FOLLICULAR LYMPHOMA INCIDENCE AND MORTALITY IN RELATION TO OVERWEIGHT, OBESITY AND PHYSICAL ACTIVITY: A META-ANALYSIS

Ilija Golubović^{1,2}, Goran Marjanović^{1,6}, Danijela Radojković^{3,6}, Dušan Sokolović⁴, Aleksandar Karanikolić^{2,6}, Milan Radojković^{2,6}, Milorad Pavlović⁵

In the last few years, there has been a growing interest in exploring the association between risk factors such as overweight, obesity and physical activity, and incidence of various cancers.

Meta-analysis was performed to investigate the risk ratio of follicular lymphoma incidence and mortality in overweight and obese individuals, and in individuals with a different physical activity levels using the random-effects model. A literature search through September 2016 was performed. Case-control studies accounted for over 2.100 cases and 12.700 controls, whereas cohort studies accounted for over 2.600 cases in cohort of about 3.000.000 individuals.

In overweight individuals (body mass index between 25 and 29.99 kg/m²) risk ratio for the development of follicular lymphoma was 1.03 (0.95-1.11; 95% CI; p = 0.51) and in obese (body mass index \geq 30 kg/m²) it was 1.15 (1.01-1.31; 95% CI; p = 0.04) when compared to individuals with normal body mass index (< 25 kg/m²). The risk ratio of specific follicular lymphoma mortality in overweight was 0.59 (0.38-0.91; 95% CI; p = 0.02), while in obese patients it was 1.08 (0.68-1.71; 95% CI; p = 0.75). In patients with the highest physical activity levels, the risk ratio for follicular lymphoma occurrence was 0.95 (0.75-1.21; 95% CI; p = 0.68) when compared to patients that had the lowest physical activity levels.

In summary, our meta-analysis has shown statistically significant direct association between obesity and follicular lymphoma incidence.

Acta Medica Medianae 2018;57(4):79-90.

Key words: follicular lymphoma, meta-analysis, obesity, overweight, physical activity

¹Hemathology and Immunology Clinic, Clinical Center Niš, Niš, Serbia

²General Surgery Clinic, Clinical Center Niš, Niš, Serbia
 ³Endocrinology Clinic, Clinical Center Niš, Niš, Serbia
 ⁴University of Niš, Faculty of Medicine, Department of

Biochemistry, Niš, Serbia

⁵Thoracic surgery Clinic, Clinical Centre Niš, Serbia ⁶University of Niš, Faculty of Medicine, Niš, Serbia

Contact: Ilija Golubović Clinical Center Niš Blvd. Dr Zoran Djindjić 48, 18000 Niš, Serbia E-mail: golubovicilija@yahoo.com

Introduction

Follicular lymphoma (FL) is the second most common subtype of non-Hodgkin lymphoma (NHL) in Europe and North America, and accounts for about 20-30 percent of all NHL cases (1). Although it is known that the risk factors, such as alcohol (2), cytogenetic abnormality (3), immunosuppression, and some autoimmune diseases (4), may influence FL incidence, indubitable risk factor for its occurrence is not yet known.

In the last few years there has been a growing interest in exploring an association between risk factors as obesity (OB) and physical activity (PA), and incidence of various cancers (5, 6). Obesity, the prevalence of which has lately increased in many countries (7), is associated with a chronic state of inflammation. Thus, as the principal source of inflammatory cytokines, adipose tissue may be linked with the development of cancer (8, 9). For many malignancies over-weight (OW) and OB are noted as risk factors (10, 11). However, the authors' findings regarding FL are controversial. While some claim that there is an association between these risk factors and FL incidence (12-15), others deny it (16, 17). Furthermore, current research on reduction of PA associated with OB is focused on their link with various cancers (6). So far, there has been no metaanalysis of the association be-tween OW and OB and

a relative risk of FL mortality, while the influence of PA on FL incidence emphasized only in one published meta-analysis (18).

The aim of this study was to evaluate the association of OW and OB with FL incidence and mortality, as well as association of PA with FL incidence, using the both cohort and case-control studies. Also, we investigated the influence of OW, OB and PA on FL incidence depending on the type of study, gender and region in which examinees lived.

Methods

Study selection

Using PubMed and searching the reference list of retrieved articles, the literature search through September 2016 was performed. The key words searched were: follicular lymphoma, overweight, obesity, body mass index, meta-analysis, physical activity, mortality. No language restrictions were imposed. Also, references cited in the corresponding articles were incorporated in the search. Both prospective and case-controls studies were included in the metaanalysis. Abstracts of articles, narrative studies, letters to the authors and cross-sectional studies were not included in this meta-analysis.

A study was relevant if it contained data reporting on the association between body mass index (BMI) and incidence and mortality of FL as well as the association between PA and incidence of FL. We identified a total of 39 articles with data that were potentially eligible for inclusion in this meta-analysis, of which 36 were related to FL incidence (31 were included in the analysis of influence of OW and OB, and 9 were included in the analysis of the influence of PA on FL incidence, with 4 studies overlapping, that is containing both topics), while 3 studies, all with a prospective design, were related to FL mortality. A total of 19 studies related to FL incidence were excluded because these articles did not include data on BMI values in relation to FL incidence. From the studies of FL mortality, one was excluded because it lacked data on mortality in relation to BMI. At the end of the identification process there were 17 applicable studies left with the data on FL incidence (14 for analysis of the influence of OW and OB (12-26), and 7 for analysis of the influence of PA, from which 4 were previously included (13, 15, 17, 25, 27-29) as well as 2 studies with data on association between OW and OB and FL mortality (30, 31).

Data analysis

For both cohort and case-control studies, we extracted the following data: authors last names; publication year; study type; source (region); gender and age; case - total cohort or case-control size; time of follow-up; method of BMI determining; type and assessment of PA; the highest and the lowest PA level; adjustments (for cohort studies) or matching (for case-control studies); the risk ratio (RR) and hazard ratio (HR) for cohort studies and the odds ratio (OR) for case-control studies, with 95% confidence interval for all (95% CI).

