes may differ in BM merely because they are taller, rather than having greater amounts of body fat. Longitudinal body dimensions, such as BH, follow a particular specific pattern during growth (Kirchengast, 2010), while components of the body that constitute the body volume, such as skeletal and fat tissue, could be altered by physical activity, hypokinesia, nutrition, education, and socioeconomic constructs of society (Dinsa et al., 2012; Kukić et al., 2020; Kukić & Čvorović, 2019; Vuković et al., 2020). Therefore, changes in body composition of adults (i.e., increase or decrease in body fat and/or skeletal muscle mass) often reflect in changes in BM, leading to changes in BMI.

Although BMI does not provide specific information on the source of either body volume or size (Provencher et al., 2018; Rothman, 2008), the validity of its utilization relies on consistent associations with biological and socioeconomic factors, such as age, sex, education, occupation, and income (Ball et al., 2002; Boyce et al., 2008; Kukić et al., 2019; Sobal, 1991; Sörensen et al., 2000). In that regard, the World Health Organization and American College of Sports Medicine often times use the standard values of BMI for the evaluation of health status (Riebe et al., 2018; WHO, 2017). These values are easily attainable and are cost-effective, which is of high importance for law enforcement agencies that need to assess large groups of people in a short time. Therefore, multiple studies on LEOs utilized BMI to evaluate obesity rates in LEO populations (Alghamdi et al., 2017; Dopsaj & Vuković, 2015;
Kukić & Dopsaj, 2016). Accurate self-report BMI could provide important information about an officer as it provides insights into body status, and indirectly, physical fitness and health (Bhaskaran et al., 2018; Riebe et al., 2018; WHO, 2017). Noting this need for accurate reporting and associated time constraints in a LEO population, research by Dawes et al. (2019a) reported the acceptable accuracy of self-report BMI within a sample of police officers. Considering that cadets are to become LEOs, their ability to accurately self-report BM and BH, thereby BMI could establish standardized procedures for obtaining this information. Moreover, these measures could provide insight into their self-awareness about their body status, which is important if their body status needs improvements. However, acknowledging the work by Dawes et al. (2019a), the accuracy of self-reported measures in law enforcement cadet populations has not yet been established. In that regard, the aim of this study was to evaluate the accuracy of BMI calculated from self-reported BM and BH among a cohort of law enforcement cadet. The researchers hypothesize that self-reported BM and BH data would not be significantly different from measured values and that accurate reporting would lead to accurate BMI classifications.

METHODS

Experimental approach to the problem

Self-reported and measured BH and BM data were collected from law enforcement cadets belonging to a US law enforcement agency upon entrance into their respective police academy. This data were then provided to the primary investigator for analysis and comparison.

Subjects

Self-reported and measured BH and BM data for twenty-six (n = 26; males = 23, females = 3) law enforcement cadets (males – age = 31.32 ± 10.04 years; females – age = 25.67 ± 1.53 years) from one US based law enforcement agency located in the Rocky Mountain Region were collected and utilized for this analysis. Prior to data collection, law enforcement cadets were informed of the study’s purpose and were asked to provide informed consent allowing investigators to utilize their self-reported BH and BM data, as well as allowing members of the training staff to measure their actual BH and BM. Ethical approval to analyze this information was obtained from the Oklahoma State University Institutional Review Board (IRB 16-041) for human subjects.
Procedures

All self-reported and measured BH and BM measurements were collected indoors at the law enforcement training facility. Additionally, all data were collected in the morning before training began on the first and second day of training academy. The protocols for collection of these measurements are detailed hereafter.

Self–reported age, BH and BM: Age (years), BH (in), and BM (lbs) values were self-reported by the cadets on a standard data sheet provided to each of them by the training staff in the morning, prior to training. All imperial measures, such as inches (in) and pounds (lbs), were converted to metric values for analysis.

Measured BH and BM: BH (cm) and BM (kg) were measured shoeless, using a portable stadiometer (Seca® 222, California, USA) and a digital electronic scale (Health-O-Meter®, McCook, IL, USA) following procedures previously reported by Dawes et al. (2019a).

Body mass index (BMI) calculation and classification: BMI was calculated during analysis after converting the measurements of BH and BM into the appropriate metric units. BMI was derived using the equation $\text{BMI} = \frac{\text{body mass (kg)}}{[\text{height (m)}]^2}$. Once calculated, National Institute of Health (1998) BMI classification ranges were used to group officers by weight status (Table 1).

