ТОПОГРАФИЈА И АСИМЕТРИЈА ВИЗУЕЛНЕ РЕАКТИВНОСТИ
СПЕКТРАЛНЕ СНАГЕ ЕЛЕКТРОЕНЦЕФАЛОГРАМА КОД ЗДРАВЕ ДЕЦЕ

Душан РИСТАНОВИЋ1, Жарко МАРИТИНОВИЋ2, Весна ЈОВАНОВИЋ-ЧУПИЋ3
1. Институт за биофизику Медицинског факултета, Београд; 2. Одсек за епилепсију и клиничку
неурофизиологију Института за ментално здравље, Београд; 3. Завод за болести зависности, Београд.

КРАТАК САДРЖАЈ: Да би се квантификувала реактивност електроенцефалограма (EEG) на отварање очију, ис-
питивана је топографска расподела апсолутне снаге спектра EEG, на узроку од 72 здраве детета, старости изме-
ђу 7 и 15 година. Записи су узимани с 14 стандардних места на поглавини испитаника под условом да су му очи
најпре биле затворене, а потом отворене. Показано је да је топографска снага у опсегу алфа-талааса EEG, сни-
меног при затвореним очима, била у свим одводима значајно већа од снаге добијене при отвореним очима.
Снага EEG у опсегу тета-таласа, апсолутне снаге при затвореним очима, значајно је већа (изузев за фронталну област)
od снаге добијене при отвореном очима. Промене снаге у опсегу талааса детеа и тета биле су у неким одводима значајно веће при снаги EEG са затвореним очима. У предњој областим поглавине није забележена визуелна блок-
када у опсегу талааса детеа-тета. У апсолутној активности алфа и тета снаге отварање очију значајно је променило величине индекса асиметрије. Асиметрија снаге између хемисфера мозга забележена је углавном у предфронтал-
ној и латерофронталној областим. Резултати указују на чињеницу да је визуелна блокада EEG последица вишег степена дезсеквенирање електроенцефалографског спектра у стану када су очи испитаника отворене.

Кључне речи: визуелна реакција, топографија EEG, спектрална анализа, асиметрија EEG, здрава деца. (СРП
АРХ ЦЕЛОК ЛЕК).

Добро је познато да отварање очију изазива супреси-
ју (блокаду) активности алфа у мозгу. Овај важан
знак нормалне електроенцефалографске реакцијности
представља једну од општих неурофизиолошких
одлика мозга, која не зависи од старости испитаника
[1]. Мада бројне конвенционалне електроенцефало-
графске студије код здравих особа разних година
живота, као што су деша [2], деца и адолесенти [3, 4]
и одрасле особе [5], показале су значну интегри-
дувалну варијабилност резултата, константност
блокаде активности алфа остаја и даље најпочувани-
је мерис нормалности електроенцефалографских
абнормности код човека [6].

Будући да сама нормална блокада алфа-активно-
сти при отварању очију испитаника изазива веома
маље промене амплитуда у запису електроенцефало-
гракама, ову реактивност често је тешко посматрати и
анализовати традиционалним визуелним поступком.
То је даних лако изводиле коришћењем квантита-
тивне (спектралне) анализе електроенцефалограма.
Један од основних циљева ове анализе, бар када је
реч о здравим испитивачима, јесте да себи квантифи-
кује реактивност електроенцефалограма на визуелне
и друге драже. Опште је утврђено да при отварању
очију активности алфа, праћени путем електроенце-
фалографа, праксично престаје у свим подручјима мо-
зга [7-11]. Отварање очију блокира снагу бета и тета
у највећем броју детичких човека [10, 11].

Најсачи број истраживања, у којима је коришћена
квантитативна снага EEG као истраживачки метод,
био је посвећен морфологији електроенцефалограма
[1, 11-17]. Посебна пажња била је посвећена процена-
вању реакцијности EEG на визуелне и друге стимулу-
се [1, 13-17]. Утицај стања на спектралну снагу при
отварању и затварању очију постао је разумљив тек
из резултата квантитативних студија EEG [1, 13-16].