Statistical analysis

OW was defined as BMI values between 25 and 29.99 kg/m² (pre-obese), OB as BMI values over 30 kg/m² (obese class I), while the high OB was defined as BMI values over 35 kg/m² (obese class II) according to the WHO criteria (32). Normal BMI ($<25 \text{ kg/m}^2$) values were the reference category for all computing related to BMI. For analysis of the influence of PA, we compared the highest to the lowest PA level. The lowest level was the reference category for all comparisons. For studies with the highest PA level as the reference category, instead of the lowest level, the inverse value was used. If risk estimates for PA were reported for more than one period, the most recent data were used. For studies that reported recreational and occupational activity separately the former was preferred, and if a publication included data on total activity, these data were used. For all analysies, if study reported risk estimates for men and women separately, values for both were analyzed.

The summary RR with 95% CI was computed to assess the risk for FL incidence and mortality in overweight and obese examinees in relation to examinees with normal BMI, or the risk for the development of FL in examinees with the highest versus the lowest PA level. In the analysis of FL incidence (influence of OW and OB, and PA), we performed subgroup analysis depending on the type of study, gender and region in which the examinees lived. While analyzing the mortality depending on the BMI index, it was calculated as a specific/univariate or nonspecific/multivariate mortality.

DerSimonian-Laird method for the random-effects model was used to compute the outcome of study-specific RR (33). To assess statistical heterogeneity among studies, the Q and I2 statistics were used (34). Heterogeneity was defined as mild (I2 of 25%), moderate (I2 of 50%) and severe (I2 of 75%). Publication bias was noticed on funnel plots and was assessed by using Egger's test (35). Statistical significance was defined for p-value < 0.05. All statistical analyses and graphics were performed with Comprehensive Meta-Analysis (Version 3; Biostat, Inc, Englewood, NJ).

Results

For studies observing the influence of OW and OB on FL incidence, a total number of cohort studies were 7 and studies included 1,979 cases in cohort of 2,712,088 individuals; a total number of case-control studies were 7 and these studies included 1,959 cases and 11,725 controls.

For studies observing the influence of OW and OB on FL mortality, a total number of cohort studies were 2 and studies included 493 cases in a cohort of over 215,000 individuals.

For studies observing the influence of PA on FL incidence, a total number of cohort studies were 4 (two of which overlapped with previous included 7 cohort studies related to FL incidence) and studies included 490 cases in a cohort of 661,878 individuals; a total number of case control studies was 3

(two of which overlapped with previous included 7 case-control studies related to FL incidence) and these studies included 583 cases and 4,583 controls (Tables 1 and 2).

Table 1. Characteristics of studies observing follicular lymphoma incidence or mortality in relation to overweight and obesity

Author (Year)	Type of studies	Source (Region)	Gender and age (years)	Case - total cohort (NoNo.) or case-control (NoNo.) size	Enrollment (Years)	BMI determining	Adjustments (cohort)/matching (case- control)		
	INCIDENCE								
Skibola C.F. (2004) ¹⁴	Case-control	United States	M and W; 21-74	351-2,400	1988-1995	Self-reported	Age, gender, country of residence		
Willett E.V. (2005) ¹⁹	Case-control	Europe	M and W; 18-59	227-911	1998-2001	Self-reported	Gender, date of birth		
Chang E.T. (2005) ¹⁶	Case-control	Europe	M and W; 18-74	582-3,158	1999-2002	Self-reported	Age, gender		
Cerhan J.R. (2005) ¹⁷	Case-control	United States	M and W; 20-74	289-977	1998-2000	Self-reported	Age, gender, race, study center		
Pan S.Y. (2005) ¹⁵	Case-control	Canada	M and W; 20-76	239-3,027	1994-1997	Self-reported	Age, province, gender, education, smoking, alcohol, chemicals, occupational exposure		
Chiu B.C.H. (2007) ²⁰	Case-control	United States	M and W; 20-75	121-527	1999-2002	Self-reported	Age, gender		
Lim U. (2007) ¹²	Cohort	United States	M and W; 50-71	257-473,984	1995-2000	Self-reported	Age, gender, ethnicity, education, alcohol, smoking, height, physical activity		
Britton J.A. (2008) ²¹	Cohort	Europe	M and W; 25-70	131-371,983	1993-1998	Measured	Age, study center		
Maskarinec G. (2008) ²²	Cohort	United States	M and W; 45-75	129-193,051	1993-1996	Self-reported	Age, ethnicity, education, alcohol		
Lu Y. (2009) ¹³	Cohort	United States	W; 22-84	121-121,216	1995-2007	Self-reported	Height, age at menarche, long-term strenuous plus moderate physical activity		
Troy J.D. (2010) ²³	Cohort	United States	M and W; 55-74	162-142,982	1993-2001	Self-reported	Age, race/ethnicity, gender, education		
Kanda J. (2010) ²⁴	Case-control	Japan	M and W; 18-80	149-725	1988-2005	Self-reported	Age, gender		
Kabat G.C. (2012) ²⁵	Cohort	United States	W; 50-79	214-158,975	1993-1998	Self-reported	Age, alcohol, smoking, caloric intake, education, ethnicity, enrollment in the OS, treatment arm assignment in the clinical trials		
Murphy F. (2013) ²⁶	Cohort	Europe	W; 56.6 (The mean age)	965-1,249,897	1996-2009	Self-reported	Height, alcohol, smoking, socioeconomic status		
				MORTALITY					
Leo Q.J.N. (2014) ³⁰	Cohort	United States	M and W; 45-75	214-215,000	1993-2007	Self-reported	Age, gender, SEER stage, education, NHL type, therapy, smoking, alcohol, comorbidity, age at diagnosis		
Hong F. (2014) ³¹	Cohort	United States	M and W; 56 (The median age)	279- Not reported	1998-2003	Not reported	Age, gender, B-symptom, FLIPI score, treatment		

Abbreviations: BMI - Body mass index, M - Men, W - Women, SEER - the National Cancer Institute's Surveillance, Epidemiology, and End Results, FLIPI - Follicular lymphoma International Prognostic Index

Table 2. Characteristics of studies observing physical activity in relation to follicular lymphoma incidence