<table>
<thead>
<tr>
<th>Weight Status</th>
<th>BMI Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td>$< 18.5 \text{ kg/m}^2$</td>
</tr>
<tr>
<td>Normal</td>
<td>$18.5 – 24.9 \text{ kg/m}^2$</td>
</tr>
<tr>
<td>Overweight</td>
<td>$25.0 – 29.9 \text{ kg/m}^2$</td>
</tr>
<tr>
<td>Obesity I</td>
<td>$30.0 – 34.9 \text{ kg/m}^2$</td>
</tr>
<tr>
<td>Obesity II</td>
<td>$35.0 – 39.9 \text{ kg/m}^2$</td>
</tr>
<tr>
<td>Obesity III – Extreme obesity</td>
<td>$> 40.0 \text{ kg/m}^2$</td>
</tr>
</tbody>
</table>

Statistical analysis

Collected data were entered into a computer file suitable for statistical analysis using the Statistics Package for Social Sciences (SPSS) (Version 25.0; IBM Corporation, New York, USA). A descriptive statistical analysis was conducted to determine the mean values and standard deviations for the total sample and on all collected data. Comparisons between self-reported and measured values for each of the variables were conducted using a series of paired samples t-tests with alpha levels set at 0.05 a priori. Cohen’s effect sizes (d) were calculated as the ratio of the difference in mean scores to standard deviation, following the formula: $d = (M_2 - M_1)/SD$, where M_1 and M_2 were the means of the groups investigated and the SD was a pooled standard deviation of compared groups. The magnitude of the effects was defined as follows: small = 0.2, moderate = 0.6, large = 1.2 and very large = 2.0 (Sullivan & Feinn, 2012).
Results

The descriptive data and comparisons between estimated and measured anthropometrics for this sample are presented in Table II. The results of the paired samples t-tests revealed significant differences in both, estimated and measured BH (t(24) = - 4.34, p < 0.001), and estimated and measured BM (t(24) = - 2.575, p = 0.017), whereby the differences were trivial size (Figure 1). However, in this study, the self-reported data had 100% of law enforcement cadets classified into the same National Institute of Health’s BMI classification scale as the categories determined using the objective measures. There were no significant differences revealed between estimated and measured BMI (t(24) = 1.104, p = 0.281). Further, when separately evaluating BMI data based on measured BH and BM, it was found that one cadet in this study was “underweight”, four were “normal weight”, eight were “overweight”, 10 were classified as “obesity I”, two were classified as “obesity II”, and 0 were classified as “obesity III” (Figure 2).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Self-Reported Mean ± SD (range)</th>
<th>Measured Mean ± SD (range)</th>
<th>Differences Mean ± SD (range)</th>
</tr>
</thead>
</table>
| BH (cm) | 178.36 ± 10.34**
(157.48 – 195.58) | 176.88 ± 9.87
(158.00 – 196.50) | 1.48 ± 0.47 cm
(-0.08 – 0.52) |
| BM (kg) | 91.87 ± 19.52*
(61.36 – 143.18) | 90.82 ± 18.95
(59.90 – 139.73) | 1.05 ± 0.57 kg
(1.46 – 3.45) |
| Estimated BMI | 28.79 ± 5.07
(19.01 – 44.03) | 28.95 ± 5.09
(18.93-43.37) | 0.16 ± 0.02
(0.08 – 0.66) |

*Significant difference at p ≤ 0.05; **Significant difference at p ≤ 0.01

Figure 1. Relative differences (Δ [%]) and effect sizes (d) between self-reported and measured anthropometric indices
DISCUSSION

The purpose of this investigation was to compare the accuracy of self-reported BH and BM data to measured values among a population of law enforcement cadets, and determine if correct BMI classifications could be determined using self-reported data. It was discovered that law enforcement cadets reported significantly greater BH and lower BM when compared to measured values. However, no significant differences were discovered when calculating BMI based on self-reported or measured data. Based on these results, it appears that self-reported BH and BM data, though less accurate, may allow for an accurate assessment of general weight status via BMI among law enforcement cadets. This is the first study to investigate the accuracy of self-reported anthropometric data in the law enforcement cadet population. Based on these findings the researchers rejected the hypothesis that self-reported BH and BM data would not be significantly different from measured values. However, the researchers rejected the hypothesis that no differences in this data would lead to accurate BMI classifications. It seems that the results from this study have implications for strength and conditioning coaches and training staff that are responsible for developing health and wellness interventions for law enforcement cadets, and for researchers and other health experts who, due to time constraints or resource availability, often must rely on self-reported BH and BM measures in order to stratify law enforcement cadets into groups based on weight status. It may be concluded that self-reported anthropometric data can be used as an easy and cost-effective tool for accurately determining the BMI in this population, despite inaccuracies in self-reported BH and BM.

