PRUČAVANJE UTIĆAJA METALNIH VLAKANA NA NEKA SVOJSTVA TEHNIČKIH PREDA

Ispitvana su neka mehanička i elektrofizička svojstva pređa formiranih od mešavine pamučnih i metalnih vlakana. Rezultati su uporedeni sa rezultatima dobijenim za sivevlone prede sive vlase. Registrirano je smanjenje električne otpornosti hibridnih u odnosu na sivevlone prede za nekoliko redova veličine. Evidentirana je zavisnost električne otpornosti ispitivanih hibridnih pređa od udela metalne komponente, fioće prede i pređopoređenja uzorka. Konstato-
veno je izvesno smanjenje prečkne sile, povećanje zaostalog tonzijenog mo-
menta i frikcione sile u kontekstu "pređa-pređa", kao i opadanje abrazivne otpornosti hibridnih pređa sa povećanjem udela metalne komponente.

Tekstilni materijali su u većini slučajeva materijali veoma velike električne otpornosti, što u njihovom kont-
taktu sa drugim telima proizvodi je povijest staklovanju u električan. Kao je proces stvaranja neelektričan na tekstilnom materijalu predrasijem njegovim raspramjem, u slu-čajevima kada je brzina raspiranja manja od brzine stva-
ranja materijal ostaje neelektricnim stakloanje-
sanjem, što može da izazove niz neželjenih posledica u hasu proizvodnje tako i pri upotrebi.

Pošto je brzina nastajanja staklovanja sa tekstilnog materijala obrnutim seznama njegovog električne otpornosti, supsticija dela tekstilnih vlakana metalnim vlaknima - odlučnim provodnicima neelektriša-
i, u procesu proizvodnje tekstilnih proizvoda, pred-
stavljala efikasan način sniženja staklovanja staklowanja [1-11].

Primena metalnih vlakana, prvenstveno u vezi sa njihovom elektroprovodičcom, danas je rasprostranje-
an u mnogim oblestima proizvodnje tekstila. Tekstilni materijali koji sadrže metalno vlakno naročito za upotrebu u uoblazi zaštitne odeće, u brojnim slučajevima se izdaju od prede dobijenih od mešavine koje, pored tekstilnih vlakana, sadrže različite procente metalnih vlakana. Sadržaj metalnih vlakana određuje se zavisno od svojstava vlakana, projektovanih svojstava takvih pre-
da i od uslova u kojima će se odača upotrebljavati.

S obzirom na razlike u fizičko-mehaničkim svojstvima tekstilnih i metalnih vlakana, a u cilju što adekva-
tno primene, tekstilni materijali formirani od mešavina ovih vlakana zahtevaju karakteriziranje određenih svojstva zavisanih od udela metalne komponente.

Proučavanje električnih i tekstilnih karakteristike hi-
bridnih pređa koje sadrže pamuk i metalna vlakna, bitno različiti od pamuka u pogledu niza fizičkih svojstava, uključene u mešavine za prede čak i u veoma malim ko-
ličicama, predstavlja doprinos kvalifikovanju ovog per-
spektivnog materijala za primenu u "naprednoj" kategoriji tehničkog tekstila (za svemirske, aero i auto-
mobilske tehnologije, građevinarstvo, medicinu, sport, itd.).

EKSPERIMENTALNI DEO

Materijal i metode

Kao ekperimentalni materijal korisćene su prede na-
činjene od mešavine pamučnih i metalnih vlakana. Neke karakteristike vlakana od kojih su proizvedene pre-
de i neke karakteristike formiranih pređa prikazane su u Tabeli 1.

Prede izrađene samo od pamuka kohe iskorećene su kao referentne, tj. sa njima su poređene prede načinjene od mešavine pamučnih i metalnih vlakana. Određivanje pre-