Author (Year)	Type of studies	Source (Region)	Gender and age (years)	Case - total cohort (NoNo.) or case-control (NoNo.) size	Enrollment (Years)	Type and assessment of physical activity	The highest vs. the lowest physical activity level	Adjustments (cohort)/matching (case-control)
Cerhan J.R. (2002) ²⁷	Cohort	United States	W; 55-69	57-37,931	1986-1998	Recreational; Self-reported questionnaire	High vs. low (Responses created a level activity score)	Age
Cerhan J.R. (2005)* ¹⁷	Case-control	United States	M and W; 20-74	119-406	1998-2000	Recreational; Self- administered questions	>1.080 METs/week vs. <30 METs/week	Age, gender, race, study center
Pan S.Y. (2005)* ¹⁵	Case-control	Canada	M and W; 20-76	242-3,106	1994-1997	Recreational; The questionnaire elicited information	>34.4 MET- h/week vs. <6.3 MET-h/week	Age, province, gender, education, smoking, alcohol, chemicals, occupational exposure
Lu Y. (2009)* ¹³	Cohort	United States	W; 22-84	121-121,216	1995-2007	Recreational; Self- administered baseline questionnaire	≥4 h/week/year vs. 0-0.50 h/week/year	Weight, height, age at menarche, long-term strenuous plus moderate physical activity
V Veldhoven C.M. (2011) ²⁸	Cohort	Europe	M and W; 57.9 ± 8.3 (mean ± SD)	98-343,756	1992-2000	Total; Self- administered or interview- based questionnaires	Standing and manual/heavy manual work + recreational PA (≥45.75 MET- h/week) vs. Sedentary and unwilling + recreational PA (<14.25 MET- h/week)	Education, smoking, alcohol, hypertension, hyperlipidaemia, diabetes, BMI, weight, height, waist and hip circumference, waist-to-hip ratio
Kabat G.C. (2012)* ²⁵	Cohort	United States	W; 50-79	214-158,975	1993-1998	Recreational; Self- administered questionnaires	≥17.5 MET- h/week vs. <1.6 MET-h/week	Age, alcohol, smoking, caloric intake, education, ethnicity, BMI, enrollment in the OS, treatment arm assignment in the clinical trials
Kelly J.L. (2012) ²⁹	Case-control	United States	M and W; <40->70	222-1,071	2002-2008	Total; Self- administered risk-factor questionnaire	>2.701 METs/week vs. <615 METs/week	Age, gender, country of residence

*Previously included studies in Table 1. Abbreviations: BMI - Body mass index, M - Men, W - Women, PA - Physical activity, MET - Metabolic equivalent task, SD - Standard deviation

OW and FL incidence and mortality

In overweight examinees, RR for the development of FL was 1.03 (0.95-1.11; 95% CI; p = 0.51) when compared to examinees that had a normal BMI. The RR in cohort studies was 1.00 (0.90-1.11; 95% CI; p = 0.97) and in case-control studies was 1.06 (0.95-1.19; 95% CI; p = 0.31). The RR in men was 1.15 (0.87-1.53; 95% CI; p = 0.33), in women was 0.99 (0.88-1.12; 95% CI; p = 0.87), while in both men and women the RR was 1.05 (0.94-1.17; 95% CI; p = 0.40). Americans had the RR of 1.12 (0.99-1.27; 95% CI; p = 0.06), while Europeans had the RR of 0.97 (0.87-1.08; 95% CI; p = 0.54). In overweight examinees, the statistically significant RR for specific mortality was 0.59 (0.38-0.91; 95% CI; p = 0.02), while for non-specific was 0.72 (0.46-1.12; 95% CI; p = 0.14). There was no statistically significant heterogeneity among studies. There was no statistically significant publication bias (Figure 1 and Table 3).

OB and high OB and FL incidence and mortality

Obese examinees had a significantly increased RR of 1.15 (1.01-1.31; 95% CI; p = 0.04) for the development of FL when compared to examinees that had a normal BMI. The RR in cohort studies was 1.14 (0.97-1.34; 95% CI; p = 0.13) and in casecontrol studies was 1.17 (0.92-1.48; 95% CI; p = 0.21). The RR in men was 1.42 (0.95-2.12; 95% CI; p = 0.09), in women was 1.24 (0.95-1.63; 95% CI; p = 0.12), while in both men and women the RR was 1.08 (089-1.30; 95% CI; p = 0.45). Americans had the RR of 1.25 (1.00-1.58; 95% CI; p = 0.06), while Europeans had the RR of 1.03 (0.89-1.18; 95% CI; p = 0.72). Obese examinees had the RR of 1.08 (0.68-1.71; 95% CI; p = 0.75) for specific mortality and 1.56 for non-specific mortality (0.96-2.55; 95% CI; p = 0.08). There was no statistically significant heterogeneity among studies. There was only one statistically significant publication bias (Fig. 2 and Table 4).

Study name		Statis	ticsfore	ach study	<u>/</u>		Riski	atio and	95% CI	
	Risk ratio	Lower limit	Upper limit	Z-Value	p-Value					
Skibola, 2004 (M)	1 200	0.880	1.636	1.152	0249		1	+		69
Skibola, 2004 (VV)	1 2 0 0	0.800	1.800	0.881	0.378					
Willet, 2005 (MJW)	1 2 0 0	0.900	1.600	1.242	0214			-		
Chang, 2005 (MAV)	1.000	0.800	1.250	0.000	1.000					
Cemhan, 2005 (MMV)	0.980	0.716	1.341	-0.126	0.900			+		
Pan, 2005 (MAV)	0.940	0.693	1.275	-0.398	0.691			+		
Chiu, 2007 (MAV)	1.000	0.594	1.683	0.000	1.000			-		
Lim , 2007 (MAV)	1.120	0.838	1.497	0.766	0.444			+		
Britton, 2008 (M)	0.890	0.357	2.220	-0.250	0.803			-		
Britton, 2008 (VV)	0.680	0.330	1.401	-1.045	0 2 9 6					
Maskarinec, 2008 (M)	0.990	0.302	3.248	-0.017	0.987			-	-	
Maskarinec, 2008 (VV)	1.450	0.618	3.401	0.854	0.393				-	
Lu,2009(W)	1 2 3 0	0.798	1.896	0.938	0.348					
Kanda, 2009 (MAV)	1.050	0.623	1.769	0.183	0.855			+		
Troy, 2010 (MAV)	1.140	0.789	1.648	0.697	0.486			-		
Kabat, 2012 (W)	1.110	0.800	1.540	0.625	0.532			+		
Murphy, 2013 (VV)	0.920	0.799	1.059	-1.161	0245					
	1.026	0.950	1.109	0.657	0.511					22
						0.01	0.1	1	10	100
						Inv e	rse associ	ation Dir	ect associ	ation

Meta Analysis

Figure 1. Relative risks of follicular lymphoma incidence associated with overweight.