Numerous studies have documented significant differences between measured and self-reported BH status, with the
tendency to overestimate (greater than measured) being very common (Bowring et al., 2012; Nyholm et al., 2007; Wen & Kowaleski-Jones, 2012; Martin et al., 2016). Additionally, differences have also been reported between sexes, where males generally overestimate BH and both sexes underestimated BM (Olfert et al., 2018). Several factors may be responsible for this occurrence including inadequate training regarding BH estimation, self-report bias, and desire to please. The results of this study are consistent with these findings. Self-reported BH significantly differed from measured BH by 0.8% (± 4.6) on average, where cadets overestimated self-reported values. However, these results are in contrast to those presented by Dawes et al. (2019a) who found no significant differences between self-reported and measured BH among LEOs. The results of the current study suggest that cadets tend to be less accurate than LEOs and similar to the general population when providing self-report BH data (Dawes et al., 2019a; Maukonen et al., 2018; Olfert et al., 2018; Bowring et al., 2012; Nyholm et al., 2007; Wen & Kowaleski-Jones, 2012; Martin et al., 2016). In fact, four law enforcement cadets underreported their BH, 17 over-reported their BH, and four law enforcement cadets were exact in their estimations. However, none of these estimations resulted in a misclassification of BMI for the cadets in this study. The results of this study are consistent with these findings. Self-reported BH and BM significantly differed from measured BH and BM by 1.2% (± 2.9) on average. It was discovered that six law enforcement cadets underreported their BH, 15 over-reported their BH, and four law enforcement cadets were exact in their measurement. However, none of these estimations resulted in a misclassification of BMI for the officers in this study. Thus, when used in conjunction with self-reported BH, self-reported BM can serve as a reliable replacement for actual BM measurements if the goal is to calculate BMI and classify cadets based on their weight status.

Self-reported BH and BM data have been used in previous research to estimate BMI and overall weight status among both general and tactical populations (Bowring et al., 2012, Nyholm et al., 2007; Wen and Kowaleski-Jones, 2012; Martin et al., 2016). If misreported or misrepresented, this self-reported data can lead to inaccurate estimations and misclassifications of an individual’s weight status. In this study, when using self-reported data, 100% of the law enforcement cadets were classified correctly according to the National Institute of Health’s BMI classification scale and as classified by the measured values. Additionally, BMI from self-reported and measured BH and BM values only differed by 0.16 kg/m² (± 0.02) on average. Thus, it appears that within this population self-reported BH and BM could be used to accurately determine epidemic-
logical information (i.e. general health risk or status) and as an alternative anthropometric measure if there are limited resources or access to assess such.

A notable limitation to this study is that it did not analyze the relationship between self-report bias and weight status. That is, assessing whether intentionally underestimating or overestimating BH and BM occurs for specific weight statuses. Previous research conducted by Maukonen et al. (2018) compared self-reported and measured anthropometrics in assessing obesity in adults. The investigators reported that there was a clear tendency for participants classified as overweight and obese to underestimate their BM. Additionally, this bias was much greater in overweight and obese participants than those of normal weight. Furthermore, a low power to detect differences in BMI based on sample size and group stratification, a smaller female sample compared to the male sample, and the accuracy of equipment used by participants and researchers could each be considered a potential limitation. Future studies may find it beneficial to investigate differences between self-reported BH and BM and measured BH and BM between law enforcement cadet groups stratified by weight status and sex (Maukonen et al., 2018).

CONCLUSION

The results of this study suggest that law enforcement cadets inaccurately self-reported both their BH and BM when compared to measured values. Several factors may be responsible for this occurrence including inadequate training regarding BH and BM estimation, self-report bias, and desire to please. However, based on the results of this study, when using a broad BMI classification scale, self-reported BH and BM can be used to accurately determine BMI classification groups. When the ability to objectively measure BH and BM for BMI determination is not viable for law enforcement staff, self-reported data can be used as a surrogate. However, if any of the data indicates a health risk (i.e. BMI > 25 kg/m²), or if BH and BM directly relate to occupational tasks, it is recommended that staff use more accurate and/or additional methods to directly measure BH, BM, BMI, and adiposity.

REFERENCES