Па и поред тога, у свим горе посматраним неуро-
физиолошким студијама код здраве деце разматрана
реактивност на отварање очију концизно, непотпу
но и узрекно [2, 13-15]. Осим тога, само неколико
чланака односи се на прукуване одговора на отва-
рање очију коришћењем квантитативне анализе елек-
троенцефалограма [11]. С друге стране, закључци из-
ведене из података добијених на одраслим особама,
на и адолесентима, често нису применићи на истра-
живачима код деце [12]. У тим случајевима показа-
но је да при отварању очију само снага активности
алфа значајно опада [18] и да се активност тета сма-
нује у групи здраве деце [13]. Нису нађене значајне
промене апсолутне снаге у домену бета електроенце-
фалографа, док промене у снасти делта утврђене су
недавно [17].

Асиметрија резултата спектралних параметара,
измерених у симетричним тачкама на поглавини из-
над лева и десне хемисфере мозга, није детаљно ис-
тражена. Резултати до којих се дошло често су били
неконзистентни и бивали тек у конкретним условима
[11-13, 19]. Асиметрија визуелне реакцијности, процењена путем апсо-
лутивне снаге EEG, до сада није истраживана код деце.

Па сада треба да извршено детаљни анализе топографске расподеле и асиметрије
електроенцефалографске реакцијности изнад хемисфера мозга, када су очи затворене па се затим отво-
ре (тј. при визуелне блокаде), и после ње. Овај рад
представља део наше општеге студије која је имала
цел нацрт уметничко спектралних парамета-

10
Таблица 1. Топографические дистрибуции логарифмич. (ln) трансформированной absolutely value of asymmetry in delta and theta frequency bands, for two behavioral states: eyes closed (ECL) and eyes open (EOP)

<table>
<thead>
<tr>
<th>Положение электрода Location</th>
<th>Станция State</th>
<th>Дельта Delta</th>
<th>Тета Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лево - Left</td>
<td>Десно - Right</td>
<td>Индекс Index</td>
<td>Делео - Left</td>
</tr>
<tr>
<td>Фр1 - Fp2</td>
<td>ECL</td>
<td>3.45±0.50</td>
<td>3.89±0.50*</td>
</tr>
<tr>
<td></td>
<td>EOP</td>
<td>3.29±0.89</td>
<td>3.52±0.82</td>
</tr>
<tr>
<td>F3 - F4</td>
<td>ECL</td>
<td>3.19±0.52</td>
<td>3.20±0.58</td>
</tr>
<tr>
<td></td>
<td>EOP</td>
<td>3.05±0.89</td>
<td>3.09±0.90</td>
</tr>
<tr>
<td>C3 - C4</td>
<td>ECL</td>
<td>2.80±0.63</td>
<td>2.65±0.50</td>
</tr>
<tr>
<td></td>
<td>EOP</td>
<td>2.81±0.87</td>
<td>2.73±0.80</td>
</tr>
<tr>
<td>О1 - О2</td>
<td>ECL</td>
<td>3.50±0.59</td>
<td>3.35±0.87</td>
</tr>
<tr>
<td></td>
<td>EOP</td>
<td>3.12±0.43</td>
<td>3.19±0.87</td>
</tr>
<tr>
<td>F7 - F8</td>
<td>ECL</td>
<td>3.16±0.92</td>
<td>2.99±0.50*</td>
</tr>
<tr>
<td></td>
<td>EOP</td>
<td>3.06±0.90</td>
<td>2.94±0.53</td>
</tr>
<tr>
<td>T3 - T4</td>
<td>ECL</td>
<td>3.02±0.52</td>
<td>2.62±0.11*</td>
</tr>
<tr>
<td></td>
<td>EOP</td>
<td>2.90±0.85</td>
<td>2.82±0.92</td>
</tr>
<tr>
<td>T5 - T6</td>
<td>ECL</td>
<td>3.10±0.54</td>
<td>3.24±0.54*</td>
</tr>
<tr>
<td></td>
<td>EOP</td>
<td>2.93±0.83</td>
<td>2.99±0.90</td>
</tr>
<tr>
<td>Средний Mean</td>
<td>ECL</td>
<td>3.19±0.24</td>
<td>3.05±0.20</td>
</tr>
<tr>
<td></td>
<td>EOP</td>
<td>3.03±0.19</td>
<td>3.04±0.26</td>
</tr>
</tbody>
</table>

Свака вредност представља арифметичку средину ± стандардна варија. При поређењу снага између колонских места драме уз создате ознаке статистичке значајности *p<0.05 и **p<0.01 стањеве су у вредности добијених са десне хемисфере. У случају значајности индекса асиметрије ове ознаке стањеве су у вредности које су добијени са леве хемисфере.