Abbreviations: M – men, W – women, M/W – men and women. Heterogeneity: Q = 9.00, p = 0.91, $I^2 = 0\%$. Publication bias assessed by Egger's test: p = 0.18

	Studies (No.)	RR (95% CI)	p - Value	Heterog	eneity	Egger's test		
	Studies (No.)	KK (95 % CI)	p - value	p – Value	I ² (%)	(p – Value)		
	INCIDENCE							
All studies	14	1.03 (0.95-1.11)	0.51	0.91	0	0.18		
		Тур	e of studies					
Cohort	7	1.00 (0.90-1.11)	0.97	0.69	0	0.33		
Case-control	7	1.06 (0.95-1.19)	0.31	0.90	0	0.73		
Gender								
Men	3	1.15 (0.87-1.53)	0.33	0.80	0	0.26		
Women	6	0.99 (0.88-1.12)	0.87	0.40	2.70	0.27		
Men and	8	1.05 (0.94-1.17)	0.40	0.95	0	0.88		
women	, j	100 (0151 1117)	0110	0120	Ĵ	0.00		
	Source (Region)							
United States	8	1.12 (0.99-1.27)	0.06	0.99	0	0.63		
Europe	4	0.97 (0.87-1.08)	0.54	0.45	0	0.97		
	MORTALITY							
Specific	2	0.59 (0.38-0.91)	0.02	0.83	0	-		
Non-specific	2	0.72 (0.46-1.12)	0.14	0.98	0	-		

Table 3. Relative risks of follicular lymphoma incidence and mortality associated with overweight

In high obese examinees, the RR for the development of FL was 0.94 (0.72-1.24; 95% CI; p = 0.66) when compared to examinees that had a normal weight. The RR in cohort studies was 1.09 (0.74-1.59; 95% CI; p = 0.67) and in case-control studies was 0.81 (0.55-1.20; 95% CI; p = 0.29). The RR in both men and women was 0.93 (0.68-1.28; 95% CI; p = 0.66). There was no statistically significant heterogeneity among studies. There was no statistically significant publication bias (Figure 2 and Table 4).

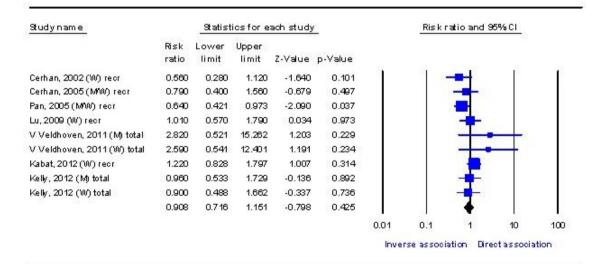
In both obese and high obese examinees, an RR of FL incidence was 1.11 (0.98-1.25; 95% CI; p = 0.10). There was no statistically significant heterogeneity among overall studies (Figure 2).

PA and FL incidence

In examinees with the highest PA level, the RR for the development of FL was 0.91 (0.72-1.15; 95% CI; p=0.42) when compared to examinees that had the lowest PA level. The RR in cohort studies was 1.07 (0.81-1.42; 95% CI; p=0.62) and in case-control studies was 0.77 (0.59-1.02; 95% CI; p=0.06). The RR in men was 1.23 (0.51-2.91; 95% CI; p=0.66), in women was 1.02 (0.78-1.32; 95% CI; p=0.89), while in both men and women the statistically significant RR was 0.68 (0.48-0.97; 95% CI; p=0.03). Americans had the RR of 0.96 (0.77-1.21; 95% CI; p=0.74). There was no statistically significant heterogeneity among studies. There was only one statistically significant publication bias (Fig. 3 and Table 5).

Group by	Study name		Statist	ics for e	each stud	<u>y</u>		RISK	ratio and 9	5% C1	
besity		Risk	Lower	Upper							
		ratio	limit	limit	Z-Value	p-Value					
nigh obesity	Chang, 2005 (M/W)*	0.900	0.488	1.660	-0.337	0.736	Ĩ	Ĩ		1	- Î
nigh obesity	Cerhan, 2005 (MW)*	0.750	0.450	1.250	-1.104	0.270			-		
nigh obesity	Lim, 2007 (MW)*	1.220	0.708	2.103	0.716	0.474			-		
nigh obesity	Kabat, 2012 (W)*	0.970	0.568	1.655	-0.112	0.911					
nigh obesity		0.941	0.716	1.236	-0.439	0.660					
obesity	Skibola, 2004 (M)	1.600	0.912	2.807	1.639	0.101			-		
besity	Skibola, 2004 (W)	1.600	0.852	3.006	1.461	0.144				35 35	
besity	Willet, 2005 (MW)	1.200	0.800	1.800	0.881	0.378			-		
besity	Chang, 2005 (M/W)	0.800	0.500	1.280	-0.931	0.352					
besity	Cerhan, 2005 (MWV)	0.690	0.452	1.054	-1.7 17	0.086					
besity	Pan, 2005 (MW)	1.410	0.975	2.040	1.824	0.068					
besity	Chiu, 2007 (M/W)	1.400	0.792	2.475	1.158	0.247			-		
besity	Lim, 2007 (M/W)	1.140	0.781	1.663	0.680	0.496			-		
besity	Britton, 2008 (M)	1.170	0.629	2.176	0.496	0.620			_		
besity	Britton, 2008 (W)	0.890	0.541	1.463	-0.459	0.646			-		
besity	Mask arinec, 2008 (M)	1.860	0.440	7.861	0.844	0.399			-		
besity	Mask arinec, 2008 (W)	6.160	1.749	21.697	2.830	0.005				-	
besity	Lu, 2009 (W)	1.290	0.765	2.176	0.955	0.340					
besity	Kanda, 2009 (MW)	1.480	0.458	4.781	0.655	0.512			-	-	
besity	Troy, 2010 (MW)	1.030	0.667	1.592	0.133	0.894			+		
besity	Kabat, 2012 (W)	1.290	0.871	1.911	1.269	0.204			-		
besity	Murphy, 2013 (W)	1.040	0.871	1.242	0.434	0.664					
besity		1.151	1.006	1.316	2.044	0.041					
Dv erall		1.106	0.980	1.248	1.640	0.101			j.		
							0.01	0.1	1	10	10