Tabela 1. Neke svojstva eksperimentalnog materijala

<table>
<thead>
<tr>
<th>No</th>
<th>Vrsta vlakana</th>
<th>Udeo BEKINOX® v vlakana u mešavini sa pamukom, %</th>
<th>Nominalna fioća, tex</th>
<th>Nominalna uporednost, m²⁻¹</th>
<th>Prečnik, µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>14,28</td>
<td>902</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6,66</td>
<td>174</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>685</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14,28</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8,25</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>209</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16,66</td>
<td>177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14,28</td>
<td>186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>211</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adresa autora: T. Mihajlović, Tehnološko-metalni fakultet, Kar
Negave 4, PBox 494, 11001 Beograd
čnika preda izvršeno je primenom mikroskopske metode, uz 100 meranja po uzorku. Rezultati prikazani u tabeli 1 pokazuju da prede od mešavine pamučnih i metalnih vlakana imaju nestabilnu strukturu, sa većim vazdušnim mezuprostorom, nego pamučna preda iste fioče o tome delom svedoči povećanje prečnika preda prizvoden od mešavina koje sadrže veći procenat metalnih vlakana. Takve prede imaju manje vlakna u poprečnom preseku jer sadrže metalni komponentu čija je gustina nekoliko puta veća od gustine pamučnih vlakana. Povećanje prečnika, odnosno smanjenje kompaktnosti strukture preda od mešavine pamučnih i metalnih vlakana u odnosu na 100% pamučnu predu iste fioče moglo bi da se protumači i većom krutošću, odnosno manjom fleksibilnošću metalne komponente.

Merenja prekidačke sile pamučnih i hibridnih preda su realizovana na dinamometru USTER Tensomat prema JUS F.S2.052.

Za ocenu zaostalog torzionalnog momenta korističena je uspešna i pouzdana indirektna metoda [12], zasnovana na proučavanju tendencija preda ka nastajanju kovrđa (petljica). Metoda se sastoji u laganom približavanju krajeva horizontalno postavljene prede do momenta kada se ostvari distorzija otvorene petljice, tj. brzo međusobno obrtanje njene dve grane. Kao mera otpornosti na kovrđanje posluži je koeficijent K, izražen u primenom jedinici: K = (d2 - d1)/d100, gde je d2 - početno rastojanje između klena koje iznosi 500 mm a d = rastojanje u mm između klena u trenutku distorzije petljice.

Intenzitet frkcionih sile je u ovom radu ocenjivan pomoću STAFF testera G 555 A nemačke firme Zweigle, koji je adaptiran za ocenu frkcionih sile u zoni kontakte "preda-prede" u petljici. Metoda se zasnovala na kupovanju STAFF testera sa Schmidt-ovim digitalnim elektronskim tenzometerom tipa TEM, koji omogućava merenje zatezanja prede pre i posle zone kontakta [13].

Električna otpornost hibridnih preda je direktno merena pomoću cestljivog digitalnog multimetera firme PHILIPS, tip PM 2528. Za određivanje otpornosti pamučnih preda razvijena je specijalna metoda, koja omogućava merenje velikih (termoskih) električnih otpornosti kada obično poseduju tekstilni materijali. Metoda je zasnovana na merenju jačine struje kroz ispitivane uzorak tekstilnog materijala i direktnoj primeni Omovog zakona [1, 7, 15, 16].

REZULTATI I DISKUSIJA

Pristuđen metalnih vlakana menja prekide karakteristike tela. Zavisnost specifične prekide sile pri ekstremnom naprezanju na iztezanje od udela metalne komponente u predi prikazana je na slici 1.

Opažanje specifične prekide sile sa povećanjem udela metalne komponente u predi bi se moglo povezati sa kompaktnostjo strukture ispitivanih preda. Stoga bi se kod preda formiranih od mešavine pamučnih i metalnih vlakana mogao očekivati i veći zaostali torzionni momenat nego kod pamučnih preda iste fioče.

Zaostali torzioni momenat je ocenjen preko otpornosti prede na kovrđanje. Na Slici 2 je prikazan uticaj metalne komponente na otpornost na kovrđanje.
Izvršena merenja su potvrdila pretpostavku o po-
većanju frikečne sile u zoni kontaka "prede–prede" u
prisustvu metalne komponente, što bi se moglo pripisati
većoj krutosti metalnih odnosu na tekstilna vlakna, kao
i manje homogene strukture površine hibridnih prede.

Interfuzija frikečnih dejstava prouzrokuje i po-
većanje abrazivne degradacije, što je pokazano preko
porasta mase otpalih malja usled same osnove u petlji.
A (%), sa povećanjem procenta metalnih vlakana u prede
(14). Ovaj podatak svedoči o smanjenju abrazivne ot-
pornosti ispitivanih hibridnih prede, što bi moglo da se
tumači, sa jedne strane, povećanjem udela specifično
teže komponente i, sa druge strane, povećanjem frikeč-
nih sile.