Each value is the mean ± standard deviation. When comparing the power between homologous sites of two hemispheres, significant marks *p<0.05 and **p<0.01 are put on the line with values acquired from the right hemisphere. In the case of significance of asymmetry index, these marks are put on the column with values acquired when eyes were closed.

Сваки испитивани индекс је његов унос у обласни систему "10-20". За сваки канал 16-каналног електроенцефалографа времена константата била је 0,3 с, а филтраза за гору фреквенцију била је постављена на 35 Hz да би се елиминисало додатно дејство активности мишића [9, 24]. Импенданција електрода била је испод 3 кОм.

Активност мозга спостављена је монополарно, са следећих 14 локација: Fp1, T4, Fp2, F4, C4, O2, Fp1, F3, C3, O1, F7, T3 и T5. Референтну електроду пред-стављао је систем повезаних ушки. Електрода за узимање била је постављена у префронталном полошту (Fp2).

За сваког испитника и сваког полошта електроде одабран је једноминутни запис EEG без ар-ефтаката и у њему извођено 12 узастопних епока, од којих је свака трајала по две секунде. Сигнали EEG, регистровани путем одабраних 14 канаала електроенцефалографа, конвертир-анси су помоћу дванаестбитног аналогово-дигиталног претвара-ча. Фреквенцije узроковања ("семпливања") овог претворача била је 256 Hz, што значи да је изабрано два аналогна сигнала, који је трајао једну секунду, пре-творен у 256 броја (тј. бројних величина амплитуда EEG). Ова-ки низови бројки били су под-вртнут "бројом Фуријеове трансформације" [25] и даље обрађивани помоћу FC-рачунара. За сваку епо-ху добијени су параметри њеног фреквенцијног спек-тара, тј. амплитуде (потенцијали) EEG и одговарајуће фреквенције њихових синусних компоненти. Поделено је да цеолобројне фреквенције буду у распону од 1 до 30 Hz. Нацрте су среће величине амплитуда претворача.
СХЕМА 2. Схематски приказ дистрибуције логаритмских трансформисане снаге активности бета-1 (лево) и бета-2 (десно) према погледу испитника. Остатак обрасца као на слици 1.

FIGURE 2. Diagrammatic presentation of distribution of ln-transformed beta 1 (left) and beta 2 absolute powers (right) over 14 derivations (marked alongside). Rest of explanation as in Fig. 1.

компоненти за свих 12 епоха и за сваки положај електроде. Према устаљеној траци, за сваку компоненту разложеног сигнала, квадрат амплитуда дефинисани су аполутне (спектралне) снаге активности. Затим су у фреквенцном опису од 1 до 30 Hz дефинисани фреквенције опсеоси на класичан начин: делта (од 1 Hz закључно с 3 Hz), тета (4-7 Hz), альфа (8-12 Hz), бета-један (13-22 Hz) и бета-два (23-30 Hz). Аполутна снага сваког описаног опсеоси дефинисана је као збир снага свих компонената, чије су фреквенције лежеле у таковом опису. Подаци о аполутној снази, нажен за сваког испитника, биле су уређене за све епоке. Тако су добијене снаге аполутне снаге за сваки фреквенције и сваки положај електроде. Тотална снага представљала је збир аполутних снага за свих шест опсеоса.

Највећи број оваквих мера амплитуда није увек нормално (гаусовски) распоређен [26]. Да би се обезбедила нормална расподела података, снаге у овим опсеосима логаритмоване су за основу е [27]. Тако су добијени природни логаритми бројних података о аполутним снагама. За овакве величине највећи број расподела има особине нормалности [11, 16, 26].

Индекс асиметрије садржи две величине параметра које су регистриране у двама симетричним одводима EEG у односу на уздужну осу главе. Ми смо дефинисали овај параметар као однос између величине аполутне снаге, регистроване са деривације изнад уочених места једине хемисфере, и величину истог параметра зарегистриране са деривације изнад симетричног места друге хемисфере. Сваки количник рачун је помоћу нелогаритмованих величина снага, уз подешавање да бројач у количнику буду увек вели од име-
"Брази опсези" (бета-један и бета-два) показују да је активност бета-један, под условом да су очи затворене, максимална у постериорној области (Схема 2, лево). Отварање очију блокира активност претежно у постериорним областима. Бета-два је једини опсег у коме при отварању очију настаје пораст снаге у антериорним областима (Схема 2, десно). Табела 2 показује да су разлике између снага мерених са симетричних деривација у опсезу бета-два највеће статистички високи значајности. Истовремено, разлике између средњих снага, узетих са деривација из над лева и десне хемисфера, изгледају значајне. Отварање очију не утиче на величину индекса асиметрије. У табели 2 види се да промене индекса нису статистички значајне.