Meta Analysis


Figure 2. Relative risks of follicular lymphoma incidence associated with obesity and high obesity. Abbreviations: M – men, W – women, M/W – men and women.

Heterogeneity for obesity: Q = 22.14, p = 0.14, $I^2 = 27,72\%$; for high obesity: Q = 1.66, p = 0,64, $I^2 = 0\%$; for overall Q = 25.18, p = 0,195, I2 = 20.58.

Publication bias assessed by Egger's test for obesity: p = 0.06; for high obesity: p = 0.76

Table 4. Relative risks of follicular lymphoma incidence and mortality associated with o	besity and high obesity

			P value	Hetero	geneity	Egger's test		
	Studies (No.)	RR (95% CI)	P value	p – Value	I² (%)	(p – Value)		
INCIDENCE (Obesity)								
All studies	14	1.15 (1.01-1.31)	0.04	0.14	27.72	0.06		
		Тур	e of studies					
Cohort	7	1.14 (0.97-1.34)	0.13	0.27	19.38	0.06		
Case-control	7	1.17 (0.92-1.48)	0.21	0.097	42.17	0.50		
Gender								
Men	3	1.42 (0.95-2.12)	0.09	0.71	0	0.77		
Women	6	1.24 (0.95-1.63)	0.12	0.061	52.56	0.08		
Men and	8	1.08 (0.89-1.30)	0.45	0.23	24.91	0.85		
women		C	(Decier)					
Source (Region)								
United States	8	1.25 (1.00-1.58)	0.06	0.062	44.53	0.03		
Europe	4	1.03 (0.89-1.18)	0.72	0.71	0	0.76		
MORTALITY (Obesity)								
Specific	2	1.08 (0.68-1.71)	0.75	0.30	4.87	-		
Non-specific	2	1.56 (0.96-2.55)	0.08	0.49	0	-		
	-	INCIDEN	CE (High obesi	ty)		-		
All studies	4	0.94 (0.72-1.24)	0.66	0.64	0	0.76		
Type of studies								
Cohort	2	1.09 (0.74-1.59)	0.67	0.56	0	-		
Case-control	2	0.81 (0.55-1.20)	0.29	0.65	0	-		
			Gender					
Men and women	3	0.93 (0.68-1.28)	0.66	0.44	0	0.83		

Meta Analysis

Figure 3. Relative risks of follicular lymphoma incidence associated with physical activity.

Abbreviations: M - men, W - women, M/W - men and women.

Heterogeneity: Q = 10.57, p = 0.28, $I^2 = 24.29\%$.

Publication bias assessed by Egger's test: p = 0.35

	Studies (No.)	RR (95% CI)	<i>P</i> value	Hetero	Egger's test				
	Studies (No.)	KK (55 % CI)	1 value	p – Value	I² (%)	(p – Value)			
All studies	7	0.91 (0.72-1.15)	0.42	0.28	24.29	0.35			
	Type of studies								
Cohort	4	1.07 (0.81-1.42)	0.62	0.18	36.71	0.61			
Case-control	3	0.77 (0.59-1.02)	0.06	0.67	0	0.19			
Gender									
Men	2	1.23 (0.51-2.91)	0.66	0.24	28.31	-			
Women	5	1.02 (0.78-1.32)	0.89	0.27	23.34	0.99			
Men and women	2	0.68 (0.48-0.97)	0.03	0.60	0	-			
Source (Region)									
United States	5	0.96 (0.77-1.21)	0.74	0.52	0	0.02			
Europe	-	-	-	-	-	-			

Table 5. Relative risks of follicular lymphoma	a incidence associated with physical activity
--	---

Discussion

This research was set with the aim of assessing the importance of BMI and PA for the development of FL. Our meta-analysis of cohort and case-control studies pointed out that overweight individuals did not have increased risk for the development of FL in comparison to individuals with normal weight, while obese individuals had 15% higher risk compared to non-obese. Overweight individuals had a higher risk of FL specific mortality than those with normal weight. However, a note of caution is mandatory since the number of included publication with data on mortality is small. Results of cohort and case-control studies related to the association between BMI and FL incidence did not show statistically significant difference.

In previous meta-analyses the association between BMI and FL incidence was investigated and statistically non-significant positive association between BMI and the relative risk for the development of FL was found. Thus, in a meta-analysis by Larsson and Wolk (2011) relative risk of FL and 5kg/m² BMI increase were positively associated (1.03; 0.93) to 1.13; 95% CI), but statistically non-significant (36). In addition, the second meta-analysis from the same authors (2007) demonstrated statistically nonsignificant association between obese individuals and the relative risk for the development of FL (37). However, this meta-analysis did not include data on overweight individuals (37). Nonetheless, the findings of the current study do not support the previous research. Moreover, the results of this study indicated that OB individuals had increased risk for the development of FL.

In terms of smaller body fat percentage in men, it may be assumed that the females would be more susceptible for the development of FL. Also, considering that subcutaneous adipose tissue is predominate in women, it may be assumed that visceral adipose tissue has a much more essential role for the development of many cancers, including FL (38, 39). This type of body fat is associated with obesity-related diseases (40), because it is more harmful and inflammatory active than subcutaneous fat which is generally thought to be responsible for OB. However, based on the results of our meta-analysis, there was no increased risk of FL associated with either overweight and obese men or women.