Rezultati određivanja otpornosti ispitivanih prede
prema same osnove u petlji prikazani su na Slici 4.

![Slika 4. Abrazivna degradacija prede sa različitim udalima metal-
ne komponente](image)

Figure 4. Abrasion degradation of yarns containing different frac-
tions of the metallic component

Kako su izmerjena elektrofizička svojstva osnovno
obeležile prede koje se sastojte od mešavine pamučnih i
metalnih vlakana, posebna pažnja je bila posvećena
određivanju njihove električne otpornosti. Na osnovu
merenja prikazanih u Tabeli 2 zaključeno je da električna
otpornost prede zavisi od zatezanja uzorke, pa je potre-
bno da zatezanje prede bude precizno definisano.

Rezultati prikazani u Tabeli 2 pokazuju porast elek-
trične otpornosti pamučne prede sa opterećenjem, što

<table>
<thead>
<tr>
<th>Zatezanje prede, %</th>
<th>Udal metalnih vlakana, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16,50</td>
</tr>
<tr>
<td>8,25</td>
<td></td>
</tr>
<tr>
<td>17,00</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td></td>
</tr>
<tr>
<td>10,5</td>
<td></td>
</tr>
<tr>
<td>10,1</td>
<td></td>
</tr>
</tbody>
</table>

![Tabela 2. Električna otpornost prede (20 tex) u zavisnosti od
sastava i zatezanja uzorka](image)

Table 2. Electrical resistance of 20 tex yams in dependence
on the composition and sample tension

je u saglasnosti sa ranijim istraživanjima [16]. Takav tip
zavisnosti, u literaturi dobro poznat kod metalnih žičanih
provodnika, objašnjava se smanjenjem površine popre-
čnog preseka provodnika pri povećanju opterećenja,
odnosno aksijalnog naprezanja na istezanje. Slično
objašnjenje bi moglo da se primeni i kod pamučne pre-
de, kod koje aksijalno naprezanje dovodi do smanjenja
poprečnog preseka prede. Međutim, kod preda formira-
nih od mešavine pamučnih i metalnih vlakana električna
otpornost sa povećanjem aksijalnog naprezanja bilo
opada. Kako i kod takvih prede pri porastu zatezanja
morao bi doći do smanjenja njihovog poprečnog prese-
ka, radi bi doći do povećanja električne otpornosti, odg-
ledno je da postoje određeni faktor koji prouzrokuje
smanjenje otpornosti pri većim sličima zatezanja. Ovaj
faktor bi mogao bude multiplikatoren između metalnih vlakana, koji je stabilan, o čemu svedoči vreme
mensko oslikavanje merenih vrednosti za električnu otpor-
nost takvih prede, koje je prisutno pri svakom merenju.
Električna otpornost prede na bazi mešavine pamu-
čnih i metalnih vlakana opada sa povećanjem udela
metalne komponente i sa povećanjem debeljine prede
(Slike 5a, b). U oba slučaja to se može pripisati poveća-
janju broja metalnih vlakana, glavnih prinosilaca elektri-
čne struje, u poprečnom preseku prede [1].

Smanjenje električne otpornosti prede, koje se
sastoje od mešavine pamučnih i metalnih vlakana, za
nekoliko redova veličine u odnosu na pamučne prede is-
te finoće, svedoči o dominantnom udelu metalne kom-
ponente u provođenju električne struje kod hibridnih

![Slika 5. Električna otpornost: a) pamučnih prede, b) prede od mešavine pamučnih i metalnih vlakana](image)

Figure 5. Electrical resistance of: a) cotton yarns, b) cotton-metallic fiber blended yams
preda ovog tipe. U prilog ovom tvrđenju govori i činjenica
da važnost atmosfere nema uticaja na električnu otpornost
takvih preda. Neime, polazeći, sa jedne strane, od dobro
klasičnih tekstilnih materijala, usled sorpceje vlage,
veoma intenzivna zavisio od vlažnosti vazduha i, sa druge
strane, od pretpostavke da vlažnosti vazduha u predma
formiranim od mešavine pamaćnih i metaličkih vlakana
pretežno provodi metalna komponenta, eksperimental-
no je ispitao uticaj vlažnosti vazduha na električnu otporn
ost preda od mešavine pamaćnih i metaličkih vlakana;
pokazalo se da električna otpornost takvih preda prakti-
čno ne zavisiti od vlažnosti vazduha u širokom dijapazon
nadazra vlage u vazduhu, što predstavlja dodatni
dokaz o praviljavajućoj ulozi metaličkih vlakana u provo-
denju struje takvih hibridnih preda.