У поређењу с осталим опсезима, снаге активности альфа и тоталне активности испод једне амплитуде у свим деривацијама (Схема 3). Сви испита

ДИСКУСИЈА

Наша испитивалаца потврђују неке налазе који су већ уочени код нормалне деце. Добро је познато да кад субјект отвори очи, супресије активности альфа настају независно од старости испитника [1, 13, 17, 18]. Ми смо такође потврдили запажање да је најпотпунија супресија альфа-активности локализована у окципиталној области [1, 13]. Према нашом истраживањима, свемења снаге альфа статистички су значајна у свим коришћеним деривацијама (Схема 3, лево). Слични резултати запажени су код нормалних адопцезата и одраслих особа [7, 10].

После отварања очију, смањење амплитудне снаге утврђено су у опсезима делта, тета и альфа, али нису запажене у опсезу бета [17]. Ми смо анализисали промене у свим деривацијама и показали да у опсезу тета снага значајно опада, али такве промене у опсезу делта нису статистички значајне (Схема 1). Што се тиче "брзих опсеза" (бета-један и бета-два), ми смо показали да те промене нису статистички значајне за највећи број деривација, изuzeв за деривације у постериорној области (Схема 2). Асиметрија између хемисфера може да се процењује помоћу индекса асиметрије, и он се обично израчунава помоћу обрасца 100*(r – l)/(r + l), где је r величина параметра оцењених с једног места десНЕ хемисфере, док је l величина истих параметара, изузетко симетричног места изнад леве хемисфере. Сматра се да је ова дефиниција боја од некада коришћене r – l, ипак израчунате величине овог индекса боје одговарају законима нормалне расподеле [15]. С друге стране, познано је да је релативна грешка разлике између сличних бројних вредности по принципу велика, тако да је број значајних цифара резултата често веома мал. У нашој студији показано се да величине индекса асиметрије израчуначане помоћу претходног обрасца који садржи r – l у бржем, уопште нема значајних бројки (јер су величине за r и l веома блиске), због чега су апсо-
узивној блокади изван старости ове посматрачне
испитанке. Лонгитудинална студија била би,
tакође, корисна како би се умањила ограничења ана-
лиза узроковане индивидуалним варијацијама.

ЛИТЕРАТУРА

TOPOGRAPHY AND ASYMMETRY OF VISUAL EEG REACTIVITY IN HEALTHY SCHOOL-AGE CHILDREN

D. RISTANOVITSH1, Z. MARTINOVITSH2, V. JOVANOVITSH-CHUPITSH3
1. Department of Biophysics, School of Medicine, Belgrade, 2. Department of Epileptology and Clinical Neurophysiology, Institute of Mental Health, Belgrade; 3. Centre for Prevention and Treatment of Drug Addiction, Belgrade

In order to quantify the visual reactivity of EEG to opening the eyes, the topography of EEG power spectra in a sample of 72 healthy subjects aged from 7-15 years, was studied. The EEGs were recorded at 14 scalp sites under eyes closed (ECL) and eyes open (EOP). It has been established that the absolute powers in total and in alpha band were significantly higher in all derivations under ECL as compared with EOP condition. Except for the frontal derivations, absolute power in theta band under ECL condition was significantly higher than that under EOP condition. Changes in delta and beta powers were seldom significant. In beta 2 band no EEG blocking was noticed in anterior area. Opening the eyes significantly influenced the values of asymmetry index in alpha band and total power. In all frequency bands and under both conditions, the differences of powers between the hemispheres were found mainly in the prefrontal and lateralfrontal areas. The results showed that the visual blocking of EEG was mostly due to a higher degree of EEG desynchronization after opening the eyes.

Key words: Visual reactivity, brain topography, spectral analysis, EEG asymmetry, healthy children.

DUŠAN RISTANOVIC
Institut za biofiziku
Medicinski fakultet
11 000 Beograd, Višegradska 26/2
Tel.: 011/361-57-67
Mail: dusan@ristanovic.com