Finally, a direct association between OW and OB, and FL incidence is more pronounced among Americans as compared to Europeans. But, none of these differences were statistically significant. For both overweight and obese American individuals, increased risk of FL was formally not significant (p =0.06). These results seem to be consistent with other research which has not found the association between BMI and NHL incidence across strata of geographic region (36). In the study of Castillo et al. (2014) for both overweight and obese American individuals the RR for the development of diffuse large B-cell lymphoma was significantly increased, but not in Europeans (41). Although different life habits and harmful effects of the environment may cause the differences between these two groups of individuals, no association was identified in this meta-analysis. In addition, more research on this topic is necessary before the association between geographic area and the risk of FL is more clearly understood.

The prevalence of OB is increasing and is associated with other risk factors such as increased intake of high-fat food and decreased PA (7, 42). McTiernan (6) proposed that excessive weight and a sedentary lifestyle are linked with about 25% of cancers, and that PA may decrease risk for various cancers by several mechanisms. In this meta-analysis only, for both men and women statistically inverse association of PA with the risk for the development of FL was found. However, this subgroup analysis could have been affected by small sample size. Thus, this finding cannot be extrapolated to all the patients. Thus, the summary risk estimate derived from all studies showed no significant influence of physical activity on the risk of FL. The findings of this study are consistent with the data obtained in other meta-analyses which focused not only to FL but also generally to NHL (18) or NHL and Hodgkin lymphoma (43).

There are numerous studies that were designed to explore the association between OB and cancer (5, 44), but the mechanisms of this causal link are still unclear. Basically, the focus is on three hormonal systems that include insulin and insulinlike growth factor (IGF) axis, sex steroids and adipokines. Obesity-related inflammatory cytokines, genetic background, obesity-related hypoxia, and oxidative stress were also noted as possible causes, and more other etiological factors which may have a role in the occurrence and development of cancer (45).

This meta-analysis has some limitations. First, other obesity-related factors, such as change of weight during the time, diet and caloric intake, may also influence the risk for the development of FL. Second, the sample size may be a source of erroneous conclusions. For example, statistically significant inverse association between BMI and FL mortality was found in overweight individuals, while non-significant direct association was presented in obese. Furthermore, these results are not conclusive because of the dependence on FL subtype, treatment, comorbidity and SEER stage. Third, determining of BMIs in all included studies was based on the principle of personal declaration. Any discrepancies, such as false weight loss in obese, may have an

unquestionable impact on the final results. Fourth, the BMI indicates total body fat (combined subcutaneous adipose tissue and visceral adipose tissue) (45), and therefore it cannot assess what type of body fat has a greater impact - visceral adipose tissue (VAT) or subcutaneous adipose tissue. And finally, all associations either direct when the effects of excessive weight or OB were analyzed, or inverse when the influence of PA was analyzed, may be influenced by publication bias. In this metaanalysis, there was not evidence of publication bias in most of the studies.

In summary, this meta-analysis of cohort and case-control studies has identified the direct association between obesity and FL incidence. The research has also shown statistically significant association between BMI and FL mortality in overweight individuals, as well as association between PA and the risk of FL incidence in both male and female individuals. It could be argued that these last two results could have been affected by small sample size. The current data highlights the importance of obesity for the risk of FL developments. It would be interesting to assess the impact of other risk factors such as insulin and IGF, sex steroids and adipokines involved in the association between OB and malignant lymphomas. Future meta-analyses on the current topic with a larger number of included studies are recommended to confirm these results.

Acknowledgment

This work was supported by the Ministry of Education, Science and Technological Development of Serbia (Project 43012).

References

- Morton L, Wang S, Devesa S, Hartge P, Weisenburger DD, Linet MS. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood. 2006; 107(1): 265-76. [CrossRef][PubMed]
- Casey R, Piazzon-Fevre K, Raverdy N, Forzy ML, Tretare B, Carli PM, et al. Case-control study of lymphoid neoplasm in three French areas: description, alcohol and tobacco consumption. Eur J Cancer Prev. 2007; 16(2): 142-50. [CrossRef][PubMed]
- Bende R, Smit L, van Noesel C. Molecular pathways in follicular lymphoma. Leukemia. 2007; 2(1): 18-29. [CrossRef][PubMed]
- Ekstrom Smedby K, Vajdic C, Falster M, Engels EA, Martínez-Maza O, Turner J, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood. 2008; 111(8): 4029-38. [CrossRef][PubMed]
- Roberts D, Dive C, Renehan A. Biological Mechanisms Linking Obesity and Cancer Risk: New Perspectives. Ann Rev Med. 2010; 61: 301-16. [CrossRef][PubMed]
- McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer. 2008; 8(3): 205-11. [CrossRef][PubMed]
- Hossain P, Kawar B, El Nahas M. Obesity and Diabetes in the Developing World - A Growing Challenge. N Engl J Med 2007; 356: 213-215. [CrossRef][PubMed]
- Ambinder A, Shenoy P, Malik N, Maggioncalda A, Nastoupil LJ, Flowers CR. Exploring Risk Factors for Follicular Lymphoma. Adv Hematol. 2012; 2012: 626035. [CrossRef][PubMed]
- Fenton J, Hursting S, Perkins S, Hord N. Interleukin-6 production induced by leptin treatment promotes cell proliferation in an Apc (Min/+) colon epithelial cell line. Carcinogenesis. 2006; 27(7): 1507-15. [CrossRef][PubMed]
- Rapp K, Schroeder J, Klenk J, Stoehr S, Ulmer H, Concin H, et al. Obesity and incidence of cancer: a large cohort study of over 145 000 adults in Austria. Br J Cancer. 2005; 93(9): 1062-7. [CrossRef][PubMed]
- 11. Bianchini F, Kaaks R, Vainio H. Overweight, obesity, and cancer risk. Lancet Oncol. 2002; 3(9): 565-74. [CrossRef][PubMed]
- Lim U, Morton L, Subar A, Baris D, Stolzenberg-Solomon R, Leitzmann M, et al. Alcohol, Smoking, and Body Size in Relation to Incident Hodgkin's and Non-Hodgkin's Lymphoma Risk. Am J Epidemiol. 2007; 166(6): 697-708. [CrossRef][PubMed]
- Lu Y, Prescott J, Sullivan-Halley J, Henderson KD, Ma H, Chang ET, et al. Body Size, Recreational Physical Activity, and B-Cell Non-Hodgkin Lymphoma Risk Among Women in the California Teachers Study. Am J Epidemiol. 2009; 170(10): 1231-40. [CrossRef][PubMed]
- Skibola CF, Holly EA, Forrest MS, Hubbard A, Bracci PM, Skibola DR, et al. Body mass index, leptin and leptin receptor polymorphisms, and non-hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev. 2004; 13 (5): 779-86. [PubMed]
- Pan S, Mao Y, Ugnat A; Canadian Cancer Registries Epidemiology Research Group. Physical Activity, Obesity, Energy Intake, and the Risk of Non-Hodgkin's Lymphoma: A Population-based Case-Control Study. Am J Epidemiol. 2005; 162(12): 1162-73. [CrossRef][PubMed]