ZAKLJUČAK
Na osnovu rezultata prikazanih u okviru ovog rada
mogu se izvesti sledeći zaključci:
1. Metalna komponenta preda nečinjenu od meša-
vine pamaćnih i metaličkih vlakana ima dominantnu ulogu
u provođenju električne struje, o čemu svedoči sniženje
električne otpornosti takvih preda u odnosu na pamaćnu
predu iste finoće. Električna otpornost preda koje se
sastoji od mešavine pamaćnih i metaličkih vlakana zavisii
od procentnog udela metalne komponente u mešavini.
2. Prede formirane od mešavine pamaćnih i metal-
nih vlakana imaju veći prečnik, odnosno manje kompak
trnu strukturu od pamaćne predu iste finoće, što se
moglo da se protumači većom kružnošću metalne kompo
nente. Takva struktura bi mogla da bude uzročnik vi
merske nestabilnosti električne otpornosti koja se pri
meruju registruje.
3. Za razliku od žičnih metaličnih provodnika i pre
da formiranih isključivo od tekstilnih vlakana, kod kojih
povećanje akcijskog zatezanja dovodi do povećanja
električne otpornosti usled smanjenja poprečnog prese
ka, kod preda formiranih od mešavine pamaćnih i metali
nih vlakana električna otpornost sa povećanjem
zatezanja blego opada, što se moglo pripisati stabilni
jem kontaktu između vlakana metalne komponente.

SUMMARY
INVESTIGATION OF INVULNENCE OF METALLIC FIBERS ON SOME
PROPERTIES OF TECHNICAL YARNS
(Original scientific paper)
Svetlana Milosavljević, Tatjana Mihajlović, Tanja Tadić,
Snežana Stanković, Kovijska Asanović
Faculty of Technology and Metallurgy, Belgrade, Yugoslavia
Some mechanical and electrophysical properties of cotton–metal fiber blen
ded yarns were observed. The results obtained in different tests were compa
red with those of pure cotton yarns of the same fineness. A decrease of
blended yarns electrical resistance for a few orders of magnitude was stated.
This property of blended yarns shows a dependence on the metallic compo
nent fraction, yarn fineness and the pretension applied during the measure
ment of electrical properties. A reduction of tenacity, an increase of both
residual torque in yarns and frictional forces in contacts 'yarn-yarn', as well as
a reduction of abrasion resistance of blended yarns with increasing con	ents of the metallic component have been observed.

4. Smanjenje prekidne sile preda formiranih od
mešavine pamaćnih i metalnih vlakana u odnosu na pa
maju prede iste finoće može da se pripiše njihovoj ma
neg kompaktnoj strukturi i manjoj prekidnoj sili metalnih
vlakana u odnosu na pamaćnu vlakna.

5. Porast mase otpalih malja usled samoobrazuje u
petlji je posledica, s jedne strane, izmene fiktivnih svojst
va površine i, s druge strane, veće gustine metalnih vlakana.
6. Metalna provodna vlakna, uključena u predu i
preko nje u drugo tekstilne i polimerne materijale, imaju
čitav niz potencijalnih primena, koje tek treba da budu
realizovane.

LITERATURA
vlakna, 1–4 (1996), 28–36
an Textile Journal, 106, 10 (1996), 94–97
Month, September ber., (1996), 49–53
Textile Journal, April, (1999), 95–98
mijska vlakna, 1–4 (1997), 55–66
raborotkhi himicheskikh volokon, LGprombytyzdat, Moskva,
(1969)
industrija, 4–5, (1996), 94–100
te, UK, 6 (1994) 433–435
Texil, Portugal, Juho, (1994), 40–45
Printer, 1 (1995) 19–21
Tekstilne industrije, 3–4 (1997), 9–9
[16] K. Asanović, D. Simić, T. Mihajlović, M. Simić, Tekstilne in
dustrije, 1–2 (1999), 16–18

Key words: textile materials • Cotton–metal fiber blended yarns • Mechani
cal properties • Electrophysical properties • Ključne reči: tekstilni materijiali • prede • mešavina pamaćnih i me
talnih vlakana • mehanička svojstva • elektrofizička svojstva.