- Chang E, Hjalgrim H, Smedby K, Akerman M, Tani E, Johnsen HE, et al. Body Mass Index and Risk of Malignant Lymphoma in Scandinavian Men and Women. J Natl Cancer Inst. 2005; 97(3): 210-8.
 [CrossRef][PubMed]
- Cerhan J, Bernstein L, Severson R, Davis S, Colt JS, Blair A, et al. Anthropometrics, Physical Activity, Related Medical Conditions, and the Risk of Non-Hodgkin Lymphoma. Cancer Causes Control. 2005; 16(10): 1203-14. [CrossRef][PubMed]
- Jochem C, Leitzmann M, Keimling M, Schmid D, Behrens G. Physical Activity in Relation to Risk of Hematologic Cancers: A Systematic Review and Metaanalysis. Cancer Epidemiol Biomarkers Prev. 2014; 23 (5): 833-46. [CrossRef][PubMed]
- Willett E, Skibola C, Adamson P, Skibola DR, Morgan GJ, Smith MT, et al. Non-Hodgkin's lymphoma, obesity and energy homeostasis polymorphisms. Br J Cancer. 2005; 93(7): 811-6. [CrossRef][PubMed]
- 20. Chiu B, Soni L, Gapstur S, Fought AJ, Evens AM, Weisenburger DD. Obesity and risk of non-Hodgkin lymphoma (United States). Cancer Causes Control. 2007; 18(6): 677-85. [CrossRef][PubMed]
- Britton J, Khan A, Rohrmann S, Becker N, Linseisen J, Nieters A, et al. Anthropometric characteristics and non-Hodgkin's lymphoma and multiple myeloma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Haematologica. 2008; 93(11): 1666-77. [CrossRef][PubMed]
- 22. Maskarinec G, Erber E, Gill J, Cozen W,Kolonel LN. Overweight and Obesity at Different Times in Life as Risk Factors for Non-Hodgkin's Lymphoma: The Multiethnic Cohort. Cancer Epidemiol Biomarkers Prev. 2008; 17(1): 196-203. [<u>CrossRef][PubMed]</u>
- Troy J, Hartge P, Weissfeld J, Oken MM, Colditz GA, Mechanic LE, et al. Associations between anthropometry, cigarette smoking, alcohol consumption, and non-Hodgkin lymphoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening trial. Am J Epidemiol. 2010; 171(12): 1270-81. [CrossRef][PubMed]
- 24. Kanda J, Matsuo K, Inoue M, Iwasaki M,Sawada N, Shimazu T, et al. Association of Anthropometric Characteristics with the Risk of Malignant Lymphoma and Plasma Cell Myeloma in a Japanese Population: A Population-Based Cohort Study. Cancer Epidemiol Biomarkers Prev. 2010; 19(6): 1623-31. [CrossRef][PubMed]
- 25. Kabat G, Kim M, Jean-Wactawski-Wende, Bea JW, Edlefsen KL, Adams-Campbell LL, et al. Anthropometric factors, physical activity, and risk of Non-Hodgkin's lymphoma in the Women's Health Initiative. Cancer Epidemiol. 2012; 36(1): 52-9. [CrossRef][PubMed]
- Murphy F, Kroll M, Pirie K, Reeves G, Green J, Beral V. Body size in relation to incidence of subtypes of haematological malignancy in the prospective Million Women Study. Br J Cancer. 2013; 108(11): 2390-8.
 [CrossRef][PubMed]
- Cerhan J, Janney C, Vachon C, Habermann TM, Kay NE, Potter JD, et al. Anthropometric characteristics, physical activity, and risk of non-Hodgkin's lymphoma subtypes and B-cell chronic lymphocytic leukemia: a prospective study. Am J Epidemiol. 2002; 156(6): 527-35. [CrossRef][PubMed]

- 28. van Veldhoven C, Khan A, Teucher B, Rohrmann S, Raaschou-Nielsen O, Tjønneland A, et al. Physical activity and lymphoid neoplasms in the European Prospective Investigation into Cancer and nutrition (EPIC). Eur J Cancer. 2011; 47(5): 748-60. [CrossRef][PubMed]
- Kelly J, Fredericksen Z, Liebow M, Shanafelt TD, Thompson CA, Call TG, et al. The association between early life and adult body mass index and physical activity with risk of non-Hodgkin lymphoma: impact of gender. Ann Epidemiol. 2012; 22(12): 855-62.
 [CrossRef][PubMed]
- Leo Q, Ollberding N, Wilkens L, Kolonel LN, Henderson BE, Le Marchand L, et al. Obesity and non-Hodgkin lymphoma survival in an ethnically diverse population: the Multiethnic Cohort study. Cancer Causes Control. 2014; 25(11): 1449-59. [CrossRef][PubMed]
- Hong F, Habermann T, Gordon L, Hochster H, Gascoyne RD, Morrison VA, et al. The role of body mass index in survival outcome for lymphoma patients: US intergroup experience. Ann Oncol. 2014; 25(3): 669-74. [CrossRef][PubMed]
- 32. World Health Organisation: BMI classification. Avalaible at: <u>http://apps.who.int/bmi/index.jsp?introPage=intro 3.</u> html. Accessed: March 4, 2017.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7(3): 177-88. [CrossRef][PubMed]
- Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21(11): 1539-58. [CrossRef][PubMed]
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997(7109); 315: 629-34. [CrossRef][PubMed]
- Larsson, S, Wolk A. Body mass index and risk of non-Hodgkin's and Hodgkin's lymphoma: a meta-analysis

of prospective studies. Eur J Cancer. 2011; 47(16): 2422-30. [CrossRef][PubMed]

- Larsson S, Wolk A. Obesity and risk of non-Hodgkin's lymphoma: A meta-analysis. Int J Cancer. 2007; 121(7): 1564-70. [CrossRef][PubMed]
- Tchkonia T, Morbeck D, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, et al. Fat tissue, aging, and cellular senescence. Aging Cell. 2010; 9(5): 667-84. [CrossRef][PubMed]
- 39. Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care. 2001; 4(6): 499-502. [CrossRef][PubMed]
- 40. Carey D, Cowin G, Galloway G, Jones NP, Richards JC, Biswas N, et al. Effect of Rosiglitazone on Insulin Sensitivity and Body Composition in Type 2 Diabetic Patients. Obes Res. 2002; 10(10): 1008-15. [CrossRef][PubMed]
- 41. Castillo JJ, Ingham RR, Reagan JL, Furman M, Dalia S, Mitri J. Obesity is associated with increased relative risk of diffuse large B-cell lymphoma: a meta-analysis of observational studies. Clin Lymphoma Myeloma Leuk. 2014; 14(2): 122-30. [CrossRef][PubMed]
- World Health Organization. Obesity: preventing and managing the global epidemic. World Health Organization, 2000.
- Vermaete N, Wolter P, Verhoef G, Kollen BJ, Kwakkel G, Schepers L, et al. Physical Activity and Risk of Lymphoma: A Meta-Analysis. Cancer Epidem Biomar Prev. 2013; 22(7): 1173-84. [CrossRef][PubMed]
- 44. Renehan A, Roberts D, Dive C. Obesity and cancer: Pathophysiological and biological mechanisms. Arch Physiol Biochem. 2008; 114(1): 71-83. [CrossRef][PubMed]
- 45. Renehan A. Epidemiology of overweight/obesity and cancer risk. In: McTiernan A, ed.: Physical Activity, Dietary Calorie Restriction, and Cancer. Springer, New York, 2011, pp 5-23. [CrossRef]

Originalni rad

UDC: 616-006.44:613.8 doi:10.5633/amm.2018.0411

INCIDENCIJA I MORTALITET FOLIKULARNOG LIMFOMA U ODNOSU NA PREKOMERNU TEŽINU, GOJAZNOST I FIZIČKU AKTIVNOST: METAANALIZA

Ilija Golubović^{1,2}, Goran Marjanović^{1,6}, Danijela Radojković^{3,6}, Dušan Sokolović⁴, Aleksandar Karanikolić^{2,6}, Milan Radojković^{2,6}, Milorad Pavlović⁵

¹Klinika za hematologiju i imunologiju, Klinički centar Niš, Niš, Srbija
 ²Klinika za opštu hirurgiju, Klinički centar Niš, Niš, Srbija
 ³Univeritet u Nišu, Medicinski fakultet, Institut za biohemiju, Niš, Srbija
 ⁴Klinika za endokrinologiju, Klinički centar Niš, Srbija
 ⁵Klinika za grudnu hirurgiju, Klinički centar Niš, Srbija
 ⁶Univeritet u Nišu, Medicinski fakultet, Niš, Srbija

Kontakt: Ilija Golubović Klinički centar Niš Bulevar dr Zorana Đinđića 48, 18000 Niš, Srbija E-mail: golubovicilija@yahoo.com

U poslednjih nekoliko godina postoji veće ineteresovanje za istraživanje povezanosti između faktora rizika kao što su prekomerna težina, gojaznost i fizička aktivnost i incidencije brojnih karcinoma.

Ova metaanaliza je sprovedena da bi se istražio rizik za incidenciju i mortalitet folikularnog limfoma kod osoba sa prekomernom težinom i gojaznih, kao i kod osoba sa različitim stepenom fizičke aktivnosti, korišćenjem modela slučajnog efekta (random-effects model). Pretraživanje literature bilo je sprovedeno tokom septembra 2016. godine. Preko 2.100 slučajeva i 12.700 kontrola bili su obuhvaćeni studijama po tipu slučaj-kontrola, dok su kohortne studije obuhvatale preko 2.600 slučajeva u kohorti od oko 3.000.000 subjekata.

Kod osoba sa prekomernom težinom (body mass index-BMI između 25 i 29,99 kg/m²) rizik za pojavu folikularnog limfoma bio je 1,03 (0,95-1,11; 95% CI; p = 0,51), a kod gojaznih osoba (BMI \geq 30 kg/m²) 1,15 (1,01-1,31; 95% CI; p = 0,04), u poređenju sa osobama sa normalnim BMI (< 25 kg/m²). Rizik za specifični mortalitet folikularnog limfoma kod osoba sa prekomernom težinom bio je 0,59 (0,38-0,91; 95% CI; p = 0,02), dok je kod gojaznih bio 1,08 (0,68-1,71; 95% CI; p = 0,75). Među bolesnicima sa visokim stepenom fizičke aktivnosti, rizik za pojavu folikularnog limfoma bio je 0,95 (0,75-1,21; 95% CI; p = 0,68) u poređenju sa bolesnicima koji sui mali nizak stepen fizičke aktivnosti.

Naša metaanaliza je pokazala direktnu ststistički značajnu povezanost između gojaznosti i incidencije folikularnog limfoma.

Acta Medica Medianae 2018;57(4):79-90.

Ključne reči: folikularni limfom, metaanaliza, gojaznost, prekomerna težina, fizička aktivnost